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Abstract: A new cosine similarity measure between hesitancy fuzzy graphs, which have been shown
to have greater discriminating capacity than certain current ones in group decision making problems
by example verification. This study proposes a novel method for estimating expert-certified repute
scores by determining the ambiguous information of hesitancy fuzzy preference relations as well as the
regular cosine similarity grades from one separable hesitancy fuzzy preference relation to some others.
The new approach considers both “objective” and “subjective” information given by experts. We
construct working procedures for assessing the eligible reputational scores of the experts by applying
hesitancy fuzzy preference relations. In an evaluation in which multiple conflicting factors are taken
into consideration, this can be applied to increase or reduce the relevancy of specified criteria. Applying
the two effective methods, the newly developed cosine similarity measure, the energy of hesitancy
fuzzy graph, and we provide a solution to a decisional issue. Finally, the two working procedures and
examples are given to verify the practicality and dominance of the proposed techniques.
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1. Introduction

The fuzzy set (FS) concept is one of the most essential techniques for dealing with complex and
challenging data in the real world. Hesitant fuzzy set (HFS) was proposed to extend the FS and
it was proposed by Torra [38] and HFS has fascinated much recognition. Dissimilar to previous
extensions of FSs, HFSs enable the membership element to a set have various elements between 0
and 1. Torra and Narukawa [37] provided various rules and examined the connections between HFSs
and other FSs expansions and also demonstrated that the cover of an HFS is an intuitionistic fuzzy
set (IFS) [12]. Much research was done on IFSs, such as intuitionistic fuzzy operations [10, 13, 14].
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The fuzzy graph has been extended into hesitant fuzzy graph. The remarks on fuzzy graphs were
discussed by Bhattacharya [15], and also proviede on the properties of fuzzy graphs. In 2015,
Pathinathan et al. [32] was introduced the concept of hesitancy fuzzy graph (HFG) and for the HFGs,
the theoretical description of the different Cartesian products, order, size, and degree were taken into
account. In 1987, Atanassov [9, 11] was established the concept of Index matrix (IM) and also
expanded it himself. In 2017, Arockiaraj et al. [7] established the concept of IM representation
for HFG, along with appropriate examples. Multiple mathematical operations, such as union and
join of HFGs. Muhammad et al. introduced the concept of HFG and many HFG operations are
determined for the idea of HFG. In 2016, Pathinathan et al. [8] were proposed Cartesian products
for HFGs with an appropriate example and theoretical verification. Gong et al. [20] conceived the
idea of a hesitant fuzzy hypergraph (HFH) based on HFSs and fuzzy hypergraphs. As part of the
research, certain fundamental graph operations of HFHs are examined, as well as various equivalence
relationships between HFHs, hesitant fuzzy formal concept analysis, and hesitant fuzzy information
systems. The process of finding and selecting choices based on the decision maker’s values and
preferences is known as decision making. The decision-making (DM) process is the selection of the
best choice from suitable alternatives. One of the most well-known DM approaches is the Technique
for order preference by similarity to an ideal solution (TOPSIS), which was developed by Hwang and
Yoon [22]. Xia and Xu [40] proposed a set of aggregation techniques for hesitant fuzzy data and also
they discussed the relationship between IFS and HFSs, that they constructed various operations and
aggregation operators for hesitant fuzzy elements. They demonstrated its use in solving DM problems.
Xu et al. [44] presented and discussed the notions of entropy and cross-entropy for hesitant fuzzy
information and similarity measures (SMs) are also investigated. They proposed two techniques for
making multiattribute decisions in which attribute values are provided in the form of hesitant fuzzy
sets that holistically replicate humans’ hesitant thinking. HFS is quite helpful in avoiding problems
like these, where each attribute could be represented as an HFS defined on the basis of the judgments
of DMs. Akram et al. [4] presented an Elimination and selection Translating Reality-II approach under
hesitant Pythagorean fuzzy information to affect divergent views of decision experts. Garg et al. [19]
proposed the idea of the complex HFS, which combines the HFS with the complex fuzzy set to manage
comprehensive and inconvenient information in the real-decision theory. Sarwar et al. [35] propose
a novel approach termed bipolar fuzzy extending TOPSIS based on entropy weights to deal with
multi-criteria DM issues including bipolar measurements with positive and negative values. They
also explore innovative uses of bipolar fuzzy competition graphs in food webs and provide several
techniques for calculating the degree of competitiveness between species. Akram et al. [1] proposed
an m-polar hesitant fuzzy TOPSIS technique for multi-criteria group DM, which is a logical expansion
of the TOPSIS technique to this framework.

