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1. Introduction

Following the seminal papers by Black and Scholes [3] and Merton [25] on the pricing formula
for European vanilla options, there have been active researches also for path-dependent exotic
options based on the geometric Brownian motion framework with constant volatility. The papers by
Merton [25] himself and Reiner and Rubinstein [29] for barrier options, Goldman et al. [16] and Conze
and Vishwanathan [6] for lookback options are few examples. Refer to Clewlow et al. [5] for a review
study of path-dependent options under the Black-Scholes model. Based on the knowledge that the

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231284


25165

Black-Scholes model with constant volatility does not account for empirically observed phenomena
such as volatility smile effect, there have been extensions to local or stochastic volatility model cases.
For instance, Davydov and Linetsky [9] obtained closed-form solutions for barrier and lookback
options under the constant elasticity of variance (CEV) model of Cox [7] and Cox and Ross [8]. Park
and Kim [28] derived an infinite series form of a pricing formula for a lookback option under a general
stochastic volatility model. Kato et al. [20] obtained a semi closed-form approximation formula for
the price of a barrier option under a certain type of stochastic volatility model covering the stochastic
alpha-beta-rho (SABR) model of Hagan et al. [17]. Aquino and Bernard [1] derived semi-analytical
pricing formulas for lookback and barrier options under the Heston model. Kim et al. [21] obtained an
analytic approximation formula for the price of an external barrier option under a fast mean-reverting
stochastic volatility model.

In this paper, we consider two types of perpetual American options with a path-dependent exotic
structure, namely, stop-loss and Russian options. A stop-loss option is a perpetual style option with the
structure of both ‘knock-in’ barrier and lookback options. This option was introduced by Fitt et al. [11]
in 1994. If the underlying price reaches a maximum value S ∗t∗ at time t∗ and then never goes up beyond
S ∗t∗ and falls back into a given proportion, say λ, of it at later time t, then the option is knocked in
and exercised in such a way that the option holder receives the amount S t (= λS ∗t ) at that time, where
0 < λ < 1 is given as a predetermined value. In this case, the exercise time is a stopping time. On
the other hand, a Russian option is a perpetual American option with a free boundary that contains a
lookback provision. It was first proposed by Shepp and Shiryaev [31] in 1993. At any time t chosen by
the option holder, this option pays out the maximum realized asset price S ∗t up to that time if the holder
wants to claim it. We refer readers to Wilmott et al. [32] for more details on these two options together
with the corresponding pricing formulas under the geometric Brownian motion with constant volatility.

Obtaining analytic pricing formulas for stop-loss and Russian options under a stochastic volatility
model is a challenging task because of the complicated exotic nature of these options. The contribution
of this work is to derive closed-form formulas explicitly for the approximate prices of these two
options under a multiscale stochastic volatility model. To the best of our knowledge, there was no
previous report on the formulas in such a multiscale volatility environment. The accuracy of the
analytic formulas are verified via Monte-Carlo simulations. The impacts of the multisale stochastic
volatility model on the corresponding Black-Scholes prices of those exotic options are disclosed. The
performance of the model is compared with that of other models.

The rest of the paper is organized as follows. In Section 2, we discuss a multiscale stochastic
volatility model formulation for the underlying asset prices and the important features of stop-loss and
Russian options. Section 3 provides a detailed discussion on how an asymptotic expansion approach
can yield partial differential equations (PDEs) for the prices of stop-loss and Russian options and
the subsequent ordinary differential equation (ODE) problems. In Section 4, we derive explicitly the
closed-form solutions of the PDE problems for the leading-order terms and the first-order corrections.
Section 5 verifies that the results given by those analytic formulas match well with those generated
by Monte-Carlo simulations and presents the impacts of the multiscale stochastic volatility model on
the Black-Scholes option prices and a comparison with other models. Section 6 states a concluding
remark. In Appendices A and B, we derive differential equations and their closed-form solutions for
the second-order corrections. Appendix C describes the explicit representations of some functions in
Appendix A.
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2. Model framework and options of interest

For the price S t of a given underlying asset (stock or market index), we consider

dS t = (r − q)S tdt + f (Yt,Zt)S tdW s
t ,

dYt =

(
1
ε
α(Yt) −

1
√
ε
β(Yt)Λ(Yt,Zt)

)
dt +

1
√
ε
β(Yt)dWy

t ,

dZt =
(
δc(Zt) −

√
δg(Zt)Γ(Yt,Zt)

)
dt +

√
δg(Zt)dWz

t

(2.1)

under a martingale probability measure Q, where and r and q are risk-free interest and dividend rates,
respectively, the function f is smooth and bounded on R2, Λ and Γ represent the market prices of
volatility risk, the functions α and β are given in such a way that Yt is an ergodic process that admits
a unique invariant distribution, denoted by Φ, and the functions c and g are smooth on R and at most
linearly growing infinitely. W x

t , Wy
t and Wz

t are standard Brownian motions with a correlation structure
given by

d〈W s,Wy〉t = ρsydt, d〈W s,Wz〉t = ρszdt, d〈Wy,Wz〉t = ρyzdt.

Moreover, the constants ε and δ are such that 0 < δ � ε �
√
δ � 1. This type of multiscale stochastic

volatility model was proposed by Fouque et al. [13] and the extensive study of pricing several types of
derivatives under this model can be found in the book of Fouque et al. [14].

In this paper, we study an evaluation problem of stop-loss options and Russian options under the
underlying asset price dynamics given by (2.1). Both options contain no expiration date and they have
a lookback provision. We recall that the no-arbitrage price, P(t, s, y, z), of a perpetual American option
can be expressed as

P(t, s, y, z) = sup
t≤τ≤∞

EQ
[
e−r(τ−t)h(τ) | S t = s,Yt = y,Zt = z

]
,

where τ is a stopping time and h(τ) denotes the payoff that depends on the ‘path’ of the underlying
price up to time τ. We note that the starting time t does not matter when pricing perpetual options
because of an infinite time horizon. Hence, one can write the option price P(t, s, y, z) as P(s, y, z) with
the t-dependence. On the other hand, to deal with a lookback type of option, we need to define the
maximum value of the underling asset price until arbitrary time t as

S ∗t = sup
0≤u≤t

S u, 0 < t < ∞,

which becomes another independent variable for the evaluation of options of interest.
The price of a stop-loss option depends on the underlying asset price, the maximum value of it,

the levels of the two volatility driving processes and the pre-determined level λ. It is denoted by
Ps/l(s, s∗, y, z). The payoff h of this option is given by

h(τ) = S τ1S τ=λS ∗τ ,

where ‘1’ stands for the indicator function.
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The price of a Russian option also depends on the underlying asset price, the maximum value of it,
the levels of the two volatility driving processes. It is denoted by PR(s, s∗, y, z). For a Russian option,
the payoff h is given by

h(τ) = S ∗τ.

In this work, we use the combined asymptotic expansion and partial differential equation (PDE)
approach to evaluate the prices of these two options based on the Feynman-Kac theorem (see
Oksendal [26] for example), a link between parabolic PDEs and stochastic processes. From this
theorem, the no-arbitrage price P(s, s∗, y, z) of a perpetual option, which could be a stop-loss option
or a Russian option, satisfies1

ε
L0 +

1
√
ε
L′1 +L′2 +

√
δ

ε
M3 +

√
δM′

1 + δM2

 P(s, s∗, y, z) = 0, (2.2)

where the operators L0, L′1, L′2,M3,M′
1 andM2 are given by

L0 = α(y)
∂

∂y
+

1
2
β2(y)

∂2

∂y2 ,

L′1 = β(y)
(
ρsy f (y, z)s

∂2

∂s∂y
− Λ(y, z)

∂

∂y

)
,

L′2 =
1
2

f 2(y, z)s2 ∂
2

∂s2 + (r − q)s
∂

∂s
− r,

M3 = ρyzβ(y)g(z)
∂2

∂y∂z
,

M′
1 = g(z)

(
ρsz f (y, z)s

∂2

∂s∂z
− Γ(y, z)

∂

∂z

)
,

M2 = c(z)
∂

∂z
+

1
2

g2(z)
∂2

∂z2 ,

(2.3)

respectively. We are going to employ the asymptotic analysis of Fouque et al. [14] to derive an
approximate solution of this singularly perturbed PDE with appropriate boundary conditions imposed
for each of the stop-loss and Russian options.

In the following argument, the following lemma for a Poisson equation is very useful.

Lemma 2.1. We consider the Poisson equation

L0X(y) + G(y) = 0.

(a) The existence of a solution for the Poisson equation requires the following condition (called the
centering condition):

〈G〉 :=
ˆ

R
G(y)Φ(y)dy = 0,

where Φ is the invariant distribution of the process Yt.
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(b) If the function G is zero and the solution X does not move as fast as

∂X

∂y
∼ e−2

´
R

α(y)
β2(y)

dy
, y→ ∞,

then X is independent of variable y.

Proof. Refer to Ramm [30] (Fredholm alternative theorem) and Fouque et al. [14] for (a) and (b),
respectively. �

3. PDE problems for option pricing

In this section, we establish PDE problems for the price Ps/l(s, s∗, y, z) of a stop-loss option and the
price PR(s, s∗, y, z) of a Russian option, respectively.

3.1. Stop-loss option

The option price Ps/l(s, s∗, y, z) satisfies the PDE (2.2) on the interval λs∗ < s < s∗ and boundary
conditions given by

Ps/l(s = λs∗, s∗, y, z) = λs∗,

∂Ps/l

∂s∗
(s = s∗, s∗, y, z) = 0.

In addition to these boundary conditions, one might need to use the following linear scaling property:

Ps/l(νs, νs∗, y, z) = νPs/l(s, s∗, y, z).

For dimensionality reduction, we use the change of independent and dependent variables, s → x
and Ps/l → V s/l, defined by

x = s/s∗,

Ps/l(s, s∗, y, z) = s∗V s/l(x, y, z).

