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1. Introduction

Fractional calculus presents numerous applications in modeling complex problems, and analyses
using fixed-point techniques are highly effective in fractional integro-differential equations (FIDEs).
Models using FIDEs are better for real-world problems compared to those using local derivatives [1-5].
The results obtained from these FIDEs, with various definitions of non-local (fractional) derivatives,
demonstrate their unique applications in scientific and non-scientific fields. Among these derivatives,
Atangana and Baleanu introduced a non-local derivative with a non-singular kernel based on the
Mittag-Leffler function in the sense of Caputo [6—8]. This definition highlights the importance of
the Mittag-Leffler function, and together, they present numerous applications in different areas. The
ABC derivative involves the Mittag-Lefller kernel; as such, it is not affected by the singularities of
FIDEs compared to other fractional derivatives. Also, it effectively captures the memory effect of the
system , performing better than classical derivatives. The ultimate merit of the ABC derivative is
to maintain physical phenomena while evaluating the existence and uniqueness of mild solutions for
fractional differential equations.

Numerous problems in the biomedical field involve sudden state changes. Impulsive differential
equations of non-integer orderprovide a clear frameworks for addressing such problems in future
investigation. Many research works have been conducted in this area [9, 10], and remarkable results
have been obtained. In particular, researchers have analyzed impulsive fractional integro-differential
equations (IFIDEs) [9-11] using semigroup theory and fixed-point techniques (FPTs). The study
of impulsive problems involving non-integer order derivatives is particularly noteworthy due to their
distinctiveness.

Several models for physical phenomena completely rely on historical data. In such cases, delay
differential equations (DDEs) [7, 12, 13] are used to model scenarios in fields such as control systems,
oceanography, and geography. Researchers have investigated the approximate mild solution of the
multi-pantograph DDE of second order with singularity [14, 15]. Models involving DDEs account
only for past states but not past rates [12—15].

Many researchers are working on coupled delayed fractional systems [16]. For the first time, the
fractional adaptive sliding mode control method is being used to study the projective synchronization
of uncertain fractional-order reaction-diffusion systems. Adaptive sliding mode control laws are
derived by creating a fractional-order integral-type switching function, which makes the fractional-
order sliding mode surface reachable in a finite amount of time. In [17], the Lyapunov functional
approach and Fillipov’s theory were used to derive a novel algebraic necessary condition for the global
ML synchronization of fractional-order memristor neural networks (FOMNNs) with leakage delay via
a hybrid adaptive controller. In [18], researchers investigated global Mittag-Leffler synchronization by
designing a new fractional integral sliding mode surface and its associated control law. In [19, 20],
authors examined the well-posedness of systems of incommensurate delay fractional differential
equations (DFDEs) of retarded type with non-vanishing constant delay in the space of continuous
functions. The behavior of dynamical systems can occasionally vary due to impulses and abrupt
process changes. These changes can be modeled [21] using short-memory fractional differential
equations

The existence of mild solutions for the given problem and their stability was discussed by
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Reunsumrit et al. [11]:
AECDIs(t) — N, s())] = I(t,s(t), Ls(1), 0<a<1,t€[0,T]=3
A, = 1(s(a7)),

I
s(0) = | @) S(v, s(v))dv,

where ] ‘BCD“ is the ABC fractional derivative of order @ and I, S : I xR — Rand B, g : T xR? - R
is a continuous funct}on.

Here, 8s(t) = fg(t,r,¢(r))dr, and; : R > R, i=1,2,.90=t<t <h <..<t, =T,

0
Asli—, = s(t7) — s(t;), and s(t) = hli%l+ s(t; + h) and s(r;) = hh%l— s(t; — h) represents the limits from the
left and right sides of s(¢) att = ¢,.

Benchohra et al. [12] inspected the existence and stability of the mild solution for the below implicit
fractional differential equations (FDEs) involving neutrality and impulses

CDZ[s(t) - N(,s)] = I(t, s, DZs(t)), foreacht € (t;,1541]1, ¢=0,1,..n, 0 < < 1,
AS)|_ = 1), g =1

=lq

s(t) = (1), t € [-V,0], V>0,

where CD;Z represents the fractional derivative in Caputo sense, 7 : [0, T] X PC([-V,0], R) xR — R,
N [0, T] x PC([-V,0],R) — R are the given functions with 7(0,¢) = 0, I, : PC([-V,0],R) —
R, ¢ € PC([-V,0,R), 0 =ty < t; <+ <ty <ty = T. Asl, = 5(t7) — 5(t,), where s(f;) =
hll}r(r)l+ s(ty + h) and s(t;) = hlg(g{ s(t, — h) denote the limit values approaching from the right and left side
of s atr = t,, respectively. Here, 5,(0) = s(t + 6).

Gul et al. [1] researched the existence of the mild solution for BVPs, using the ABC non-integer
order derivative

ABCDs(1) - N(t, s(t)] = I(t, s(1), 0<a<1,t€[0,T] =7,

(0-»""
f @) ——UW, s(v))dv.

Here, g{BCDf— is the ABC derivative of non-integer order « and N, U, I : I "X R — R.
Karthikeyan et al. [14] studied the existence of the mild solution for implicit FIDEs using ABC
derivatives as mentioned below:
FECDE[s() = R(t, 500)] = 1(t, 502 DEs@), 1€[0,T] =T, 0<a <1,
A = TiCs),
s(t) = (1), t € [-1,0],

_ na-l1
5(0) = f ( r(3)) &G, 5.)d3,

where ABCDa_ s the ABC fractional derivative of order @, P,E: T xR — R and 7 : TxR? - R
are continuous functions. Where I, : R - R, 3=1,2,.6,0=t <t <h < ..<t, =T, As|, =1, =
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s(t) — s(t;), s(t;) = 1i%’1 s(t) —v) and s(t) = hI‘(I)l s(t; + v) represent the limit of s(¢) from right and left
1—0~ 1—0*
respectively, at ¢ = ;. For any ¢ € J, we represent s, by s,(0) = s(t + ) and —r < s < 0.
Nowadays, many researchers are analyzing the exact and approximate controllability of the
above mentioned systems involving different non-local derivatives. Aimene et al. [7] verified the
controllability for semi-linear FDEs involving the ABC derivative and delay.

y‘BCD“[s(t)] = As(t) + Be(t) + G(¢, s, x(P(1))), t€ [0, T] =9, 0<a < 1,
A)|_ = lsp),

1

s(2) = go(t), te[-r,0]

Here, ﬂBCD“ denotes the ABC non-integer derivative with order  and A : D(A) € Q — Q is an
inﬁmtemmal generator of @— resolvent family 7, & S, for r > 0 forming the solution operator on
the Banach space (Q,||.])). Let ¢ € £*([0, T]; C), here ( is also a Banach space and B is a bounded
linear operator such that 8 = {g : [-1,0] — Q}, g is continuous everywhere except for a finite number
of points r at which g(r™), g(r*) exists and g(r") = g(r),g € C(T xBxQ, Q), v LT, IH
where J = {t,..t;}, I  =[-r, Tlandt—rv < xy(®) <t, v >0. t €9 and t; < x(t) <t, t€
(tntinil, 1€ CQ, Q), Als) ‘ S S =), O=tg<t <t <. <ty=T, forn=12,..0

1

with respect to the right and left side approach, respectively, att = 1; is s(t]) and s(t;). s, € B satisfies
5,0) = s(t +6),0 € [-1,0]. s,(.)is the history of the state from ¢ — 1 to .