The preference relation, which is both the most frequent and most important representation of
data has garnered a significant amount of interest from research scientists and has been extensively
employed, particularly in the criterion decision Analysis (MCDA). Later on, Xia and Xu [41]
discovered the benefits of HFEs and presented the idea of hesitant FPRs (HFPRs). When confidentiality
is needed to prevent decision makers from influencing one another or protecting their privacy, the
HFPRs can be considered an effective tool for representing preference information over alternatives
for a group of decision makers [45]. This is especially true in situations where it is important to avoid
influencing one another. There have been several distinct forms of preference relations developed
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up to this moment, namely the intuitionistic fuzzy preference relation [36], the linguistic preference
relation [21, 43]. Liao et al. presented the concept of a “hesitant fuzzy preference relation” (HFPR)
and examined the unique aspects of this relation. This was done so as to resolve the drawback that was
previously mentioned.

The similarity measure (SM) for the fuzzy system is critical in dealing with issues involving
ambiguous data, but it will be unable to deal with the ambiguousness and awkwardness of issues
involving standard information. Dengfeng et al. [26] examined several SMs on IFSs and presented
an appropriate SM between IFSs, which will be the first one, used to pattern recognition issues.
Xu et al. [42] were introduced the concept of a set of distance measurements for HFSs, from which
the related SMs may be calculated. Xu and Chen provided a complete analysis of distance and SMs as
well as many new continuous distance and SMs for IFS. Pythagorean fuzzy set (PFS) SMs proposed by
Farhadinia [18] not only meet well-known theorems but also solve the division-by-zero problem. They
proposed measures that combined the distance between PFSs with the t-norm and s-norm concepts.
The m-PFS and m-PF soft set on SMs were established by Akram et al. [5] for medical diagnostics.
Chinram et al. [17] was introduced the idea of a complex hesitant fuzzy set is a modified technique
of the complex fuzzy set for dealing with uncomfortable and untrustworthy information in everyday
life situations and also they determine the validity and competency of the studied measures based on
CHFSs, the comparison of investigated measures with certain stated measures and also examined of
their graphs. Bolturk et al. [16] proposed a novel analytic hierarchy process technique for neutrosophic
sets using interval values based on a cosine similarity measure (CSM) and illustrated a suitable example
for CSM.

In 2013, Anjali et al. [6] introduced the notion of the fuzzy graph (FG)’s energy. The energy of
a FG is the sum of absolute values of its adjacency matrix eigenvalues. In addition to this, some
limitations on the FGs energy are provided. The idea of the energy of a FG is extended to the energy
of an intuitionistic fuzzy graph by Prabha et al. [31]. There have been some recent research done on
the energy of different fuzzy graphs, and you can find them in [2, 3, 24, 25, 28, 30, 33]. In this article,
we extended the concept of the energy of FG to the energy of HFG. Then we presented a technique for
calculating the cosine similarity degrees between HFGs by extending the presented SMs based on the
CSM and between HFGs [27] and [23]. Therefore, the emphasis of this research is on the CSM, the
weighted CSM, and to illustrate the usefulness of the proposed CSM, all current SMs between HFGs
proposed are comparing with the CSM between HFGs by numerical example problems.

The two interesting subfields of study of the existing body of research- namely HFGs and the
proposed working procedures I and II to multi criteria decision making analysis- serve as the motivation
for the investigation that is presented in this paper. As a consequence of their combination, a unique
method is produced, which we have named working procedure-I and working procedure-II. This
method enables us to carry out accurate assessments of the most effective models for television
companies. Therefore, the primary motives of this study are described described in the following
categories:

(1) In the way it shows evaluation data, HFG allows for multiple instances of membership degrees,
non-membership degrees, and hesitant element degrees, which can be used to figure out how the
ratings of TV company models are calculated.

(2) The hesitancy fuzzy cosine similarity measures include the benefits of hesitancy fuzzy similarity
measures and HFGs to accommodate more complicated situations in the selection of television
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company models.
(3) Additionally, the working procedures provide a highly effective framework for a variety of

applications. These applications need the DMs to include at least three criteria, and there is
variability between these criteria that is essential to the nature of the evaluations.