Then we obtain a PDE problem for V s/l (instead of Ps/l) as follows:

LV s/l(x, y, z) = 0, λ < x < 1,
V s/l(x = λ, y, z) = λ,

V s/l(x = 1, y, z) =
∂V s/l

∂x
(1, y, z),

(3.1)

where the operator L is given by

L =
1
ε
L0 +

1
√
ε
L1 +L2 +

√
δ

ε
M3 +

√
δM1 + δM2,

L1 := β(y)
(
ρxy f (y, z)x

∂2

∂x∂y
− Λ(y, z)

∂

∂y

)
,

L2 :=
1
2

f 2(y, z)x2 ∂
2

∂x2 + (r − q)x
∂

∂x
− r,

M1 := g(z)
(
ρxz f (y, z)x

∂2

∂x∂z
− Γ(y, z)

∂

∂z

)
.

(3.2)
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Note that L0,M2 andM3 are the same as in (2.3).
We are interested in the solution V s/l(x, y, z) of the expansion form

V s/l(x, y, z) =

∞∑
i, j=0

ε i/2δ j/2V s/l
i j (x, y, z), (3.3)

where V s/l
i j are assumed to satisfy the growth condition stated in Lemma 2.1 (b) so that the solution can

reflect the realistic situation in market. In the rest of this section, we are going to derive PDE problems
for the terms V s/l

i j with (i j) = (0, 0), (0, 1) and (1, 0). First, rearranging the PDE (3.1) by using the
series (3.3), we can get

1
ε
L0V s/l

00 +

√
δ

ε
L0V s/l

01 +
δ

ε
L0V s/l

02

+
1
√
ε

(
L0V s/l

10 +L1V s/l
00

)
+

√
δ
√
ε

(
L0V s/l

11 +L1V s/l
01 +M3V s/l

00

)
+

δ
√
ε

(
L0V s/l

12 +L1V s/l
02 +M3V s/l

01

)
+L0V s/l

20 +L1V s/l
10 +L2V s/l

00

+
√
δ
(
L0V s/l

21 +L1V s/l
11 +L2V s/l

01 +M1V s/l
00 +M3V s/l

10

)
+ δ

(
L0V s/l

22 +L1V s/l
12 +L2V s/l

02 +M1V s/l
01 +M2V s/l

00 +M3V s/l
11

)
+
√
ε
(
L0V s/l

30 +L1V s/l
20 +L2V s/l

10

)
+
√
εδ

(
L0V s/l

31 +L1V s/l
21 +L2V s/l

11 +M1V s/l
10 +M3V s/l

20

)
+ ε

(
L0V s/l

40 +L1V s/l
30 +L2V s/l

20

)
+ · · · = 0.

(3.4)

The following proposition says that the first few terms of the asymptotic expansion (3.3) are
independent of variable y.

Proposition 3.1. The terms V s/l
i j with i = 0, 1 and j = 0, 1, 2 in the asymptotic series (3.3) for the

stop-loss option price V s/l are independent of y; V s/l
i j (x, y, z) = V s/l

i j (x, z).

Proof. From the terms of order 1
ε
,
√
δ
ε

and δ
ε

in (3.4), we have the Poisson equations L0V s/l
0 j = 0 ( j =

0, 1, 2). Then, by Lemma 2.1 (a), V s/l
0 j are independent of y for j = 0, 1 and 2. Since L1V s/l

0 j = 0
( j = 0, 1, 2) andM3V s/l

0 j = 0 ( j = 0, 1), we have the Poisson equations L0V s/l
1 j = 0 ( j = 0, 1, 2) from the

terms of order 1
√
ε
,
√
δ
√
ε

and δ
√
ε

in (3.4). Thus V s/l
1 j are independent of y for j = 0, 1 and 2. �

In the following argument, we use an operator, L, defined as

L := 〈L2〉 =
1
2
σ2(z)x2 ∂

2

∂x2 + (r − q)x
∂

∂x
− r, σ(z) :=

√
〈 f 2(·, z)〉. (3.5)
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Also, we use the functions φ1, φ2, ψ, ξ1 and ξ2 defined by the solutions of

L0φ1(y, z) = f (y, z) − 〈 f (·, z)〉 ,

L0φ2(y, z) = f 2(y, z) −
〈

f 2(·, z)
〉
,

L0ψ(y, z) = Γ(y, z) − 〈Γ(·, z)〉 ,

L0ξ1(y, z) = β(y) f (y, z)
∂φ2(y, z)
∂y

−

〈
β(·) f (·, z)

∂φ2(·, z)
∂y

〉
,

L0ξ2(y, z) = β(y)Λ(y, z)
∂φ2(y, z)
∂y

−

〈
β(·)Λ(·, z)

∂φ2(·, z)
∂y

〉
,

(3.6)

respectively. We note that the function φ2(y, z) might need to be assumed to satisfy 〈φ2(·, z)〉 = 0 in
order to find a solution for the correction V s/l

20 . Refer to Fouque et al. [15] for a detailed discussion on
this requirement.

The next proposition provides the required ODE problems that the leading-order term and the first-
order corrections (0 ≤ i+ j ≤ 1) have to satisfy. The case for the second-order corrections corresponding
to i + j = 2 is presented in Appendix A.

Proposition 3.2. The leading-order term and the first-order corrections, V s/l
i j (x, z), 0 ≤ i + j ≤ 1, in the

asymptotic series (3.3) for the stop-loss option price V s/l satisfy the ODE problems
LV s/l

00 (x, z) = 0, λ < x < 1,
V s/l

00 (λ, z) = λ,

V s/l
00 (1, z) = ∂

∂xV s/l
00 (1, z),

(3.7)


LV s/l

10 (x, z) =
(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
V s/l

00 (x, z) := B10(x, z), λ < x < 1,
V s/l

10 (λ, z) = 0,
V s/l

10 (1, z) = ∂
∂xV s/l

10 (1, z),
(3.8)

and 
LV s/l

01 (x, z) =
(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zVS/L

00 (x, z) := B01(x, z), λ < x < 1,
V s/l

01 (λ, z) = 0,
V s/l

01 (1, z) = ∂
∂xV s/l

01 (1, z),
(3.9)

respectively, where Ukl
00(z), (k, l) ∈ {(3, 0), (2, 0), (1, 1), (0, 1)}, are given by

U30
00(z) :=

1
2
ρxy

〈
β(·) f (·, z)

∂φ2

∂y
(·, z)

〉
,

U20
00(z) := ρxy

〈
β(·) f (·, z)

∂φ2

∂y
(·, z)

〉
−

1
2

〈
β(·)Λ(·, z)

∂φ2

∂y
(·, z)

〉
,

U11
00(z) := −g(z)ρxz 〈 f (·, z)〉 ,

U01
00(z) := g(z) 〈Γ(·, z)〉 ,

(3.10)

respectively.
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Proof. Firstly, by substituting the asymptotic series (3.3) into the boundary conditions in (3.1), we
obtain

∞∑
i, j=0

ε i/2δ j/2V s/l
i j (λ, y, z) = λ,

∞∑
i, j=0

ε i/2δ j/2
(
V s/l

i j (1, y, z) −
∂

∂x
V s/l

i j (1, y, z)
)

= 0

(3.11)

which yields the desired boundary conditions in (3.7)–(3.9) directly.
Next, by applying Proposition 3.1 to the O(1) terms in Eq (3.4), we obtain the Poisson equation

L0V s/l
20 +L2V s/l

00 = 0. (3.12)

Then by Lemma 2.1 LV s/l
00 = 0 holds and thus the ODE in (3.7) is satisfied.

Similarly, by Proposition 3.1 and Lemma 2.1, the terms of order
√
ε in Eq (3.4) lead to

LV s/l
10 = − 〈L1〉V

s/l
20 . (3.13)

On the other hand, from (3.12) and LV s/l
00 = 0, the term V s/l

20 satisfies

L0V s/l
20 = −

1
2

(
f 2(y, z) −

〈
f 2(·, z)

〉)
x2 ∂

2

∂x2 V s/l
00 . (3.14)

Then the solution V s/l
20 is given by

V s/l
20 (x, y, z) = −

1
2
φ2(y, z)x2 ∂

2

∂x2 V s/l
00 (x, z) + F s/l

20 (x, z) (3.15)

for some function F s/l
20 (x, z) independent of variable y, where φ2 is defined in (3.6). Thus Eq (3.13)

becomes

LV s/l
10 =

(
U30

00 x3 ∂
3

∂x3 + U20
00 x2 ∂

2

∂x2

)
V s/l

00

and thus the ODE in (3.8) is satisfied.
Again, by Proposition 3.1 and Lemma 2.1, the terms of order

√
δ in Eq (3.4) yield LV s/l

01 =

− 〈M1〉V
s/l
00 . Since − 〈M1〉 is the same as

(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂z , the ODE in (3.9) holds. �

3.2. Russian option

To obtain PDE problems for the price PR(s, s∗, y, z) of a Russian option, we first note that
PR(s, s∗, y, z) satisfies the PDE (2.2) on the interval s f < s < s∗ and the boundary conditions

PR(s = s f , s∗, y, z) = s∗,

∂PR

∂s∗
(s = s∗, s∗, y, z) = 0,

where s f (y, z) stands for a free boundary at which PR and ∂PR

∂s are continuous.
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If we use the change of variables x = s/s∗ and PR(s, s∗, y, z) = s∗VR(x, y, z) again for dimensionality
reduction, we obtain a PDE problem given by

LVR(x, x∗, y, z) = 0, x f < x < 1,

VR(x f , y, z) = 1,
∂VR

∂x
(x f , y, z) = 0,

VR(1, y, z) =
∂VR

∂x
(1, y, z),

(3.16)

where x f (y, z) is the free boundary corresponding to s f (y, z).
We are interested in the option price VR and the free boundary x f given in the following form:

VR(x, y, z) =

∞∑
i, j=0

ε i/2δ j/2VR
i j(x, y, z),

x f (y, z) =

∞∑
i, j=0

ε i/2δ j/2x f
i j(y, z).