The controllability of the above defined system has been derived by researchers with the help of
k-set contraction mapping.

Inspired by the above mentioned research articles, we aim to investigate nonlinear implicit fractional
systems involving impulses and delay in terms of ABC, the non-local derivative of the form,

ABC DAL s(t) — N(t, s())] = As(D) + Be(t) + (1, 5,5%¢ D?s(0), (1)), 1€ [0, T1 =T, 0 <a < 1,
A = 15,

s(f) = (1), t € [-1,0], (1.1)
5(0) = f T =" 3, s0d3
T =~ 7

where ﬂBCD" denotes the ABC non-integer derivative with order « and A : D(A) ¢ Q — Qis an
1nﬁn1te51ma1 generator of @— resolvent family 7, & S, for r > 0 forming the solution operator on
the Banach space (Q,]|.]}). Let ¢ € £*([0, T]; ), here ( is also a Banach space and B is a bounded
linear operator such that B : C — Q. The functions %, % : xR — R and 7 : T xR> - R are
continuous. Also, OﬂBCD?— denotes the ABC non-integer derivative with order @, and %, ® : 7 X R —
‘R are continuous functions. Also, I; : R — R, i = 1,2,.n,0 =1, <t <thb < ... < t, =
T, Asl, = t; = s(t]) — s(t;), s(t;) = rlirg} s(t) —r) and s(t) = rlirgl s(t; + r) denotes the limit of s(¢) with
respect to the right and left side approach, respectively, at r+ = #,. For any ¢t € J, we represent s, by
s;(h)=s(t+h)and —r < s <0.

The remaining of this paper is organized as follows: rudimentary concepts, like definitions
and lemmas, are given in Section 2. The existence of the mild solution for nonlinear neutral
implicit impulsive FIDEs involving ABC fractional derivative with delay is verified in Section 3.
The controllability of the nonlinear neutral implicit impulsive FIDEs involving ABC with delay is
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examined in Section 4. An example is provided in Section 5 to demonstrate the applicability of the
proposed problem.

2. Preliminaries

Let us define PC([-1,0], R) = {5 : [-1,0] = R : s € C((t;, ti1], R), i = 0, 1,...£, and 3 5(;) and
s(t), i = 1.6, with s(r7) = s(t)}.

P\C([—r, 0], R) denotes the Banach space, having norm ||s||lz. = sup |[Is(?)]|.
te[-1,0]

PCI([0,TLR) = {s : [0,T] » R : s € C(1;,6,11,R), i = 0,1,..6, and 3 s(t7) and
s, i = 1,..,¢, with s(t;) = s} PC,([0, T1,R) represents the Banach space, having norm

lIsllpe, = sup lIs@ll,
t€[0,T]

Q= {s [, T] > R sl € PC([-1,0], R) and Slio) € PC, ([0, T1, ‘R)}.

Q holds the properties of Banach space with norm ||s||q = sup |[|s(?)]|.

te[-1,T]

Remark 1 ([7,8,10,12]). SD\C([O, T1, R) is the Banach space, which is a complete normed vector space
( PC, |I.Il) with the following properties:

(1) Ifll = 0 and ||fl| = 0 if and only if f =0, ¥ f € PC(0,T], R).
2) 18l = 18] IIfll, where Bis a scalar, ¥ f € PC([0,T],R) and B € R.
(3) If + gl < IfI +lgll,V f and g € PC(0, T1, R).

Definition 1 (7,8, 10, 12]). The non-integer order ABC derivative of f(t) is

N(@) (7, —a(t-3
e = 1n [ o S
-« 0 1l-a
where, € (0,1] and a € EY(0, T). N(«) is the normalization function satisfying N(0) = N(1) = 1 and

> i
E, =
; (@i + 1)

Definition 2 ([7,8, 10, 12]). The non-integer order ABC integral of f is

is a special function, introduced by Mittag-Leffler.

ABCTa -« a ft(f—?))a_l
o L@ “Na) f@+ N@ J,  Tw@ f®3)ds,

where I represents the R-L fractional integral.

Remark 2 ([7,8, 10, 12]). Some important properties of ABC derivative and the generalized Mittag-
Leffler function during the implementation of Laplace transform are as follows:

N
(1) LICD f(01(s) = = LB (AL D)(s) ~ FO)I1.

1-«a
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o

(@) LiKa = DE ()] = .

F(af + 1)

(3) LIfa)1(s) =
(4 LLf(0) = ¥D)(s) = LIS OIS LIFDOI(s).

Definition 3 ([7, 8, 10, 12]). The Kurtawoski measure of non-compactness Y on a bounded set B C Y
is considered as follows:

Y(L) = inf{e >0 implies Lc O M; also diam(M;) < e},
=1
with the following properties:
(1) L, cL, gives Y(L,) < T(L,) where L,, 1L, are bounded subsets of Y.
(2) Y(L) = 0 iff L is relatively compact in Y.
(3) Tz UL) = Y@L) forall ze Y,L CY.
(4) Ty ULy) < max{T(Ly), T(Lo)).
(5) TL; +1Ly) < T(Ly) + T(Ly).

(6) T(G)L) < [GIT(L) for 3) € R.
Let M C(I,Y) and M((3)) = {v(r) € Ylv € M). We define

fo M@)ds = { fo uG)dslve M|, rel.

Proposition 1 ([7,8, 12]). If M c c(d,Y) is equi-continuous and bounded, then t — Y(M(7)) is
continuous on I, also

T(M) = maxY(M(r)), 'r( f v(3)d3)§ f YwQR)d3, for tel.
0 0

Proposition 2 ([7, 8, 12]). Let the functions {v, : J = Y,n € N} be Bochner integrable. For n €
N, vl < m(t) a.e m € LY(T,R*) and £(t) = T({v, ()} ) € LT, RY), then it satisfies

T({fo Un(3)d3 1 n € N}) < 2f0 £@3)d3.

PrOpOSItlon 3([7,8,12]). Let M be a bounded set. Then, for each { > 0, there exists a sequence
{un)2, C M, such that

TM) < 2w, )2, + <.

AIMS Mathematics Volume 10, Issue 2, 4326-4354.
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Definition 4 ([7,8,12]). Let 0 < u < mand —1 < 8 < 0. We define Sg ={v € C\ {0} that is |argd| < u}
and the closure of the form S, that is

S, = {v e C\{0llargtl <} |_Jf0}.

Definition 5 ( [7,8,12]). For -1 < 8 < 0,0 < w < 3, we define (&) as a family of all closed linear
operators A : D(A) C Q — Q; this implies

(1) o(A) € S, where o (A) is the spectrum, which is a complement of the resolvent set.

(2) Forall u € (w, ), AM,, implies ||R(z, A)llx) < Mylzlﬁ, where R(z, A) = (zI — A)™" is the resolvent
operator and A € &P is said to be an Almost Sectorial operator on L.