(4) Working procedures I and II are suitable for providing more reliable and accurate data when
determining systems with multiple evaluation data values.

The application of the working procedures I and II to the decision making analysis is the primary
emphasis of this research. In order to establish the weights for the decision-making issue, energy
of HFG and a cosine similarity measure has been considered as a possible solution. The company
operations that have been presented are applied to a process requiring the evaluation of a television
company that involves three domain experts. Furthermore, the technique presented in this research
will be validated to verify its accuracy. The primary addition that our work makes is the use of the new
cosine similarity measure between the HFGs, which, when combined with the working procedure for
television firm evaluation, makes our work very useful.

For the rest of this article, the structure is as follows. The fundamental concepts of hesitation fuzzy
graphs and the cosine similarity measurements of hesitancy fuzzy graphs are presented in Section 2.
Section 3 describes a numerical solution of Energy of hesitancy fuzzy graphs based on cosine similarity
measures in decision-making problems with working procedures I and II and a flow chart for working
procedures I and II is provided. And lastly, Section 4 concludes with the conclusions.

2. Preliminaries

This section describes fundamental HGF ideas and terminologies, as well as a cosine similarity
measures for HFGs, which will be necessary for the systematic review.

Definition 2.1. Suppose Y is a finite non-empty set. An HFS on Y can be expressed as a function h,
when implemented to Y gives a subset of [0, 1], then the mathematical the symbol is written as follows:

E = {⟨y, hE(Y)⟩ y ∈ Y},

where hE(Y) is known as hesitant element and it is a collection of numbers in the range [0, 1] indicating
the membership degrees of the element y ∈ Y to the set E.

Definition 2.2. A hesitancy fuzzy graph is of the HG = (V, E, µ, γ, β), where

• Consider V = {t1, t2, . . . , tn} such that µ1 : V → [0, 1], γ1 : V → [0, 1] and β1 : V → [0, 1]
are denotes the grade of membership, non-membership and hesitant of the elements ti ∈ V and
µ1(ti) + γ1(ti) + β1(ti) = 1, where β1(ti) = 1 −

[
µ1(ti) + γ1(ti)

]
and 0 ≤ µ1(ti) + γ1(ti) ≤ 1.

• Consider E ⊆ V × V, where µ2 : V × V → [0, 1], γ2 : V × V → [0, 1] and β2 : V × V → [0, 1] are
such that

µ2(ti, t j) ≤ min
[
µ1(ti), µ1(t j)

]
,

γ2(ti, t j) ≤ max
[
γ1(ti), γ1(t j)

]
,

β2(ti, t j) ≤ min
[
β1(ti), β1(t j)

]
,

and
0 ≤ µ2(ti, t j) + γ2(ti, t j) + β2(ti, t j) ≤ 1, ∀(ti, t j) ∈ E.

AIMS Mathematics Volume 8, Issue 5, 11799–11821.



11803

Definition 2.3. Suppose T = {t1, t2, t3, . . . , tn} is a nonempty set, and then a hesitant fuzzy preference
relation (HFPR) H on T is obtainable by a matrix H = (hi j)(n×n) ⊂ Y × Y, where hi j = ξ

l
i j for all

l = 1, 2, . . . , n is a hesitant fuzzy element indicating the entire possible preference grade (s) of the
objective ti over t j. Furthermore, hi j must satisfy the succeeding conditions:

ξσ(l)
i j + ξ

σ(n−l+1)
ji ≤ 1, ξii = 0, i = j = 1, 2, . . . , r,

where ξσ(l)
i j is the lth largest elements in hi j.

Example 2.1. By defining the matrix H = (hi j)4×4 from the Figure 1, we get

H = (hi j)4×4 =


(0, 0, 0) (0.2, 0.2, 0.1) (0.2, 0.3, 0.1) (0.3, 0.3, 0.1)

(0.2, 0.2, 0.1 (0, 0, 0) (0.2, 0.3, 0.4) (0, 0, 0)
(0.2, 0.3, 0.1) (0.2, 0.3, 0.4) (0, 0, 0) (0.3, 0.3, 0.2)
(0.3, 0.3, 0.1) (0, 0, 0) (0.3, 0.3, 0.2) (0, 0, 0)

.