(3.17)

Proposition 3.3. The terms VR
i j with i = 0, 1 and j = 0, 1, 2 in the asymptotic series (3.17) for the

Russian option price VR are independent of y; VR
i j(x, y, z) = VR

i j(x, z).

Proof. The proof of this proposition is similar to the proof of Proposition 3.1 for the stop-loss option
case since the proof does not depend on the boundary conditions. So, we omit the proof. �

The PDE form for the the Russian option price is the same as the one for the stop-loss option price.
The difference between them lies in the boundary conditions and the existence of a free boundary. Thus,
in the following proposition about the leading-order term and the first-order corrections (0 ≤ i + j ≤
1), we obtain the same ODEs as in the stop-loss option case but with different boundary conditions
and the appearance of a free boundary. The required ODE problems for the second-order corrections
corresponding to i + j = 2 are given in Appendix B.

Proposition 3.4. The leading-order term and the first-order corrections, VR
i j, 0 ≤ i + j ≤ 1, in the

asymptotic series (3.17) for the Russian option price VR satisfy the ODE problems
LVR

00(x, z) = 0, x f
00(z) < x < 1,

VR
00(1, z) = ∂

∂xVR
00(1, z),

VR
00(x f

00(z), z) = 1, ∂
∂xVR

00(x f
00(z), z) = 0,

(3.18)


LVR

10(x, z) =
(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
VR

00(x, z), x f
00(z) < x < 1,

VR
10(1, z) = ∂

∂xVR
10(1, z),

VR
10(x f

00(z), z) = 0, x f
10(z) = −

∂
∂x VR

10(x f
00(z),z)

∂2

∂x2 VR
00(x f

00(z),z)
,

(3.19)

and 
LVR

01(x, z) =
(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zVR

00(x, z), x f
00(z) < x < 1,

VR
01(1, z) = ∂

∂xVR
01(1, z),

VR
01(x f

00(z), z) = 0, x f
01(z) = −

∂
∂x VR

01(x f
00(z),z)

∂2

∂x2 VR
00(x f

00(z),z)
,

(3.20)

respectively, where Ukl
00(z), (k, l) ∈ {(3, 0), (2, 0), (1, 1), (0, 1)}, are given by (3.10).
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Proof. Substituting the series (3.17) into the boundary conditions in (3.16) and applying the Taylor
series of the functions VR(x, y, z) and ∂

∂xVR(x, y, z) at x f
00(y, z), we have

∞∑
i, j=0

ε i/2δ j/2
(
VR

i j(1, y, z) −
∂

∂x
VR

i j(1, y, z)
)

= 0,

∞∑
k=0

1
k!

 ∞∑
i, j=0

ε i/2δ j/2 ∂
k

∂xk VR
i j(x f

00(y, z), y, z)


 ∞∑

i, j=1

ε i/2δ j/2x f
i j(y, z)


k

= 1,

∞∑
k=0

1
k!

 ∞∑
i, j=0

ε i/2δ j/2 ∂
k+1

∂xk+1 VR
i j(x f

00(y, z), y, z)


 ∞∑

i, j=1

ε i/2δ j/2x f
i j(y, z)


k

= 0.

(3.21)

Since VR
i j is independent of variable y for every (i, j) ∈ {(0, 0), (1, 0), (0, 1)}, x f

i j is also independent
of y for those (i, j). Rearranging the expansion (3.21) in terms of ε i/2δ j/2, we can obtain the desired
boundary conditions as stated in (3.18)–(3.20). �

From Propositions 3.2 and 3.4, we find that the leading-order terms V s/l
00 and VR

00 are the Black-
Scholes option prices with volatility σ(z) for stop-loss and Russian options, respectively. We obtain the
solutions for the first-order corrections in the following section.

4. PDE solutions

In this section, we solve the problems for V s/l
i j and VR

i j, 0 ≤ i + j ≤ 1, derived in Propositions 3.2
and 3.4, respectively. The solutions for the second-order corrections corresponding to i + j = 2 are
given in Appendix A (stop-loss option) and Appendix B (Russian option).

4.1. General solutions

Both stop-loss and Russian options share the same PDE structure even if the boundary conditions
are different. So, there are identical parts of the PDE solutions for both options. For convenience, we
eliminate the superscript ‘s/l’ and ‘R’ of V s/l and VR and use notation V for the general PDE solution.
In this section, we derive the concrete forms of Vi j up to i + j = 1.

First, we have the following proposition.

Proposition 4.1. The leading-order term and the first-order corrections, Vi j(x, z), 0 ≤ i + j ≤ 1, can
be expressed as

Vi j(x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
i j,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(0, 0), (1, 0), (0, 1)}, (4.1)

AIMS Mathematics Volume 8, Issue 10, 25164–25194.



25174

where A0
00,k(z) and ηk(z) are defined by

stop-loss: A0
00,k(z) =

−(1 − ηl(z))λ(
1 − ηk(z))ληl(z) − (1 − ηl(z)

)
ληk(z) (k, l ∈ {1, 2}, k , l),

Russian: A0
00,k(z) =

ηl(z)

(ηl(z) − ηk(z))
(
x f

00(z)
)ηk(z) (k, l ∈ {1, 2}, k , l),

x f
00(z) :=

(
η1(z) (1 − η2(z))
η2(z) (1 − η1(z))

) 1
η2(z)−η1(z)

,

ηk(z) :=
1
2
−

r − q
σ2(z)

+ (−1)k−1

√(
1
2
−

r − q
σ2(z)

)2

+
2r
σ2(z)

(k ∈ {1, 2}),

(4.2)

respectively, and Aζ
i j,k(z), ζ = 0, · · · , i + 2 j and i + j = 1, are some functions of z to be determined.

Proof. Since the leading-order term V00 is the option price under the Black-Scholes model with
volatility σ(z), the known result in Wilmott et al. [32] says

V00(x, z) =

2∑
k=1

A0
00,k(z)xηk(z), (4.3)

where A0
00,k(z) and ηk(z) are given by (4.2). Also, the leading-order term, x f

00(z), of the free boundary
for a Russian option is given by the expression in (4.1).

The first-order corrections Vi j(x, z), i + j = 1, depend on the corresponding inhomogeneous terms
Bi j(x, z) defined in (3.8) and (3.9). Substituting (4.3) into those Bi j(x, z), we can obtain

B10(x, z) =

2∑
k=1

B0
10,k(z)xηk(z),

B0
10,k(z) :=

U30
00

2∏
ω=0

(ηk(z) − ω) + U20
00

1∏
ω=0

(ηk(z) − ω)

 A0
00,k(z),

B01(x, z) =

2∑
k=1

 1∑
ζ=0

Bζ
01,k(z) (ln x)ζ

 xηk(z),

B0
01,k(z) :=

(
U11

00

(
∂ηk(z)
∂z

+ ηk(z)
∂

∂z

)
+ U01

00
∂

∂z

)
A0

00,k(z),

B1
01,k(z) :=

(
U11

00ηk(z) + U01
00

) ∂ηk(z)
∂z

A0
00,k(z),

(4.4)

where Ukl
00(z), (k, l) ∈ {(3, 0), (2, 0), (1, 1), (0, 1)}, are given by (3.10). Since L defined by (3.5) is

related to the well-known Cauchy-Euler equation of order 2, one can take the following expressions
for V10(x, z) and V01(x, z), hinted at by (4.4), respectively:

V10(x, z) =

2∑
k=1

 1∑
ζ=0

Aζ
10,k(z) (ln x)ζ

 xηk(z),

V01(x, z) =

2∑
k=1

 2∑
ζ=0

Aζ
01,k(z) (ln x)ζ

 xηk(z)

(4.5)

AIMS Mathematics Volume 8, Issue 10, 25164–25194.



25175

for some functions Aζ
10,k(z), ζ = 0, 1, and Aζ

01,k(z), ζ = 0, 1, 2. So, Proposition 4.1 is proved. �

In the following argument, we obtain the concrete forms of Aζ
10,k(z), ζ = 0, 1, and Aζ

01,k(z), ζ = 0, 1, 2.
Among those terms, A1

10,k(z), A1
01,k(z) and A2

01,k(z) in (4.1) are commonly shared regardless of stop-loss
or Russian. They are first solved in the following proposition.

Proposition 4.2. The terms A1
10,k(z) and Aζ

01,k(z), ζ = 1, 2, in (4.1) are given by

A1
10,k(z) =

B0
10,k(z)

1
2σ

2(z) (2ηk(z) − 1) + (r − q)
,

A1
01,k(z) =

B0
01,k(z) − σ2(z)A2

01,k(z)
1
2σ

2(z) (2ηk(z) − 1) + (r − q)
,

A2
01,k(z) =

B1
01,k(z)

2
(

1
2σ

2(z) (2ηk(z) − 1) + (r − q)
) ,

(4.6)

respectively, where B0
10,k(z), B0

01,k(z) and B1
01,k(z) are defined in (4.4).

Proof. Substituting

Vi j(x, z) =

2∑
k=1

i+2 j∑
ζ=1

Aζ
01,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(1, 0), (0, 1)}

into the ODEs in (3.8) and (3.9), we can get

2∑
k=1

(
1
2
σ2(z) (2ηk(z) − 1) + (r − q)

)
A1

10,k(z) =

2∑
k=1

B0
10,k(x, z),

2∑
k=1

[
σ2(z)A2

01,k(z) +

(
1
2
σ2(z) (2ηk(z) − 1) + (r − q)

) (
A1

01,k(z) + 2A2
01,k(z) ln x

)]

=

2∑
k=1

 1∑
ζ=0

Bζ
01,k(z) (ln x)ζ

 .
Then, by simple calculation, we can obtain (4.6). �

Next, since the terms A0
i j,k(z), (i, j) ∈ {(1, 0), (0, 1)}, in (4.1) depend on the boundary conditions

in (3.8) and (3.9) (stop-loss option) or (3.19) and (3.20) (Russian option), we obtain the particular
solutions of them as shown below in Propositions 4.3 and 4.4, respectively.