Proposition 4 ( [7,8,12]). Let A € @f,for -1 <B<0and0 < w < § and we define (&) as a family
of all closed linear operators A : D(A) C Q — Q. Then, the following properties are fulfilled:

(1) O(1) is analytic and L0(1) = (~A"O(1)(t € S%);

(2) Ot + ) =V@)V(s) V¥ t,5¢€ sS4

(3) 10l < Cot (¢ > 0); where Cy = Co(B) > 0 is a constant;

(4) Let Y5 = {x € Q : lim,_o, O(H)x = x}. Then D(AY) C Y5 if T > 1 +f3;

(5) R(z,—-A) = fooo e 30(s)ds, z € C with Re(z) > 0;

(6) The range R(O(1)) of V@), t €S %_w is contained in D(A)”. Particularly, R(O(7) is contained in
D(AY for all B € C with Re8 > 0,

N 1
APO(Hx = — f Pe“R(z : A)xdz
27 o

for all x € X, and hence there exists a constant C' = C’(¢,3) > 0, such that
|APT()|| < C'r ¢ ReP!
forallt > Q.

Remark 3. O(7) is a C, semi-group operator of an infinitesimal generator A.

Definition 6 ( [7,8, 12]). Observe the system represented by the problem given below:

TECDes(h) = £(D),
s(0) = sp.

The mild solution of the given problem is of the form,

s(0) = so + IN;OXf 1)+ fo (1 =3 f(3)ds.

a
N(a)I'(@)
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Proof. From Definition 2, we obtain

s(t) = so + 7 CIC £ (1)

_ 1 - a ' _ na-l
= 50+ + TS O+ fo (-9 F()ds.

O

Theorem 1 ( [7,8,12]). Let (Q,d) be a complete metric space. Then, a function ¥ : Q — Q is
said to be a contraction mapping if there is a constant @ with 0 < a < 1 such that for all x,y € Q,
d¥ (), ¥(y) < ad(x,y).

Theorem 2 (Banach contraction principle). Let ¥ : Q — Q represent the completely continuous
operator on the Banach space Q. Consider that the set 4 = {s € Q : s = AEs, for some A € (0,1)} is
bounded, then Y has fixed points.

Theorem 3 (Arzela—Ascoli theorem). Let Q,d be a compact space. A subset Q,,, of C(Q) is relatively
compact if and only if €, is uniformly bounded and equi-continuous.

Theorem 4 (Schauder’s fixed-point theorem). Let Q, d be a complete metric space. Let L, be a closed
convex subset of Q and let ¥ : Q,, — Q,, be a mapping such that the set {¥s : s € Q,,} is relatively
compact in Q, then ¥ has at least one fixed point.

Lemma 1 ([12]). Let the real function v(.) : [0, T] +— (0,00) and p(t) be a non-negative, locally
integrable on [0, T|, and assume the constants ¢c; > 0 & 0 < ¢, < 1 such that

!
V(1) < p(f) + ¢ f (t =3)""v(3)d3,
0
which implies a constant C= C(cz) such that

W) < p(t) + Cer f (t = 3 v(3)ds, for every t € [0, T1.
0

Lemma 2 ( [7,8, 12]). Let the BVP with nonlinear integral boundary conditions, if f € L(),
JEDYs() = f(t), o<a<1,te [,

_ a1
5(0) = f S F(?’)) EG, s(3)d3,

then, the mild solution s € AC(Y) is,

_ -1
§(t) =PT, f T g, s3)ds + QPN( o f (t - D" f3)ds

')
+ So(t —3) f(3)d3. (2.1)
N(a) j(:
Here, P and Q represents the linear operators, P = k(kl — A)~" and Q = —nA(xI — A)~', where
— N
= T’

T, = E-00) = 5 [ eviori- 0 ta,
r
Sy = 1" EQo(-0(0)") = ZL few(val - Q) 'dv.
L Jr
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Proof. We easily prove result (2.1) through Lemma 2 directly by substituting sy as the boundary
condition. O

Definition 7 ( [7,8,12]). Let the BVP with nonlinear integral boundary conditions, if f € L(J),

AIB“CD“[s(t)] = As(t) + Be(t) + G(¢t, s, x(P(1)), t€ [0, T] =9, 0<a <1,
A)|_ = lsp), 2.2)

1

then, the mild solution s € PC ) is,

@), €= fO]

a-1
Plaso + OPH )r(oof -9

p: [
N(a) fo So(t = 3)[Bles®) + GG, 55, x (YR, if t € [0, 11], (2.3)

1 _ !
PT,(t = 1))s(t;")) + QPN(( )F()) f(t—%)"'l[B(Cs(%)) + GG, 53, X (YR)))1d3

N((,)fSa(t IB(esB) + GG, s, X (YRI3 + 1i(s(t))), ift € (1,151, j = 1,2,..m.

s(t) =

Here, P and Q represents the linear operators. P = k(kl — A)™' and Q = —nAI — A)~! where

K= %M and
-

- -0 = 5 [V ay
R 1
Su =t Eaul-Q) = 5 [ 07Ty
2 Jr
Definition 8 ( [7,8, 12]). The equivalent fractional solution integral for the prescribed system (1.1) is

@(1), t € [-1,0],

(T =3 1-a) (7 a1
N(, s,) + PTaf TE(& s(3)d3 + QPW f(; (t-3)

X[B(cs(3) + 0" (3)d3 + 2 [ Sl = )[B(cs(3) + a"(3)d3, if t € [0,11],

N(t, 57) + PTo(t; = 1;1)s(17 1))+QPN( )F( ) f (t = 3" [Blcs() + 0" (3)1d3
a-1
ZQ N(a)r( ) f (t; = "' [Bles@) + 0 (3)1d3

N@Z f So(t; - DB(cs(3) + a°(3)d3

s(t) = (2.4)

N(a) f Sa(t B(CS(S)) +q (3)]d3 + PTa(t) Z I; (S(t )) lft € (tl’ tl+l]

j=1
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Definition 9 ( [7,8,12]). Let ¢ € Q be an initial function and s, € 75C([0, T1,R) C Q, then there exists
a control ¢ € LA, (), corresponding to the mild solution s(t) of (1.1), that fulfills s(T) = s,, then the
system is controllable on [0, T].

Remark 4 (7,8, 10, 12]). The readers may verify the mild solution and the solution operator in [7, 8,
12].

Remark 5 ([7,8,10,12]). If A € A%, Bo), then ||T,(t)]| < ReP and ||S,(f) < QeP'(1 + 1*7Y)|| for
allt > 0, B> PBo. Therefore, we get R = sup,., ITo(Dll,R; = sup,.o Qe (1 + t*') and so || T,(0)| <
RIS, (0l < 'Ry

3. Existence and uniqueness results

We examine the existence and uniqueness of the mild solutions of the proposed system by assuming
that
(P1) For K, > 0 and for any s,p € Q

192, 5(0)) = Nt pO)] < Kolls(@) = p(@)llpe

and
1N, s < R,

(P2) For K,, £,&M, and for any sy, 55, 53, 01,02, p3(1) € Q
|Z(t, 51(2), 52(2), 53(0)) = I (2, p1(£), p2(D), p3(D))|
<K, |Is1() = p1(D)llpe + Lols2(8) = pa(t) + M, |s3(2) = pa(2)|

and
I (2, 51(2), 52(), s3Il < R,
(P3) For 7\(, > () and for any s,p € Q

\1is()) = Lp(0)] < Kills1 (1) = p1(Dllpc

and
[|;5(t) < w.

(P4) For 7\(5, > ( and for any s,p € Q

IG(t, (1)) = G(t, p(D)] < Kills(t) = pDllpe

and

G, se)Il < K.

(P5) There exists ¢y, ¢2, ¢3, ¢4 € C(T, R,) with ¢y = sup,sc3(f) < L and ¢ = sup,. 4 c4(f) < 1 such
that
1 Z(z, 5, 0, I < €1(8) + 2(DIsllpe + c3Dlpl + ca®llullpe

AIMS Mathematics Volume 10, Issue 2, 4326-4354.
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fort e J,s € PC([-1,0], R) and p, u € R.
(P6) There are constants C’[, C; > 0 such that

1Li(s)| < Cillsllpe + C3

for each s € PC([-1,0],R), i =1, ..., L.

(P7) Let the completely continuous function be 9, and for each bounded set B+ in €, the set
t — N(t, s;) © s € By 1S equi-continuous in P\C(j , R) and hence, there are constants p; > 0, p, > 0
with £C% + p1 < 1 such that

0N, 9] < pillsllpe + pa.t € T s € PC([-1,0], R).
(P8) The control operator is a bounded linear operator, and for each bounded set B+« in €,

lles(2) = oIl < Rells() = p(Dllpe.-
(P9) The linear operator ‘W : PC (J)— Ris

Q) [(T = )" Bles()ds + £ [ Su(T - 3)Bles()ds, if 1 € [0,1],

Wic() =

S [ (T =9 Bles)ds + &5 [ SulT = )Bes)ds, if 1 € [t 17011

Here, we get an invertible operator W' : 8 — L?((0, T], C)/ker(‘W), W~ is also bounded and
hence we have ||B|| < R and ||'W!|| <R,.
(P10) P & Q are linear operators that are bounded on 8B and hence ||P|| < {; & ||Q] < &.

Theorem 5. Let us consider that hypotheses (P1)—(P8) hold, then the proposed problem (1.1) has at
least one mild solution.

Proof. Consider the set,
Q= {s [, Tl > R sl € PC([-1,0], R) and Slio.] € PC, ([0, T1, 9%)}.

Q holds the properties of Banach space with norm

lIsllo = sup [[s(@)ll.

te[-1,T]

We define the operator ¥, : Q — Q defined by

p();t el
( _3)a : a— 1
PT, (1) f F( T 0 s3>da+QPN( T f (t =3 [Bles() + a"()1d3
_ -l B f Sa
. N(a)r( Ner@ f (1= 3" [Bles) + 0’ Q)] + oo )Z G- L

X[B(cs(3)) + 0" (3)ld3 + 25 f So(t = )[Blcs®) + 9" (3)]d3

+PT, (1) Z L(s(t))), [tistisr)-

J=1
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The operator ¥, represented in (3.1) can be formed as ¥ = (¢, s(¢)) + ¥y, forall t € 7.

With the help of Schauder’s FPT, we derive the existence of a fixed point of . First, we show that
Y is completely continuous. Due to the postulate (P7) of 9t, it is enough to show that ¥, is completely
continuous. O

Step 1: ¥, is continuous. Consider the sequence {s,} such that s, — s in Q. If ¢t € [-1, 0], then

I¥i(s) —F1(0) =0

For t € J, we have

a—1
1 (s) — mm<PT0{f (rf; GGy 51) — GG, 5,)1d3
+op L= U—@“WB@A&)+qAﬁ%{B@ﬂ@X+qu%

N(o)I'(@)

1-
+ ; op N((a)r( ) f (t; = 3" I[Bcs®3) + a* = £(3)] = [B(cs(3) + 4" (3)ld(3)

2
f So(t =3)[B(csB3) + a",(3)] — [Blcs(3) + a*(3)]ld3

" @)
R ol B d
" Na )Zf ot = DI[Bles() + a7 ()] = [BlesB3) + a"3)lld3
+ PTo(?) Z ;(s(t;)) = Lip(t;))l; (3.2)
j=1

here, 9%, q; € C(J,R) such that
0" ((t) = L(t, Sur, 0" (1), €o(D)),
and
q' (1) = L(t, 50, 4" (1), c(1)).
By (P2), we have

0" ((1) = (D] = L2, ser), a" (D), ce(D)) = L(2, 50, 97 (D), 1)

< Kills — sillpe + Lala” (1) = 0" (O] + Mullce() = el
Kllse = sillpe + Mallee® = cOllpe.

1- 21,
Due to the result s, — s, it gives q*,(f) = q"(f) as £ — oo forall r € 7.

Now, consider v > 0, for each ¢t € J, we write |q*,(¢)| < v and |q*(¢)] < v.
Hence, we get

") — 9" (D] <

(t =3 a" ) — a* @) < (¢ = 3 la" (G| + [a* (D]
<20t -3,
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and

(t = 30" ) — a" O] < (= 3P la" B + la"(@)l] < 2v(t, — 377"

Forall t € J, the maps 3 — 2v(t—3)/"! and 3 — 2v(t; —3)’"! are integrable on [0, ¢]; hence, by applying
the Lebesgue dominated convergence theorem and (3.2), we get

[¥1(s0)(@) = Fi(s)(D)] = 0 as £ — oo,

which results in the continuity of ‘.

Step 2: The bounded sets of Q will be mapped in to bounded sets of Q by the function ¥;. To show
this, it is sufficient to prove that for any T* > 0, dp such that for each s € B+« = {s € Q : ||s|]la < T},
we have [|[¥(s)|q < 9.

For each t € T, we get

T—3)""!
(@) N( )F( )

a-1
ZQ N >r<>f(’_3) N()Zf Sell; =9

f So(t =3)[Blcs3) + a°(3)1d3

Yi(s(0) = PTo(1) f 0 — GG, s)d3 + QP f (t = 3)"'[Bles(3) + 9" (3)1d3

N( )
+ PTo() ) 1(s(17), (3.3)
j=1
here, ¢* € C(J, R) such that q*(7) = 1(t, s, q"(¢), c(¢)). From (P5), for each 7 € J, we can write
" (D] = |22, 51, a7 (2), ct
< 1) + 2(DlIsilpe + 3D (D] + calle@llpe
< 1) + @lsdlpe + 3D (D] + calle@llpe
< ci(®) + ()T + (D" (D] + calle@llpe
S+ AT +AGla O+ cylle@llpes
where ¢} = sup,. s ¢1(f), and ¢ = sup,. s c2(?). Then

i+ T+ Glle@ll .

la*(0)| < =R.