4.2. Particular solutions for stop-loss option

In this section, we find solutions for A0
10,k(z) and A0

01,k(z) which are decided by the boundary
conditions in (3.8) and (3.9) corresponding to a stop-loss option.
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Proposition 4.3. The terms A0
10,k(z) and A0

01,k(z), k ∈ {1, 2}, in (4.1) for a stop-loss option are given by

A0
10,k(z) =

ληl(z) ∑2
ω=1 A1

10,ω(z) + (1 − ηl(z)) ln λ
∑2
ω=1 λ

ηω(z)A1
10,ω(z)

(1 − ηk(z)) ληl(z) − (1 − ηl(z)) ληk(z) ,

A0
01,k(z) =

ληl(z) ∑2
ω=1 A1

01,ω(z) + (1 − ηl(z))
∑2
ω=1

(
ληω(z) ∑2

ζ=1 Aζ
01,ω(z) (ln λ)ζ

)
(1 − ηk(z)) ληl(z) − (1 − ηl(z)) ληk(z) ,

(4.7)

respectively, where k, l ∈ 1, 2 with k , l and A1
10,ω(z) and Aζ

01,ω(z) (ζ = 1, 2) are given in Proposition 4.2.

Proof. Substituting

Vi j(x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
01,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(1, 0), (0, 1)}

into the boundary conditions in (3.8) and (3.9), we obtain the following simultaneous equations:
∑2

k=1 A0
i j,k(z) =

∑2
k=1

(
ηk(z)A0

i j,k(z) + A1
i j,k(z)

)
,∑2

k=1

(
ληk(z) ∑i+2 j

ζ=0 Aζ
i j,k(z) (ln λ)ζ

)
= 0,

(i, j) ∈ {(1, 0), (0, 1)}.

Then, by simple calculation, we can obtain the solutions (4.7). �

4.3. Particular solutions for Russian option

In this section, we derive solutions for A0
10,k(z) and A0

01,k(z) which are decided by the boundary
conditions in (3.19) and (3.20) corresponding to a Russian option.

Proposition 4.4. The terms A0
10,k(z) and A0

01,k(z), k ∈ {1, 2}, in (4.1) for a Russian option are given by

A0
i j,k(z) =

(
x f

00(z)
)ηl(z) ∑2

ω=1 A1
i j,ω(z) + (1 − ηl(z))

∑2
ω=1

[(
x f

00(z)
)ηω(z) ∑i+2 j

ζ=1 Aζ
i j,ω(z)

(
ln x f

00(z)
)ζ]

(1 − ηk(z))
(
x f

00(z)
)ηl(z)
− (1 − ηl(z))

(
x f

00(z)
)ηk(z) , (4.8)

where k, l ∈ 1, 2 with k , l and the corresponding free boundaries x f
10(z) and x f

01(z) are given by

x f
i j(z) = −

∑2
k=1

[(
x f

00(z)
)ηk(z)−1

(∑i+2 j
ζ=1 ζAζ

i j,k(z)
(
ln x f

00(z)
)ζ−1

+ ηk(z)
∑i+2 j
ζ=0 Aζ

i j,k(z)
(
ln x f

00(z)
)ζ)]

∑2
k=1

[(
x f

00(z)
)ηk(z)−2

ηk(z) (ηk(z) − 1) A0
00,k(z)

] , (4.9)

where (i, j) ∈ {(1, 0), (0, 1)}) and Aζ
i j,k(z), k = 1, 2, ζ = 1, ....i + 2 j, are given in Proposition 4.2.

Proof. Substituting

Vi j(x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
01,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(1, 0), (0, 1)},
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into the boundary conditions in (3.19) and (3.20), we obtain the following simultaneous equations:
∑2

k=1 A0
i j,k(z) =

∑2
k=1

(
ηk(z)A0

i j,k(z) + A1
i j,k(z)

)
,∑2

k=1

((
x f

00(z)
)ηk(z) ∑i+2 j

ζ=0 Aζ
i j,k(z)

(
ln x f

00(z)
)ζ)

= 0
, (i, j) ∈ {(1, 0), (0, 1)}.

Then we can obtain the solutions (4.8) by calculating this directly.
Next, we compute the free boundary x f

i j(z) from the boundary conditions in (3.18)–(3.20).
Substituting the solutions V10(x, z) and V01(x, z) given by (4.5) together with (4.6) and (4.8) into the
free boundary conditions in (3.18)–(3.20), we can obtain the desired free boundary result (4.9). �

Remark. In the above argument, we have obtained an approximation, Ṽ := V00 +
√
εV10 +

√
δV01,

of the option price V (= V s/l or VR). Using the same analysis as in Fouque et al. [14], one can
obtain a theoretical error of the approximation. Instead of repeating the argument here, however, we
demonstrate the accuracy of the approximation numerically in the next section.

5. Numerical experiments

In this section, we perform some numerical experiments for stop-loss and Russian options under
the multiscale stochastic volatility model (2.1). Since the real market data of these options are not
available, we use the parameter values used in Fouque et al. [15] and Fitt et al. [11].

We approximate the prices, V s/l and VR, of stop-loss and Russian options by

V s/l ≈ V s/l
00 + Ṽ s/l

1 ,

VR ≈ VR
00 + ṼR

1 ,
(5.1)

respectively, where V s/l
00 and VR

00 are the Black-Scholes option prices with volatility σ(z) and Ṽ s/l
1 and

ṼR
1 are the first order corrections defined by

Ṽ s/l
1 := Ṽ sl

10 + Ṽ sl
01 =

√
εV sl

10 +
√
δV sl

01,

ṼR
1 := ṼR

10 + ṼR
01 =

√
εVR

10 +
√
δVR

01,
(5.2)

where V sl
i j and VR

i j are the corresponding terms in the series (3.3) and (3.17), respectively. We define
terms Ukl,ε

00 (z), Ukl,δ
00 (z), B̃ζ

i j(z) and Ãζ
i j(z) by

Ukl,ε
00 (z) :=

√
εUkl

00(z), (k, l) ∈ {(3, 0), (2, 0)},

Ukl,δ
00 (z) :=

√
δσ′(z)Ukl

00(z), (k, l) ∈ {(1, 1), (1, 0)},

B̃ζ
i j,k(z) := ε i/2δ j/2Bζ

i j,k(z),

Ãζ
i j,k(z) := ε i/2δ j/2Aζ

i j,k(z),

(5.3)

where the group parameters Ukl
00(z), (k, l) ∈ {(3, 0), (2, 0), (1, 1), (1, 0)}, are defined by (3.10) and the

functions Bζ
i j,k(z) and Aζ

i j,k(z) are defined by (4.4) and (4.6), respectively. Moreover, for simplicity, we
use the unified notations Uε

00 and Uδ
00 defined by Uδ

00 := U11,δ
00 = U10,δ

00 and Uε
00 := U30,ε

00 = U20,ε
00 when

U11,δ
00 = U10,δ

00 and U30,ε
00 = U20,ε

00 .
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For a numerical experiment, we apply the change rule ∂
∂z = σ′(z) ∂

∂σ
to the functions in (4.4) and use

Ukl,ε
00 and Ukl,δ

00 defined in (5.3). Then the functions in (4.4) become

B̃0
10,k(σ) :=

√
εB0

10,k(σ) =

U30,ε
00

2∏
ω=0

(ηk(σ) − ω) + U20,ε
00 ηk(σ) (ηk(σ) − 1)

 A0
00,k(σ),

B̃0
01,k(σ) :=

√
δB0

01,k(σ) =

(
U11,δ

00

(
∂ηk

∂σ
(σ) + ηk(σ)

∂

∂σ

)
+ U01,δ

00
∂

∂σ

)
A0

00,k(σ),

B̃1
01,k(σ) :=

√
δB1

01,k(σ) =

(
U11,δ

00 ηk(σ)
∂ηk

∂σ
(σ) + U01,δ

00
∂ηk

∂σ
(σ)

)
A0

00,k(σ),

(5.4)

respectively. On the other hand, from Ãζ
i j,k(σ) defined in (5.3) and (4.5), we have

Ṽ10 :=
√
εV10(x, σ) =

2∑
k=1

 1∑
ζ=0

Ãζ
10,k(σ) (ln x)ζ

 xηk(σ),

Ṽ01 :=
√
δV01(x, σ) =

2∑
k=1

 2∑
ζ=0

Ãζ
01,k(σ) (ln x)ζ

 xηk(σ),

(5.5)

respectively. Therefore, the functions Ṽ sl
i j and ṼR

i j, (i, j) ∈ {(1, 0), (0, 1)}, in (5.5) constitute the correction
terms in (5.2) and they are related to Ãζ

i j,k which depends on the choice of a stop-loss or Russian option.
Figures 1 and 2 show the effect of the multiscale stochastic volatility on the Black-Scholes option

prices. Depending on each parameter set of the values of Uε
00 and Uδ

00, the option prices affected by the
multiscale stochastic volatility (2.1) give a different graphical representation from the Black-Scholes
option prices.
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(a) The price V s/l of a stop-loss option as a function of
x (= s/s∗); q = 0.02, λ = 0.5.
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(b) The price V s/l of a stop-loss option as a function
of λ; q = 0.06, x = 0.9.

Figure 1. Stop-loss option prices under the Black-Scholes (BS) model and the multiscale
stochastic volatility (SV) model for various levels of Uε

00 and Uδ
00; r = 0.08.