1 -¢c;
Thus from (3.3),

-3
I'(a)

a—1
+ZQ N(a)n )f =)
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P < 1
N(a) Z f S.(t; = 3)[B(cs(3) + a"(3)1d3

aP2
N( )

f Salt = DIBles@) + 4" G)lds + PT, (r)ZI(sa )|

a

T 1-
<R (f1|| I+ )+ $o—=—RM" + R) + (il ———URM" + R)

I'(a N( )F( ) N(e )F( )
{1 el p DAJ* 1
N(a)(T )T RIE(RM ( )

<R

+

=3 RRM" +R) + (iR Z(C’;ns,,;n +Cy
i=1

@ (flV + f2) + §1§2N( e )(54‘ 1)(RM" +R)
2
g({ )(T 3 'R(€+ D)RM* +R) + HRUC) Y + C5) := S.

For t € [-1, 0], then
1 ()OI < llellpe

Hence,
11 (s)llo < max{$, |l¢llpc} := 9.

Step 3: The function ¥, maps the bounded sets of Q into equi-continuous sets of €2.
Lett,_1,t,€ (0, T], t,,y <t, By beabounded set of Q as in Step 2, and let s € By-. Then

1 ($)(70) = ¥1(s)(-1)

(1 — (1) _ -l a/) a—1
= QPN(a)F( '), l( 3 [Bles3) + (3)]d3+ZQPN( @ ( -3)
aP - . aP?
N(a/) ]Z:; Ll S N(a) L Sa/(tt’ - 3)

1- 1j
INT((a)FC(yc)k) LT 3" [Bes(3) + 9" (3)1d3

aP? ¢ f’f
So(te-1 = 3)
N(a) Jz:; fo1

p: | i )
N@) ft So(tee1 = 3)[Bes(3) + q*(ﬁ)]da—PTQ(I);Ij(s(tt,_l))L

X [B(cs(3) + a°(3)]d3 + PT,o(1) Z 1i(s(t;)) = QP
j=1

g a-1 *
—ZQ N(a)r() e =) B Ol -

As t; — t,_1, the RHS of the above inequality converges to 0. Hence, ¥, is completely continuous.

Step 4: A priori estimates. We show that
d={s€Q:s=«k¥(s) for some « € (0, 1)}
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is bounded. Consider s € 4, then s = k¥(s) for some « € (0, 1). Now let, for each ¢ € 7,

s = N, s;) + kPT, f (T-39" 1E(S, 5(3))d3
I'(a)

a—1 a-1
+KQPN( @ )f (1 =3)"" [Blcs(3) + a°(3)] d3+KZ QPN(a)F( )f (tj—3)

J PZ !
><[B(cs<a>>+q*(a)]da+K§(a); f ) Saaj—a)[B(cs(a>>+q*(s)]da+x§(a) f St - 3)

X [B(es(3)) + 0" (D)1d3 + PTo(0)k Y Ii(s(t))). (34)

J=1

Hence, for each ¢ € J and from (P5), we get,

la" ()] = (2, 5, a7 (1), (D)
< 1) + 2Olsdlpe + 3D (@] + ca(®)c@)]
< ci() + ex(llsillpe + c3Dla™ (D] + caDllc@Dllpe
< ¢y + o llsidlpe + sla” @] + cille@llpe

1
T €1+ alisillpe + calic®llpe)-
3

For each ¢t € J and by (3.4), (P6), and (P7), we have

lg* ()] <

a—1 1 —
Is| < pillsilpe + P2 + &R f T I 3)) (fillsillpe + f2)d3 + §1§2(1 — cg)(cha))Fa(cT + &5 |Isllpe
001 - a)

(I = ) N(@)Tl'
aR? - |
WZ f (1= 3" (e} + GSllsllpe + e3llc®lpe)ds

a’ -1, = * * D * *
—_— t—3)" 5 Nes-)d R¢ -|p .
+ 1- cg)N(a) jz:( 3)" (] + C2||S||¢>C + c4lle( )”pc) 3+ 4 (C1||Sti ”pc + Cz)

+ cylleDllpe) + (¢} + Allsllpe + calle®llpe)

Define v by

v(t) = sup{ls@3)| : 3 € [-1, 7]}, 7 € [0, T], c() = sup{lcB3)| : 3 € [, 7]}, £ € [0, T].

Then there exists * € [, T] such that v(r) = [s(t")|. If ¢ € [0, T], then by the previous inequality, we
have fort € J
(T -3 GO0+ 1D - a)

@ (fiv(® + f2)d3 + (1 - ;)N (@) (a)

V(t) < p]V(t) + py+ gliéf [CT + C;V([) + CZC([)]
0
—aiéz i " a—lrp * * %
’ (1 = ¢;)N(@) JE; f;_l Sa(t=3)"" ] + c2v(3) + c4c(3)1d3
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R ;
* WI Salt =3)"' [} + 3v() + e + HRUCTVD) + C3)

S(pl Last+bld-ao . 4o+ Dl -a) . T LReC: )

(I = cHN(@)I(a) G+ ORI )V(t)+(p2+ (I = cH)N(@)I (@) “ar

Lo+ Hd-a) aRle] _op o2 o
" (1 = ¢)N(@)I () i)+ N(a )(1—c3)T (1—c3)N(a)Zf A=)
X[C*V(3)+C*C(3)]da+ﬂﬂ“‘”f? +— f So(t =3 evG) + cie(3)1d3
2 4 N(a)(1 - ¢3) = e)N@) “ 2 4

aR*(C+1)e] o
N(@)(1 - ¢5) :

1 ab+hHd-a) .

= (1_[1)] + Gorhi-a) ¢+ ORIC: )( 2T a- csN(@)IN(a) ¢+

+4ReC +

(I=c)N(@)I'(@) )

+ ! aol Hil-a . o
Cy
(1- 17+ R + ey (T~ T@T@)

1 a(l + ey R2

1L+ D(1-0) 4 ( DN
(1 -[p1 + fllzc()gi();)lr(a)) +HROC ]) — 3N J

+

S ot = 3)"‘IV(3)d3)

1 alf + l)cZR%

GOEDI=D) v pr RC ])[ - c)N(@) J;

+
(1 =lp+ 4= (@)@ 2

!
So(t— 3)”‘10(3)613) :

Applying Lemma 1, we get
1

LL+D)(1-a) c
1—[p1+ (-, N(@)(@) 2 + §1R5C

LG+ D(1 - @) R+ 1D,y s (amﬂ)(l—a) )
(”” (1 - )N@I@) 1+41R5C) [N( i T 0 eon@r@
a(l + DR ) (a(f+1)cj;1%§R]l

1 2701
1~ [py + 9000 7 RoCe] l( 1o [T one

(1-c )N(a)l"(a)

v(t) <

X

+

where C(c,) is a constant. If #* € [, 0], then v(#) = ||#ll,5c, thus for any ¢ € T, [Islla < ¥(z), we get

lIsllo < max{|3llpg, A}

Hence the set 4 is bounded. By Theorems 3 and 4, ¥ has at least one fixed point in € which is a mild
solution of the problem (1.1).

Theorem 6. Under hypotheses (P1)—(P8), the considered problem (1.1) has a unique mild solution if

o LRTY o 000 -a)T° K+ MR,
O,=K,+ Taxt )7(s + N@I@+D (¢ + 1)(RRC + —1 y
N({I)Rl(€+ 1)( w]wlkﬁq <1.

Proof. Define a set,

Q= {S -1, T] — R: S|[_r’0] € ﬁC([—r, O], %) and S|[0’-|—] € PCl([O, T], %)}
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Q holds the properties of Banach space with the norm

lIslla = sup [Is(@)ll.

te[-1,T]

Consider the operator ¥, : Q — Q by

@(1);1 € [-1,0]

T _ na-l1 1 - 4
RN, S:)+PTa(t)f (Tr(3)) GG, sa)da+QPN§(a)r2)f(t—s)“‘l

X[B(cs(3)) + a"(3)1d3 + Z or (t; = 3)"'[Blcs(3) + a"(3)1d3

tj-1

— Q)
N(a)F( )

Pi(s(n) =

g{jf)z f Sault; = DIBes() + 0" (3)] N( ) f Sa(t = IB(cs() + 0" ()1d3

+PT,(1) Z I(s(t7)
j=1
(3.5)
where q*(r) € €(7,R) and
0"(1) = Z(t, 51507 DY, ().
If 5,p € Q, for t € [-1, 0], which implies
I (s) = ¥l =
For t € J and from (3.5), we have
I¥(s) = ¥(p)lla = max [¥s(r) = ¥p(0)
T (T =3)* ! 1 - 1j
< max N(t, s;) + PT,(1) f ( I 3)) GG, sy)d3 + QP]N?(Q)FC(Z) z_,_l(t -3
X [B(cs(3)) + a°(3)1d3 + Z QPN @ )rc(y)) tijl(tj = 3)"'[Bles(3) + a"(3)1d3
aP2
+ Z f Sulty = DIBCsG) + 0" Qs + 11 f Sult -
X [B(cs(3)) + a"(3)]d3 + PTo(1) Z 1i(s(t;)) = 4 9U(t, po) + PTo(1) f T-o
N a Jj j s Pt a F(Q’)
(-0 a1 (-
X G(3,p))d3 + OP N@I@ (t 3" [Blco(3) + a*(3)1d3 + Z or N@I@)

xf’(q—s)‘
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P [ _ "
- f Sa(t = 3)[B(c,(3)) + a*(3)]d3 + PT. a(t)zlj(p(t}))}|

+
N(a@)
_ -1
< max 9z, s()) — N(t, ()| + PTo(1) f 8) GG, 53) = GG, p3)ld3
(- (-
+ QPWHB(CS(I)) +0°(0] - [B(c,() + a* (D]l + Z QPN( @

X |[Bcs(®) + a™(1)] = [Blc,(D) + ()] + @ ; ftj_l Salt; =3

aP? ! ol
N(a) ft: Sa(t_?))

X |[Blcs(3)) + a"3)] — [B(c,(3)) + 3" ®)]ld3 + PTo(1) Z Li(s(57)) = 1;(p(£;)l,

=1

X |[Blcs(3) + a"()] — [B(c,(3) + a7 (3)]

here, q*, " € €(J,R) is
q*(t) = I(t’ Sts q*(t)a CS(I))’

and
G°(1) = I(t, 01, §°(1), ¢, (1)).

By (P2), we prove

") = T O = 1L(t, 5, 4" (0, cs(t)) = (£, p1, §°(2), ¢, (D))
< Qs = pillpe + Lo @) = T @) + Mylles() — ¢, (D,

0,
R lles(®) = ¢, (Dl

. K],
la"(®) — 3" (D] < o lIs: = pullpe +

v

N A

!

< s = ol + 2R e
- L, 1-2,
< w] s, = pillyic
1-2,
¥ (s) = F©)lla < Kills: - pille + 4;‘ s = plp + %R&ns, ~ pilpe
L 0o -7 (], + MR, HO0 - )T

c”st pillpe

—_ N +
1 Qv ]llst pillpe N(@)I(@+ 1)
K, + MR, al?t

N@)I'(a + 1)

OOl —a)TY
152 R RR Ils; — pt”;v‘c

] Ils: = pellpe +

N(a)I'(a + 1) 1-2, N(a)
glRRRll e+ 288 8, + R, [
cllS > S 2
" N TP TN T oy, | e
ag ~ + i]ﬁ R A h
N(C;)R | Qv ] lIls; = pillpe + OHRCK s — pillpe
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<[ S e oAk i
Nfl)Rl(f )[RR M) XK, + mm] lls: = pllpe-
Hence, we obtain
¥ (s) = ¥()lla < Bdlls - pllo. (3.5)
Therefore, ¥ is a contraction and (1.1) has a unique mild solution by Theorem 2 in Q. m|

4. Controllability

Theorem 7. Let us consider that hypotheses (P1)—(P10) hold, then the proposed problem (1.1) is
controllable if

LRT'K, o L4 -a) )
Taxn ToRlsil+ W(R +R)(T + 1)
R |
MNTL)(RL, +R)(T* + 1)+ Cilisll + C; < 1. (4.1)

Proof. Let us define the set
Qu, ={s € QilIslle < up} € C = lcll] < pp,

where

(1R7( T
F((l+1)

1 - 24,RknRR (1 + glfe)][lé,, +k(RRk, + R )][(1 - KRRI)(R + 2«n(RRk, + R ))]

Hp 2

b

21 - KRRQ[I — 24, RenRR, (1 + glfe)]

_ Lol -0 Ry
N@Il(a+1) N(a)
Q,, € Qis closed, bounded, and convex. We observe that the fixed points of the operator ¥, are the
mild solutions of the formulated problem (1.1) with W(s)(T) = s,. This implies that the system is

controllable. Now, we derive the postulates of Theorem 2.
We define the operator ¥, : Q@ — Q defined by,

e(t);t € [-1,0]

_ -l
PT.(0) f (x r(3)) GG 5,)d; + QPN( - f (1 — 9" [Bles) + 0 ()1d3

i@ f Salt - 3)[B(Cs(3)) +0°3)d3, 1€ (0,4]

Yi(s(n) = (4.2)

PT,(1; = t;-1)s(171))) + QP f (t = 3)"'[Bles(3) + 9°(3)1d3

N( (@)
+eE f St~ 3)[B(Cs(3))+q(3)]ds+PTa(t)Z LG, (et

j=1
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4345

By (P2), we define the control, c,()

' (T B S)Q_l a—1 _x
sT—PTaT(t) fo GG, ss)d%—QPN( )r( ) f (T-3)"aGR)d3

I'(@)
_ap fo Su(T = ) ()3 — QP f (T = 5™ IR(G), G

N(a)

. N( )F( )
—ar f So(T =3)N(G), S(a))da t€(0 ]
0

N(a)
473
f(T 3" 9" (3)d3 (4.3)

f (T = 3)"'NG), s())d3

cs(t) = W!

T = PTo(T = 1))s(t;") — QP N( )F( )

N(a) Sa(t N R)d3 - QP

N( )F( )

=t f Salt = HR(G), ()3 + PT, (r)Zl(s(r ) (i),

" N@)

Step 1: ¥, is continuous.