Figure 1 demonstrates how flexible the multiscale stochastic volatility model is compared to the
Black-Scholes model for a stop-loss option. It shows the dependence of the option price on the variable
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x (= s/s∗) (the underlying price-the maximum underlying price ratio) and the parameter λ (the rebate
level) for different values of the group parameters Uε

00 and Uδ
00, respectively. Depending on the values

of the group parameters, the price of a stop-loss option can be over-priced or under-priced. There is
no fixed direction of movement. This suggests that the multiscale stochastic volatility model offers
a greater degree of flexibility in the way that it can capture the diverse volatile nature of the stock
markets.
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(a) The Russian option price VR against x (= s/s∗);
r = 0.08.
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Figure 2. Russian option prices and free boundaries under the Black-Scholes (BS) model and
the multiscale stochastic volatility (SV) model for various levels of Uε

00 and Uδ
00; q = 0.02,

σ = 0.3.

In Figure 2, we observe the correction effect on the Black-Scholes price and the free boundary of a
Russian option given by the multiscale stochastic volatility model. The multiscale stochastic volatility
model offers a greater degree of flexibility in a similar manner to the stop-loss option case. The free
boundaries also show a behavior sensitive to the group parameters Uε

00 and Uδ
00.

Tables 1 and 2 show some comparison results between the Monte-Carlo simulation outcomes Ps/l
MC

and PR
MC and our analytic prices Ps/l and PR, respectively, for each different value of the initial asset

price s. For the comparison, we calculate the absolute difference and relative difference values, where
the absolute difference is defined by the absolute value of the difference between the option price
obtained from the Monte-Carlo simulation and the option price from the approximation formula (5.1),
and the relative difference is defined by the ratio of the absolute difference over the price obtained
from the Monte-Carlo simulation. Here, the repeated sampling number is set to be 100, 000 and the
discretized time step dt to be 1

1500 in Monte-Carlo simulation. The common parameters and functions
used in both stop-loss and Russian options are as follows: r = 0.1, q = 0.05, σ = 0.3, s∗ = 105, ε =

0.01, δ = 0.001, U30,ε
00 = 0.007, U20,ε

00 = 0.002, U11,δ
00 = 0.007 and U10,δ

00 = 0.002. We test the multiscale
stochastic volatility model by comparing it with Monte-Carlo simulation method because there is no
real market data in the case of perpetual American type of options. Here, we brought the values of
parameters and the set of functions used in Fouque and Han [12], one of existing research works about
the Monte-Carlo simulation for the multiscale stochastic volatility model. They are f (y, z) = ey+z,
α(y) = m1 − y, β(y) = ν1

√
2, c(z) = m2 − z, g(z) = ν2

√
2, m1 = −0.8, m2 = −0.8, ν1 = 0.5, ν2 = 0.8 and

Λ = Γ = 0.
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Table 1 provides a comparison result between the Monte-Carlo simulation and the
approximation (5.1) for the stop-loss option prices. For each different value of the initial asset price s,
the absolute difference is within ‘1’ and the relative difference is within ‘0.01’. They are quite similar
to each other. Adding higher order terms to (5.1) would bring more similarity between the two results.

Table 1. Comparison between the approximation formula and the Monte-Carlo simulation
for stop-loss option prices against a variety of s; absolute difference =

∥∥∥Psl − Psl
MC

∥∥∥, relative

difference =
∥∥∥∥Psl−Psl

MC

Psl
MC

∥∥∥∥, y = −0.93, z = −0.73 and λ = 0.5.

s Ps/l Ps/l
MC absolute difference relative difference

80 52.6759 52.2988 0.3771 0.0072
85 54.5355 54.2620 0.2735 0.0050
90 56.7345 56.4162 0.3184 0.0056
95 59.2284 58.8681 0.3603 0.0061
100 61.9821 61.5982 0.3839 0.0062
105 64.9677 64.5273 0.4404 0.0068

Table 2 shows a comparison result between the Monte-Carlo simulation and the approximation (5.1)
for the Russian option prices. In this case, we used the method suggested by Basso and Pianca [2] for
obtaining the Monte-Carlo simulation results. The absolute difference is within ‘1’ and the relative
difference is within ‘0.01’ again.

Table 2. Comparison between the approximation formula and the Monte-Carlo simulation
for Russian option prices against a variety of s; absolute difference =

∥∥∥PR − PR
MC

∥∥∥, relative

difference =
∥∥∥∥PR−PR

MC
PR

MC

∥∥∥∥, y = −0.745 and z = −0.347.

s PR PR
MC absolute difference relative difference

80 136.9703 137.8832 0.9130 0.0067
85 145.1347 145.4095 0.2748 0.0019
90 153.3948 154.1971 0.8023 0.0052
95 161.7382 162.2437 0.5055 0.0031

100 170.1538 169.8807 0.2731 0.0016
105 178.6319 178.4759 0.1560 0.0009

Tables 3 and 4 provide a comparison result between the Monte-Carlo simulation and the first order
approximation (5.1) for each different value of r−q. The absolute differences are within ‘2.5’ and ‘2.8’
and the relative differences are within ‘0.07’ and ‘‘0.03’, respectively, for the stop-loss and Russian
option prices.

Tables 5 and 6 demonstrate a comparison result for the Monte-Carlo simulation and the
approximation (5.1) for each different value of s∗. The absolute differences are within ‘0.5’ and ‘2.8’
for the stop-loss and Russian option prices, respectively. Moreover, the relative differences are within
‘0.009’ and ‘0.02’ for the stop-loss and Russian option prices, respectively.
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Table 3. Comparison between the approximation formula and the Monte-Carlo simulation
for stop-loss option prices against a variety of r − q; absolute difference =

∥∥∥Psl − Psl
MC

∥∥∥,

relative difference =
∥∥∥∥Psl−Psl

MC

Psl
MC

∥∥∥∥, y = −0.42, z = −0.42 and λ = 0.5.

r − q Psl Psl
MC absolute difference relative difference

0.1 36.5508 38.9692 2.4184 0.0621
0.12 38.4595 39.6875 1.2281 0.0309
0.14 40.5777 40.4344 0.1432 0.0035
0.16 42.8733 41.8477 1.0256 0.0245
0.18 45.2658 43.3876 1.8782 0.0433
0.2 47.549 45.649 1.9001 0.0416

Table 4. Comparison between the approximation formula and the Monte-Carlo simulation for
Russian option prices against a variety of r − q; absolute difference =

∥∥∥PR − PR
MC

∥∥∥, relative

difference =
∥∥∥∥PR−PR

MC
PR

MC

∥∥∥∥, y = −0.73 and z = −0.33.

r − q PR PR
MC absolute difference relative difference

0.1 111.5176 114.0305 2.5129 0.0220
0.12 113.1129 115.1552 2.0423 0.0177
0.14 115.0676 116.5339 1.4663 0.0126
0.16 117.4950 118.0136 0.5187 0.0044
0.18 120.5682 120.0946 0.4736 0.0039
0.2 124.5698 121.8557 2.7141 0.0223

Table 5. Comparison between the approximation formula and the Monte-Carlo simulation
for stop-loss option prices against a variety of s∗; absolute difference =

∥∥∥Psl − Psl
MC

∥∥∥, relative

difference =
∥∥∥∥Psl−Psl

MC

Psl
MC

∥∥∥∥, y = −0.93, z = −0.73 and λ = 0.5.

s∗ Psl Psl
MC absolute difference relative difference

85 49.6338 49.4496 0.1842 0.0037
90 50.0286 49.6868 0.3418 0.0069
95 50.6724 50.4782 0.1942 0.0038
100 51.5569 51.1381 0.4188 0.0082
105 52.6759 52.2889 0.3870 0.0074
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Table 6. Comparison between the approximation formula and the Monte-Carlo simulation
for Russian option prices against a variety of s∗; absolute difference =

∥∥∥PR − PR
MC

∥∥∥, relative

difference =
∥∥∥∥PR−PR

MC
PR

MC

∥∥∥∥, y = −0.74 and z = −0.34.

s∗ PR PR
MC absolute difference relative difference

85 136.1358 135.3692 0.7665 0.0057
90 136.2416 136.887 0.6454 0.0047
95 136.4171 137.5976 1.1805 0.0086

100 136.6607 137.2971 0.6364 0.0046
105 136.9703 139.7656 2.7953 0.02

Figure 3 presents a comparison of the numerical values of stop-loss and Russian options under the
multiscale stochastic volatility (MSV) model with those under the Black-Scholes (BS) model, the CEV
model and the SEV (stochastic elasticity of variance) model of Kim et al. [22]. We could choose the
popular Heston and 3/2 models instead of these models but our model is already a generalization of
the (rescaled) Heston and 3/2 models. If f (y, z) = y1/2, α(y) = θ − y, β(y) = ξy1/2 and c(z) = g(z) = 0,
then our model is reduced to the Heston model. If f (y, z) = y1/2, α(y) = y(θ − y), β(y) = ξy3/2 and
c(z) = g(z) = 0, then it becomes the 3/2 model. Here, θ and ξ are constants. So, we compare our model
with the CEV and SEV models. The real market data of stop-loss and Russian options do not exist since
those options are not traded in exchange. So, we generate ‘rough data’ by Monte-Carlo simulation.
Here, for the security of scientific objectivity, we consider the Black-Scholes model for the underlying
asset prices on behalf of market data. We use the pricing results in Lee and Kim [24] under the CEV
and SEV models. They are obtained by the first-order approximation formulas in [27] and [23] for the
CEV and SEV models, respectively. As shown in Figure 3, we find that the MSV model has quite good
performance to fit the data in comparison with the CEV and SEV models that tend to produce almost
similar performances to each other in the case of the first-order approximation. The numerical values
of the fitting errors between the rough data and the option prices under the four models are shown in
Table 7, which demonstrates that the MSV model clearly outperforms the other models.
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Figure 3. Fitting of the BS, MSV, CEV and SEV models to rough data.
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Table 7. Numerical error between the BS, MSV, CEV or SEV option prices and rough data;
‖Pdata − Pmodel‖ :=

√∑
x=80,82,....,100|Pdata(x) − P(x)|2.