¥,(s,) = W1 ()l < 110 ”P”N(( )r‘(”)
x f (=9 TIBI lles, () — es@ll + 10°G) = & G)I1d3
P2
‘;\'I'( )” f 1Sut = DB lles, G) - sl +1a°G — F @l

_ab(-a), f ) al{ (Gt - )f o
= Nl 3 J, e N@@ Jo ¥
% 1147 (¢) — " (@)ldep + mél fo (T =" la" () - 0" (@)ldg)
2 t
+||q*(a)—d*<a)||}da+ N“Ifl)lé] f (13!
2

$18( -1 adi
x{R{W f (T = 1@ - @y + 1oL Ry

X fo (T = @) lla" () — a"()lidee} + lla"(3) — tf*(a)ll}ds

For, 1 € (t;_1,1;], we get

1 —
¥ (s) = 1)l < ||Pl ||T(,(l‘~_1 - l‘)|| ||(sr(t_.) - (S(l‘_))” + 0|l ”PHI\;( )FO([C)L,)

f (=3Bl lles,(3) = es@I + 11 (3) = *(3)l11d3

aIIPZII
)

f ISe(t = DIBI lies, (3) = cs@I + lla’( — a*(B)ld3

+ PT, (1) Z Li(s,(t7)) = 1;(s(@)l

J=1
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s () — (s 4. 20 N

< GRIGsH (1) = U+ 32 S )r() f (- !
1 -«

X{ {%I( ~ @) lla"() — 9" (@)llde

)

a—1 é/léUZ( a—1
N( )le(t 3) { N(@@) f(T ©)*la* (@) — a*(@)llde

Nf;)lﬂ f, (T =) lla*(p) = q*(90)||dgo} +119°G) - q_*(s)ll}d3

le(T ©)*la*(p) - q(90)||d90}+||q (3)—q(3)ll}

+ 8 ) M) = LG

=1

We easily observe that W (s,) — ¥;(s) in ,, due to the continuity of the functions q* and I. This
implies the proof of continuity of V.

Step 2: ¥, maps the bounded sets into bounded sets.

ls<ll + I[Pl [T so + QI IIPII]N& ;rc(y))fo (t=3)"la"Glid3

+9 (1 - a)
+alrl f I1Sa(z =3Il lla* (3)||d3+||Q|2! ”P”N( T
X [ (T =" IR(G), sG)id3 + k'],'( )” f IS2(T = D ING), sG)IId3
lleoll = W1 <l + 1P ITo(T =)0l lls7l + 112l ”P”INE( ;r‘z))

X Ji =3 lla* ()3 + e f ISa(z = DI 119" @3 + (st

HIQI 1Pl [ (T =9 IRG), sG)id3

+alrl f ISa(T =3I ING), sGDIId3 + IPI] o)l ||Zl<s<r [}

j=1

By the postulates (P1)—(P10),

LHRTOK, N L4 - )R, T N al’RiR, T N LG(1 - a)R, T N al’R\R, T

Fa+D) = Naol@+D &= Na & Naol@+l)  Na

lles()Il < R, sl + {JAQHS;” + OG0 —a)(T —1)R, N OR(T — 1) N 0401 = )R,(T —1)”
N@)I'(a+1) I'a+1 Na@)I'(a+1)

al?RiR,(T-1)"
N(a)

ST

+ {11%),
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ORTK, 6461 -a)TY .~ al2RTY . .
Tt Tar D) T N@@ D TRt Ty Rt R
llesl < Ry LA = a)(T —1)" aR(T—1)" o o

st + QRIIsTI + (R, +R,) +

(R;+R,)

N(@)I (@ + 1) N(a)

+§1IA€w.
Let the two constants be

LHRTOK, L Lo -7 R+ al’R, T P
I'a+1) N@)I'(a+ 1) N(a)

< Rist + Rk,

llesIl < Ry | s+

for all r € (0, #;], where

_ORTK, Lol s s alRT L

“= TarD T Nalas1) Rt R+ =gy =R+ R,
_ 215
el < Ry |57+ 2Rl + 280D p oy y R R Rtk

N@)I'(a+ 1)
< RlsT + Rl{lkST + leb,

N(a)

where L
1 - A A R
_ H40( an (R, +R,) + al“Rin
N@)I'(a+1) N(a)
for all 7 € (¢;,t;_1], where n = max(T — t;)".
And therefore, for ¢ € (0, 1]

(R, +R) + (iRw

Kp

LRTK, Lehd - 5 4 PR T oo

Ta+D W N@@s ) Rt R+ =gy~ Rt R

Fi(e;(0) < N(@)

fort e (tj’tj—l],

_ 20
Pi(ent)) < ORI+ 22D gy Ry E R R LR+ ¢ R

N@)I'(a+ 1) N(a)
Hence we have,
RTK . 1 - A
i (ey(1) < % + ORI+ W(& FR)T 1)
2RTY . .
Ry + R)T +) + iR
< Up.

This implies that, [[¥; ()| < . S0, ¥1(Q,,) C Q.
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Step 3: Verify the equi-continuity of ¥;. Consider s € Q,, and py,p, € (tj_1,¢;]. Here, (i < &, j =

1,2,..¢,

¥ ($)(p2) — F1($)(o1)l

_ (T —3)" : a-1
=[|PT(02) | @) GG, s;)d3 + N( )F(a)f (02— 3)

pr o *

N(a) fo Solp2 = 3)[Blcs(3) + a"(3)1d3
01 _ na-l1 1 "

_eren [ 2 G S3)d3—QPk§(a)FC(2) 0

o T
x [B(cs(3) + 0" (3)1d3 + — Sa(p1 - DIBes() + a°()1d3l
N(@) Jy
_ @ _ Tagqc
<0 ﬁ(ZH)T i Too0) = Tutor) + %(leq)
2

ad;
Na )(Rgl +R,)

L4l -a) 5

1
X f ISo (02 = 3) — Solo1 = 3)ld3 + W( q)

f (02 —3)" f) q)f IS (02 = 3Id3.01, 02 € (0, 11].
P1

(o1 —3)""

2 01

Pl
X (P2 =3 = (o1 —3)" 'd3 +
0

Now,

I¥1(s)(02) = F1(s)(eDII

SIPT (02 — 10)s(ty-1) + QP2

N( )F( )
2
Sa(pZ = 3)B(cs(3) + a°(3)1d3

(Pz -3

x[B(cs<a)>+q*<a>]da+§( )

)al ol
- PT, (pl)f @) s)d3 — N( @ )f (o1 —3)

01
5o fo Salpr = )Bes(3) + a'(3)1d3

+ P(To(p2 — tj-1) = Tolpr — tim)) -1 (s )]

<GlITa(o2 = tj-1) = Talpr = 10l + %

01 2

a— a— {
< | (02 =3)"" = (o1 —3) 1d3+N( )(Rg1)+Rq)

01 _ _ R
x f 1Su(0 = 3) = Sulpr — Dldz + 20D g0 )

NI (a)
f (02 — )"

(Rg1) + R,)

Ry)
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2
X f ISe (02 = 3)d3 + 1RG0z — PO -1 (SE I 1,02 € (Ej-1, 851, 5 = 1,2..L.