The stop-loss option

‖Psl
data − Psl

BS ‖ ‖P
sl
data − Psl

MS V‖ ‖P
sl
data − Psl

CEV‖ ‖P
sl
data − Psl

S EV‖

6.5035 5.2410 6.5012 6.5012

The Russian option

‖PR
data − PR

BS ‖ ‖P
R
data − PR

MS V‖ ‖P
R
data − PR

CEV‖ ‖P
R
data − PR

S EV‖

10.9108 7.8487 10.9105 10.9105

6. Conclusions

In this paper, we have studied the pricing of stop-loss and Russian options, two perpetual American-
style type of exotic options with a lookback provision, under a multiscale stochastic volatility
framework. We obtain a closed-form expression for the approximate price of each option so that the
pricing formula is useful for performance optimization since one can then easily compute the first and
second order derivatives. Each formula is given as the Black-Scholes option price plus a correction
term. The correction terms produced by the multiscale stochastic volatility provide the flexibility of the
option prices and the free boundary (in the case of Russian options) so that the model can capture the
real market behavior better. The pricing formulas are tested and verified via Monte-Carlo simulations.
A possible direction of future research would be an extension of the current work under a stochastic
volatility model with multiple time scales to stochastic volatility models with multiple dimensions
such as the hybrid stochastic volatility and CEV model of Choi et al. [4], a stochastic volatility model
with stochastic liquidity and regime switching of He and Lin [18] or with stochastic interest rates of
He and Lin [19], and the hybrid stochastic elasticity of variance and stochastic volatility model of
Escobar-Anel and Fan [10].
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Appendix

A. ODE problems and solutions for V s/l
i j , i + j = 2

In this section, we derive the ODE problems and their solutions for the second-order corrections
V s/l

i j with i + j = 2 for a stop-loss option. We first note that the term V s/l
20 in (3.3) depends on y, whereas

the other terms V s/l
i j , 0 ≤ i + j ≤ 2 and (i, i) , (2, 0), are independent of y. To determine the value of

V s/l
20 (x, y, z), we need to assume that

〈
V s/l

20 (λ, ·, z)
〉

= 0 and
〈
∂
∂xV s/l

20 (1, ·, z)
〉

=
〈
V s/l

20 (1, ·, z)
〉

hold based on
the stochastic terminal layer analysis of Fouque et al. [15].

Proposition 6.1. Under the assumption 〈φ2(·, z)〉 = 0, the second-order corrections V s/l
i j , i + j = 2,

in the asymptotic series (3.3) for a stop-loss option satisfy the following ODE problems, respectively.
First, V s/l

20 (x, y, z) is given by (3.15), i.e.,

V s/l
20 (x, y, z) = −

1
2
φ2(y, z)x2 ∂

2

∂x2 V s/l
00 (x, z) + F s/l

20 (x, z),

where F s/l
20 (x, z) satisfies


LF s/l

20 (x, z) =
(
Ũ40

00(z)x4 ∂4

∂x4 + W̃30
00 (z)x3 ∂3

∂x3 + W̃20
00 (z)x2 ∂2

∂x2

)
V s/l

00 (x, z)
+

(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
V s/l

10 (x, z) := B20(x, z), λ < x < 1,
F s/l

20 (λ, z) = 0,
F s/l

20 (1, z) = ∂
∂x F s/l

20 (1, z).

(6.1)

Second, V s/l
11 (x, z) and V s/l

02 (x, z) satisfy


LV s/l

11 (x, z) =
(
Ũ21

00(z)x2 ∂2

∂x2 + W11
00 (z)x ∂

∂x + W01
00 (z)

)
V s/l

00 (x, z) +
(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zV s/l

10 (x, z)
+

(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
V s/l

01 (x, z) := B11(x, z), λ < x < 1,
V s/l

11 (λ, z) = 0,
V s/l

11 (1, z) = ∂
∂xV s/l

11 (1, z),
(6.2)

and


LV s/l

02 (x, z) =
(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zV s/l

01 (x, z)
−

(
c(z) ∂

∂z + 1
2g2(z) ∂

2

∂z2

)
V s/l

00 (x, z) := B02(x, z), λ < x < 1,
V s/l

02 (λ, z) = 0,
V s/l

02 (1, z) = ∂
∂xV s/l

02 (1, z),

(6.3)
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respectively, where

U40
00(z) := −

1
2
ρ2

xy

〈
β f
∂ξ1

∂y

〉
,

Ũ40
00(z) := U40

00(z) +
1
4

〈
φ2 f 2

〉
,

W30
00 (z) := −

1
2
ρxy

(
5ρxy

〈
β f
∂ξ1

∂y

〉
−

〈
β f
∂ξ2

∂y

〉
−

〈
βΛ

∂ξ1

∂y

〉)
,

W̃30
00 (z) := W30

00 (z) +
〈
φ2 f 2

〉
,

W20
00 (z) := −

(
2ρ2

xy

〈
β f
∂ξ1

∂y

〉
− ρxy

〈
β f
∂ξ2

∂y

〉
− ρxy

〈
βΛ

∂ξ1

∂y

〉
+

1
2

〈
βΛ

∂ξ2

∂y

〉)
,

W̃20
00 (z) := W20

00 (z) +
1
2

〈
φ2 f 2

〉
,

U21
00(z) := g(z)ρxyρxz

〈
β f
∂φ1

∂y

〉
,

Ũ21
00(z) := U21

00(z) +
1
2

g(z)ρyz

〈
β
∂φ2

∂y

〉
,

W11
00 (z) := g(z)

(
ρxyρxz

〈
β f
∂φ1

∂y

〉
− ρxz

〈
βΛ

∂φ1

∂y

〉
− ρxy

〈
β f
∂ψ

∂y

〉)
,

W01
00 (z) := g(z)

〈
βΛ

∂ψ

∂y

〉
.

Proof. In the middle of the proof of Proposition 3.2, we have shown that V s/l
20 is given by (3.15) in

which the function F s/l
20 has not been determined. We now derive an ODE problem for F s/l

20 as follows.
If Lemma 2.1 is applied to the terms of order

√
ε in (3.4), then we have 〈L1〉V

s/l
20 +LV s/l

00 = 0. The terms
of order

√
ε in (3.4) give L0V s/l

30 +L1V s/l
20 +L2V s/l

10 = 0. So, we obtain L0V s/l
30 = −

(
L1V s/l

20 −
〈
L1V s/l

20

〉)
−(

L2 − L
)

V s/l
10 whose general solution is given by

V s/l
30 (x, y, z) =

(
1
2
ρxyξ1(y, z)x3 ∂

3

∂x3 +

(
ρxyξ1(y, z) −

1
2
ξ2(y, z)

)
x2 ∂

2

∂x2

)
V s/l

00 (x, z)

−
1
2
φ2(y, z)x2 ∂

2

∂x2 V s/l
10 (x, z) + F s/l

30 (x, z)

(6.4)

for some function F s/l
30 independent of y, where the functions ξ1 and ξ2 are defined in (3.6). From the

terms of order ε in (3.4), we have 〈
L2V s/l

20

〉
= −

〈
L1V s/l

30

〉
(6.5)

by Lemma 2.1. With the help of (3.15), the left side of Eq (6.5) becomes

〈
L2V s/l

20

〉
= −

1
2

〈
φ2x2 ∂

2

∂x2

(
L2V s/l

00 − LV s/l
00

)〉
+LF s/l

20

= −
1
4

〈
φ2 f 2

〉 (
x4 ∂

4

∂x4 + 4x3 ∂
3

∂x3 + 2x2 ∂
2

∂x2

)
V s/l

00 +LF s/l
20 .

(6.6)
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With the help of (6.4), the right side of Eq (6.5) becomes

−
〈
L1V s/l

30

〉
=

(
U40

00 x4 ∂
4

∂x4 + W30
00 x3 ∂

4

∂x3 + W20
00 x2 ∂

2

∂x2

)
V s/l

00 +

(
U30

00 x3 ∂
3

∂x3 + U20
00 x2 ∂

2

∂x2

)
V s/l

10 . (6.7)

Putting (6.5)–(6.7) together, we obtain the ODE for F s/l
20 as in (6.1).

Next, by applying Proposition 3.1 and Lemma 2.1 to the terms of order
√
δ in (3.4), we can

obtain L0V s/l
21 + L2V s/l

01 + M1V s/l
00 = 0 and LV s/l

01 + 〈M1〉V
s/l
00 = 0. These two equations yield

L0V s/l
21 = −

((
L2 − L

)
V s/l

01 + (M1 − 〈M1〉) V s/l
00

)
whose solution V s/l

21 is given by

V s/l
21 (x, y, z) = −

1
2
φ2(y, z)x2 ∂

2

∂x2 V s/l
01 (x, z) − g(z)

(
ρxzφ1(y, z)x

∂

∂x
− ψ(y, z)

)
∂

∂z
V s/l

00 (x, z) + F s/l
21 (x, z) (6.8)

for some function F s/l
21 independent of variable y. Then, by applying Lemma 2.1 to the terms of order

√
εδ in (3.4) and using the result (6.8), we can obtain the ODE for V s/l

11 in (6.2).
Moreover, the ODE LV s/l

02 = −
(
〈M1〉V

s/l
01 +M2V s/l

00

)
for V s/l

02 can be obtained from the terms of
order δ in (3.4). Then (6.3) follows from the definitions ofM2 in (2.3) andM1 in (3.2).

On the other hand, the terms of order ε i/2δ j/2, (i, j) ∈ {(1, 1), (0, 2)}, in (3.11) provide the boundary
conditions in (6.2) and (6.3) for V s/l

11 and V s/l
02 , respectively. For the boundary conditions of F s/l(x, z), if

we apply the assumptions
〈
V s/l

20 (λ, ·, z)
〉

= 0 and
〈
∂
∂xV s/l

20 (1, ·, z)
〉

=
〈
V s/l

20 (1, ·, z)
〉

to the terms of order ε
in (3.11), then the boundary conditions in (6.1) are obtained. �

Proposition 6.2. The solutions of the ODE problems in Proposition 6.1 are given by

V s/l
20 (x, y, z) = −

1
2
φ2(y, z)

2∑
k=1

ηk(z) (ηk(z) − 1) A0
00,k(z)xηk(z) +

2∑
k=1

 2∑
ζ=0

Aζ
20,k(z) (ln x)ζ

 xηk(z),

V s/l
i j (x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
i j,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(1, 1), (0, 2)},

(6.9)

respectively, where the terms Aζ
i j,k, (i, j) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} and ζ = 1, · · · , i + 2 j, are

recursively given by

Aζ
i j,k(z) =

Bζ−1
i j,k (z) − ζ(ζ+1)

2 σ2(z)Aζ+1
i j,k (z)

ζ
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) , ζ = 1, · · · , i + 2 j − 1,

Aζ
i j,k(z) =

Bζ−1
i j,k (z)

ζ
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) , ζ = i + 2 j

(6.10)

and the terms A0
i j,k, (i, j) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}, are given by

A0
i j,k(z) =

ληl(z) ∑2
ω=1 A1

i j,ω(z) + (1 − ηl(z))
∑2
ω=1

(
ληω(z) ∑i+2 j

ζ=1 Aζ
i j,ω(z) (ln λ)ζ

)
(1 − ηk(z)) ληl(z) − (1 − ηl(z)) ληk(z) , k, l ∈ {1, 2}, k , l.

(6.11)
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Proof. Substituting (4.3) and (4.5) into Bi j(x, z), (i, j) ∈ {(2, 0), (1, 1), (0, 2)}, defined in Proposition 6.1,
we first have

Bi j(x, z) =

2∑
k=1

i+2 j−1∑
ζ=0

Bζ
i j,k(z) (ln x)ζ

 xηk(z), (6.12)

where the explicit (long) representations of Bζ
i j,k(z), ζ = 0, 1, · · · , i + 2 j − 1, are given below in

Appendix C.
To solve the ODE problems (6.1)–(6.3), we consider the functions F20, V11 and V02 defined by

F20(x, z) =

2∑
k=1

 2∑
ζ=0

Aζ
20,k(z) (ln x)ζ

 xηk(z),

Vi j(x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
i j,k(z) (ln x)ζ

 xηk(z), (i, j) = (1, 1), (0, 2),

(6.13)

where, for legibility, the simplified notation without the superscript ‘s/l’ has been used.
Substituting (6.13) into the first equations in (6.1)–(6.3), we obtain Aζ

i j,k(z), ζ = 1, · · · , i+2 j, as follows:

A1
i j,k(z) =

B0
i j,k(z) − σ2(z)A2

i j,k(z)
1
2σ

2(z) (2ηk(z) − 1) + (q − r)
, (i, j) = (2, 0), (1, 1), (0, 2),

A2
20,k(z) =

B1
20,k(z)

2
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) ,

A2
i j,k(z) =

B1
11,k(z) − 3σ2(z)A3

i j,k(z)

2
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) , (i, j) = (1, 1), (0, 2),

A3
11,k(z) =

B2
11,k(z)

3
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) ,

A3
02,k(z) =

B2
02,k(z) − 6σ2(z)A4

02,k(z)

3
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) ,

A4
02,k(z) =

B3
02,k(z)

4
(

1
2σ

2(z) (2ηk(z) − 1) + (q − r)
) .

(6.14)

Then (6.10) follows from (4.6) and (6.14).
Next, substituting (6.13) into the boundary conditions in (6.1)–(6.3), we obtain A0

i j,k in (6.13) as
follows:

A0
i j,k(z) =

ληl(z) ∑2
ω=1 A1

i j,ω(z) + (1 − ηl(z))
∑2
ω=1

(
ληω(z) ∑i+2 j

ζ=1 Aζ
i j,ω(z) (ln λ)ζ

)
(1 − ηk(z)) ληl(z) − (1 − ηl(z)) ληk(z) ,

(i, j) = (2, 0), (1, 1), (0, 2).

(6.15)

Then (6.11) follows from (4.7) and (6.15). �
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B. ODE problems and solutions of VR
i j, i + j = 2

In this section, we derive ODE problems and their solutions for the second-order corrections VR
i j,

i+ j = 2 (Russian option). We first note that the terms of order ε in the first and third equations in (3.21)
given by VR

20(1, y, z) − ∂
∂xVR

20(1, y, z),

VR
20(x f

00(z), y, z) + ∂
∂xVR

00

(
x f

00(z), z
)

x f
20(y, z) + ∂

∂xVR
10

(
x f

00(z), z
)

x f
10(z) + 1

2
∂2

∂x2 VR
00

(
x f

00(z), z
) (

x f
10(z)

)2

become  VR
20(1, y, z) − ∂

∂xVR
20(1, y, z),

VR
20(x f

00(z), y, z) − 1
2
∂2

∂x2 VR
00

(
x f

00(z), z
) (

x f
10(z)

)2
,

(6.16)

respectively, since ∂
∂xVR

00

(
x f

00(z), z
)

= 0 from (3.18) and ∂
∂xVR

10(x f
00(z), z) = − ∂2

∂x2 VR
00(x f

00(z), z)x f
10(z)

from (3.19). In the following proposition, we assume that
〈
VR

20(1, ·, z)
〉

=
〈
∂
∂xVR

20(1, ·, z)
〉

and〈
VR

20

(
(x f

00(z), ·, z
)〉

= 1
2
∂2

∂x2 VR
00

(
x f

00(z), z
) (

x f
10(z)

)2
hold.

Proposition 6.3. Under the assumption 〈φ2(·, z)〉 = 0, the second-order corrections, VR
i j, i + j = 2,

in the asymptotic series (3.17) for a Russian option satisfy the following ODE problems. First, VR
20 is

given by

VR
20(x, y, z) = −

1
2
φ2(y, z)x2 ∂

2

∂x2 VR
00(x, z) + FR

20(x, z), (6.17)

where FR
20 solves



LFR
20(x, z) =

[
Ũ40

00(z)x4 ∂4

∂x4 + W̃30
00 (z)x3 ∂3

∂x3 + W̃20
00 (z)x2 ∂2

∂x2

]
VR

00(x, z)
+

(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
VR

10(x, z), x f
00(z) < x < 1,

FR
20(1, z) = ∂

∂x FR
20(1, z),

FR
20(x f

00(z), z) = 1
2
∂2

∂x2 VR
00(x f

00(z), z)
(
x f

10(z)
)2
,

x f
20(y, z) = −

∂
∂x VR

20(x f
00(z),y,z)+ ∂2

∂x2 VR
10(x f

00(z),z)x f
10(z)+ 1

2
∂3

∂x3 VR
00(x f

00(z),z)(x f
10(z))2

∂2

∂x2 VR
00(x f

00(z),z)
.

(6.18)

Second, VR
11 and VR

02 satisfy

LVR
11(x, z) =

(
Ũ21

00(z)x2 ∂2

∂x2 + W11
00 (z)x ∂

∂x + W01
00 (z)

)
VR

00(x, z) +
(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zVR

10(x, z)
+

(
U30

00(z)x3 ∂3

∂x3 + U20
00(z)x2 ∂2

∂x2

)
VR

01(x, z), x f
00(z) < x < 1,

VR
11(1, z) = ∂

∂xVR
11(1, z),

VR
11(x f

00(z), z) = ∂2

∂x2 VR
00(x f

00(z), z)x f
10(z)x f

01(z),

x f
11(z) = −

∂
∂x VR

11(x f
00(z),z)+ ∂2

∂x2 VR
10(x f

00(z),z)x f
01(z)+ ∂2

∂x2 VR
01(x f

00(z),z)x f
10(z)+ ∂3

∂x3 VR
00(x f

00(z),z)x f
10(z)x f

01(z)

∂2

∂x2 VR
00(x f

00(z),z)

(6.19)
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and 

LVR
02(x, z) =

(
U11

00(z)x ∂
∂x + U01

00(z)
)
∂
∂zVR

01(x, z)
−

(
c(z) ∂

∂z + 1
2g2(z) ∂

2

∂z2

)
VR

00(x, z), x f
00(z) < x < 1,

VR
02(1, z) = ∂

∂xVR
02(1, z),

VR
02(x f

00(z), z) = 1
2
∂2

∂x2 VR(x f
00(z), z)(x f

01(z))2,

x f
02(z) = −

∂
∂x VR

02(x f
00(z),z)+ ∂2

∂x2 VR
01(x f

00(z),z)x f
01(z)+ 1

2
∂3

∂x3 VR
00(x f

00(z),z)(x f
01(z))2

∂2

∂x2 VR
00(x f

00(z),z)
,

(6.20)

respectively.

Proof. In the cases of VR
11 and VR

02, one can show the y-independence of x f
11 and x f

02 and obtain the
results (6.19) and (6.20) including the boundary conditions for VR

i j and the free boundary conditions for
x f

i j by using the same argument as in the proof of Proposition 4.4. So, we don’t repeat the proof here.
Next, in the case of VR

20, as shown in the process of obtaining the solution V s/l
20 (x, y, z) of (3.15),

it can be expressed as (6.17) for some function FR
20(x, z) which is independent of y. As shown in

Proposition 6.1 for a stop-loss option, FR
20 satisfies the ODE in (6.18).