P1
This result converges to O during p; tending to p,. By the compactness and the strong continuity of
the operators T, (f) and S,(t), we easily get that ¥; is continuous in uniform operator topology. Hence,
Y(Q,,) satisfies the condition of equi-continuous.

Step 4: ¥, is a contraction on Q,,,. For ¢ € (0, 1],

( _3)0 1 ol
1 (s) — F1(o)ll —”PTa(t)f @) ———GG.s 3)d3+QPN( @ )f( 3)

N( ) f So(t =3)[B(cs3) + a°(3)1d3

_ na-1
— PT) f T F(a)) GG, poda—QPN( 2 f (t— 3!

X [B(c,(3)) + 9" (3)]d3 — f So(t = 3)[B(c,(3)) + a"(®)1d3ll, € (0, 1]
0

N(a)
LR HO(1 - )T [K, + DR,
< 7( s+ - N
T +1) Ils; — Pt”;vc N(@)(@ + 1) 1—Q II's; Pt”go(;
+a§ +EIRR Is s +§2§1(1 a)RT“ Rls i
N [ 1-g, |7 @@+ e
CL’{2R1R,\
+ m&-nst — pillpe
LRTY L& - a)Te

K, + MR, + (1 - Qv)RfeC]
1-9,

= Ta+ 1) I = Ple * rta + 1
al?R; [R, + MR, + (1 — L,)RR,

N(a) 1-9, ]

(Gl S R,

N [agfl%l K, + MR, + (1 - QV)RI%CD s, — il

N(@) 1-9, re

X |Is; = pillpe + Ils; — pillpe

Fort e (tj—la lj],

1—-a
I91(5) = W1 (DIl =IIPTa(t; = t-1)s(; 1))+QPN§( T f (1= 3" [Bles(3) + a"(3)1ds
N B d+ P(T -
* N f o(tj = DIBles(3) + 9" (3)1d3 + (QZ i(s(t,)

j=1

= PTo(t; = 1;)p(t;1)) = QPN( (@ )f (t; =37 [B(c,(3) + 0" 3)d3

P2
g( ) f Salt; = DB, (3) + a*(3)d3 - P(T, ;] (UL € (1o, 17]
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R +EUER
1—L

524'1(1 —a)(tj—ti )"
Na@)I'(a+1)

]”Sz Pt”go‘(;

N agZIA?l S\%V +9:RVIQC 15, — il + HG((1 —a)R(tj - tj_l)aR 5 ol
N [1-g, | T N@iery e
a/g“zR R p Rl !

cllS >
N(@) o Pl
LG —a)(t;— 1) [], + DR, + (1 - €)RR,
< S lIs: — pillpe
Na@)I'(a+1) -9,

.\ al’R, [QV + MR, + (1 - L)RR,
N(@) 1-¢,
OO0 —a)t; =) [K, + MR, + (1 - QV)RI%L
< N Ils: — pellpe
N(a)F(a +1) 1-g,

al?R, [], + MR, + (1 — )RR, | "
(N(a) -2, ) b Prlpe:

] II's, _pzllyﬁc

This implies that ¥ is a contraction on €, for

HRTY 4 HO(1=a)TY | K+, R +(1-2,)RR, al’Ry
(e Sy |~

K+, R +(1-2,)RR, <1
C(a+1) N(a)[(a+1) 1-2, N(a) )

Hence, ¥, possesses a fixed point and so it is a mild solution of the proposed system (1.1) based
on the defined control function c,() given in (4.3) by Theorem 2. By the definition of controllability
(Definition 9), the proposed problem is controllable. O

5. Implementation

The following application is provided for evidencing the theoretical results:

cos |s(z, ¥)| _ #5(t,K)
45 o

t+sin |S(Z, K)|
+c(t k) + —z—=

1
OﬂBCD,10 s(t, k) —

1
e |ngDrm S(t’ K)l

1
- — +c(t,k),t€[0,1],t # =,
H+e 1475 D10 5(1, K)| 10

1
S(_ ’K)
As(tyn) = —10 -1)

1
28+s(1—0 , K)
s(t, k) = @(t, k), t €[ rO]1<€[0,7r]r>0,

1 a—1
5(t,0) = f ( - (3)) gexp( s(t, 3))d3, s(t,7) = 0

Here, A : D(A) C Q — Qis an infinitesimal generator Ay = y* where, Q = £2[0, 7] and the domain
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is defined by D(A) = {y € Q : y and y’ are absolutely continuous, y” € Q, y(0) = 1 = y(1)},

(o)

AX:Z£2 < y,x € D(A).

=1

Whence the eigenvectors that are orthogonal are

2
xe(p) = \/;sin(fp), teN.

Hence, the corresponding analytic semi-group S() related to A in Q is S(H)y = Yo, e > < x,x €
Q and ||(S(r)|| < 1. The resolvent operator Q(i1,A) = (1l — A)~' where 1 € p(A). So the proposed
system (5.1) will take the form of (1.1) by replacing

s(t, k) = s(1), c(t,x) = c(p),

cos |s(?)|
m t, 1) = s
(¢, s(2) 15
t + sin|s(?)| e lo|
I(t,s,p,0)= + + [c(2),
& 5.p.0) 45 Tret+p <O

where 1
1
p =7 D s(r), E(t,s5(1)) = 7 exp(—s(1)).

We can easily verify that (5.1) fulfills the postulates (P1)—(P10) and so the proposed system is
controllable by (4.1) on [0, 7].

6. Discussion

This research article gathers the results of existence, uniqueness , and controllability. In previous
studies, authors either developed the results of existence and uniqueness or controllability. However,
this article verifies the controllability results, being sufficient to verify the existence of a mild solution
for the proposed system. Additionally, we have shown the uniqueness results using the Banach
contraction principle to some extent. Due to this uniqueness, a single trajectory can be obtained for
a unique control input. Also, researchers can design control strategies according to the system due to
the uniqueness of the mild solution of the problem. We can ensure the well-defined controls, making
the study of controllability results more straightforward. A new researcher can improve the system or
include some delays in state space or control, obtaining new results. Highlighting the stability results
of the problem is a key focus in current research scenarios. The comparative analysis of numerical
solutions and theoretical results are gaining significant attention among researchers.

7. Conclusions
This work has successfully investigated the existence results for the nonlinear neutral fractional
implicit impulsive differential equation with impulses, delay, and integro initial conditions by means of

semi-group theory and fixed-point techniques. These types of problems have numerous applications,
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namely to the mathematical modeling of human diseases and complex problems. Based on Arzela
Ascoli theorem and Schauder’s fixed-point theorem, we established the adequate results for at least
one mild solution. Banach contraction principle helped to derive the uniqueness and controllability
results of the defined system. The derived results were justified by providing a suitable illustration.
Researchers can establish the stability results of the given problem as a future work. Also, changing
the initial condition and including state delay, control delay, or both will obtain innovative results.
Future work may be extended to non-instantaneous impulses and comparative analysis with numerical
techniques.
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