It remains to find the boundary conditions for FR
20 and the free boundary condition for x f

20.
Substituting (6.17) into the assumptions

〈
VR

20(1, y, z)
〉

=
〈
∂
∂xVR

20(1, y, z)
〉

and
〈
VR

20

(
(x f

00(z), y, z
)〉

=

1
2
∂2

∂x2 VR
00

(
x f

00(z), z
) (

x f
10(z)

)2
, we obtain the boundary conditions FR

20(1, z) = ∂
∂x FR

20(1, z) and

FR
20(x f

00(z), z) = 1
2
∂2

∂x2 VR
00(x f

00(z), z)
(
x f

10(z)
)2

. Lastly, from the terms of order ε in the third equation
of (3.21), one can get directly the free boundary condition for x f

20(y, z) as in (6.18). �

Proposition 6.4. The solutions of the ODE problems in Proposition 6.3 are given by

VR
20(x, y, z) = −

1
2
φ2(y, z)

2∑
k=1

ηk(z) (ηk(z) − 1) A0
00,k(z)xηk(z) +

2∑
k=1

 2∑
ζ=0

Aζ
20,k(z) (ln x)ζ

 xηk(z),

VR
i j(x, z) =

2∑
k=1

i+2 j∑
ζ=0

Aζ
i j,k(z) (ln x)ζ

 xηk(z), (i, j) ∈ {(1, 1), (0, 2},

respectively, and the corresponding free boundaries x f
i j, (i, j) ∈ {(2, 0), (1, 1), (0, 2)}), are given by

x f
i j(z) = −

∑2
k=1

 ∑i+2 j
ζ=1 ζAζ

i j,k(z)
(
ln x f

00(z)
)ζ−1

+ ηk(z)
∑i+2 j
ζ=0 Aζ

i j,k(z)
(
ln x f

00(z)
)ζ

−
max{0,i−1}

2 φ2(y, z)η2
k(z) (ηk(z) − 1) A0

00,k(z)

 (x f
00(z)

)ηk(z)−1

+ i
max{i, j}

(
x f

10(z)
)1{i, j}

(
x f

01(z)
)1{i= j}

×
∑2

k=1

 (2ηk(z) − 1) A1
10,k(z)

+ηk(z) (ηk(z) − 1)
∑1
ζ=0 Aζ

10,k(z)
(
ln x f

00(z)
)ζ  (x f

00(z)
)ηk(z)−2

+
j

max{i, j}

(
x f

10(z)
)1{i= j}

(
x f

01(z)
)1{i, j}

×
∑2

k=1

 2A2
01,k(z) + (2ηk(z) − 1)

∑2
ζ=1 ζAζ

01,k(z)
(
ln x f

00(z)
)ζ−1

+ηk(z) (ηk(z) − 1)
∑2
ζ=0 Aζ

01,k(z)
(
ln x f

00(z)
)ζ

 (x f
00(z)

)ηk(z)−2

+ 1
max{i, j}

(
x f

10(z)
)i (

x f
01(z)

) j ∑2
k=1

∏2
ω=0 (ηk(z) − ω) A0

00,k(z)
(
x f

00(z)
)ηk(z)−3

∑2
k=1 ηk(z) (ηk(z) − 1) A0

00,k(z)
(
x f

00(z)
)ηk(z)−2 ,
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respectively, where the (general) solutions Aζ
i j,k, (i, j) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} and ζ =

1, · · · , i + 2 j, are the same as (6.10) and the (particular) solutions A0
i j,k, (i, j) ∈ {(2, 0), (1, 1), (0, 2)}

are given by

A0
i j,k(z) =

(
x f

00(z)
)ηl(z) ∑2

ω=1 A1
i j,ω(z)

+ (1 − ηl(z))


∑2
ω=1

((
x f

00(z)
)ηω(z) ∑i+2 j

ζ=1 Aζ
i j,ω(z)

(
ln x f

00(z)
)ζ)

− 1
max (i, j)

(
x f

10(z)
)i (

x f
01(z)

) j

×
∑2
ω=1

((
x f

00(z)
)ηω(z)−2

ηω(z) (ηω(z) − 1) A0
00,ω(z)

)


(1 − ηk(z))
(
x f

00(z)
)ηl(z)
− (1 − ηl(z))

(
x f

00(z)
)ηk(z) .

Proof. The derivation of the solutions Aζ
i j,k, (i, j) ∈ {(1, 0), (0, 1), (2, 0), (1, 1), (0, 2)} and ζ = 1, · · · , i +

2 j, and the solutions A0
i j,k, (i, j) ∈ {(2, 0), (1, 1), (0, 2)} are similar to the case of a stop-loss option in 6.1.

Moreover, from the terms of order ε i/2δ j/2, (i, j) ∈ {(2, 0), (1, 1), (0, 2)}, in the third equation of (3.21),
one can calculate directly the free boundary x f

i j, (i, j) ∈ {(2, 0), (1, 1), (0, 2)} to get the above result. So,
we omit the detailed derivation here. �

C. The explicit representation of Bζ
i j,k

In this section, we present the detailed expressions of the functions Bζ
i j,k(z) in (6.12) for (i, j) = (2, 0)

with ζ = 0, 1, (i, j) = (1, 1) with ζ = 0, 1, 2 and (i, j) = (0, 2) with ζ = 0, 1, 2, 3.

(1) Bζ
20,k(z) for ζ = 0, 1

B0
20,k(z) =

Ũ40
00

3∏
ω=0

(ηk(z) − ω) + W̃30
00

2∏
ω=0

(ηk(z) − ω) + W̃20
00ηk(z) (ηk(z) − 1)

 A0
00,k(z)

+ U30
00

 2∏
ω=0

(ηk(z) − ω) A0
10,k(z) +

(
3η2

k(z) − 6ηk(z) + 2
)

A1
10,k(z)


+ U20

00

(
ηk(z) (ηk(z) − 1) A0

10,k(z) + (2ηk(z) − 1) A1
10,k(z)

)
,

B1
20,k(z) =

U30
00

2∏
ω=0

(ηk(z) − ω) + U20
00ηk(z) (ηk(z) − 1)

 A1
10,k(z).

AIMS Mathematics Volume 8, Issue 10, 25164–25194.



25193

(2) Bζ
11,k(z) for ζ = 0, 1, 2

B0
11,k(z) = U30

00

 2∏
ω=0

(ηk(z) − ω) A0
01,k(z) +

(
3η2

k(z) − 6ηk(z) + 2
)

A1
01,k(z) + 6 (ηk(z) − 1) A2

01,k(z)


+ U20

00

(
ηk(z) (ηk(z) − 1) A0

01,k(z) + (2ηk(z) − 1)A1
01,k(z) + 2A2

01,k(z)
)

+ Ũ21
00

(
(2ηk(z) − 1)

∂ηk(z)
∂z

+ ηk(z) (ηk(z) − 1)
∂

∂z

)
A0

00,k(z)

+ W11
00

(
∂ηk(z)
∂z

+ ηk(z)
∂

∂z

)
A0

00,k(z) + W01
00
∂

∂z
A0

00,k(z)

+ U11
00

((
ηk(z)

∂

∂z
+
∂ηk(z)
∂z

)
A0

10,k(z) +
∂

∂z
A1

10,k(z)
)

+ U01
00
∂

∂z
A0

10,k(z),

B1
11,k(z) = U30

00

 2∏
ω=0

(ηk(z) − ω) A1
01,k(z) + 2

(
3η2

k(z) − 6ηk(z) + 2
)

A2
01,k(z)


+ U20

00

(
ηk(z) (ηk(z) − ω) A1

01,k(z) + 2 (2ηk(z) − 1) A2
01,k(z)

)
+ Ũ21

00ηk(z) (ηk(z) − 1)
∂ηk(z)
∂z

A0
00,k(z) + W11

00ηk(z)
∂ηk(z)
∂z

A0
00,k(z) + W01

00
∂ηk(z)
∂z

A0
00,k(z)

+ U11
00

(
ηk(z)

∂ηk(z)
∂z

A0
10,k(z) +

(
2
∂ηk(z)
∂z

+ ηk(z)
∂

∂z

)
A1

10,k(z)
)

+ U01
00

(
∂ηk(z)
∂z

+
∂

∂z

)
A0

10,k(z),

B2
11,k(z) =

U30
00

2∏
ω=0

(ηk(z) − ω) + U20
00ηk(z) (ηk(z) − 1)

 A2
01,k(z))

+

(
U11

00ηk(z)
∂ηk(z)
∂z

+ U01
00
∂ηk(z)
∂z

)
A1

10,k(z).
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(3) Bζ
02,k(z) for ζ = 0, 1, 2, 3

B0
02,k(z) = U11

00

((
∂ηk(z)
∂z

+ ηk(z)
∂

∂z

)
A0

01,k(z) +
∂

∂z
A1

01,k(z)
)

+ U01
00
∂

∂z
A0

01,k(z) −
(
c(z)

∂

∂z
+

1
2

g2(z)
∂2

∂z2

)
A0

00,k(z),

B1
02,k(z) = U11

00

(
ηk(z)

∂ηk(z)
∂z

A0
01,k(z) +

(
ηk(z)

∂

∂z
+ 2

∂ηk(z)
∂z

)
A1

01,k(z) + 2
∂

∂z
A2

01,k(z)
)

+ U01
00

(
∂ηk(z)
∂z

A0
01,k(z) +

∂

∂z
A1

01,k(z)
)

−

(
c(z)

∂ηk(z)
∂z

+
1
2

g2(z)
(
∂2ηk(z)
∂z2 + 2

∂ηk(z)
∂z

∂

∂z

))
A0

00,k(z),

B2
02,k(z) = U11

10

(
ηk(z)

∂ηk(z)
∂z

A1
01,k(z) +

(
ηk(z)

∂

∂z
+ 3

∂ηk(z)
∂z

)
A2

01,k(z)
)

+ U01
10

(
∂ηk(z)
∂z

A1
01,k(z) +

∂

∂z
A2

01,k(z)
)
−

1
2

g2(z)
(
∂ηk(z)
∂z

)2

A0
00,k(z),

B3
02,k(z) =

(
U11

10ηk(z)
∂ηk(z)
∂z

+ U01
10
∂ηk(z)
∂z

)
A2

01,k(z).
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