Figure 1. Hesitancy fuzzy graph with four alternatives.

Definition 2.4. Let M = (ri j)(n×n) is the fuzzy preference relation (FPR), and then

ri j =

l∑
b=1

Cb, µ
(b)
i j , ∀i, j = 1, 2, 3, . . . , n,

where Cb is the subjective and objective weights of the expert eb for the FPR M = (ri j)(n×n) and
n∑

i=1
Cb = 1, Cb > 0, b ∈ N.

Definition 2.5. If P and R are HFGs then the SMs from P to R be denoted as S (P,R), it has the
following characteristics:

• 0 ≤ S (P,R) ≤ 1,
• S (P,R) = 1, iff P = R,
• S (P,R) = S (R, P),
• If P ⊆ R ⊆ B, then S (P, B) ≤ S (P,R) and S (P, B) ≤ S (R, B).
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Definition 2.6. Suppose that P and R are two HFGs in T = {t1, t2, t3, . . . , tn}. Based on the extension of
the CSMs for HFGs, then the weighted CSM between the HFGs P and R are defined as follows:

CS (P,R) =
1
n

n∑
i=1

µP(ti)µR(ti) + γP(ti)γR(ti) + βP(ti)βR(ti)√
µ2

P(ti) + γ2
P(ti) + β2

P(ti)
√
µ2

R(ti) + γ2
R(ti) + β2

R(ti)
,

where µP(ti) is the grade of the membership element, γP(ti) be the grade of the non-membership element
and βP(ti) be the grade of the hesitant elements. Thus, the CSM between HFGs P and R are satisfies
the following conditions:

0 ≤ CS (P,R) ≤ 1,

CS (P,R) = CS (R, P),

CS (P,R) = 1, i f f P = R.

Then,
µP(ti) = µR(ti), γP(ti) = γR(ti),

and
βP(ti) = βR(ti), ∀i = 1, 2, 3, . . . , n.

The value of CS (P,R) lies in between 0 and 1, it will not exceeds 0 and 1. Also, CSM satisfies the
symmetry property.

3. The group decision making problems (GDMP) by hesitancy fuzzy preference relations

Suppose that T = {t1, t2, . . . , tn} be the replacement set, and Y = {y1, y2, . . . , yn} be the expert set.
The expert yl deals the evidence of optimal to all replacements and forms HFPRs

M(l) =
(
a(l)

i j

)
m×m
,

where a(l)
i j =
(
µ(l)

i j , γ
(l)
i j , β

(l)
i j

)
, 0 ≤ µ(l)

i j + γ
(l)
i j + β

(l)
i j ≤ 1 and µ(l)

i j = γ
(l)
i j = β

(l)
i j = 0, ∀ i, j = 1, 2, 3, . . . , n.

3.1. Weighted sum model

In this sector, weighted sum model (WSM) working procedure is constructed for GDMP
concentrated on HFPRs. We define an impartial scoring vector as C = {c1, c2, c3, . . . , cm} of experts for
GDMP based on HFPRs, where Cb > 0, b = 1, 2, 3, . . . , l, and the entire scoring values of the experts

is equal to one is denoted as
l∑

i=1
Ci = 1.

Stage I. Evaluate the energy E(M(b)) of M(b):

E(M(k)) = det
n∑

i=1

κi. (3.1)

Stage II. Evaluate the scores C1
b, determined by E(M(k)), of the expert eb:

C1
b =
(
(Cµ)i, (Cγ)i, (Cβ)i

)
=


E
(
(Dµ)i

)
l∑

r=1
E((Dµ)r)

,
E
(
(Dγ)i

)
l∑

r=1
E((Dγ)r)

,
E
(
(Dβ)i

)
l∑

r=1
E((Dβ)r)

 . (3.2)
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Stage III. Evaluate the CSM CS
(
M(b),M(d)

)
between M(b) and M(d) for every b , d,

CS (P,R) =
1
n

n∑
i=1

µP(ti)µR(ti) + γP(ti)γR(ti) + βP(ti)βR(ti)√
µ2

P(ti) + γ2
P(ti) + β2

P(ti)
√
µ2

R(ti) + γ2
R(ti) + β2

R(ti)
. (3.3)

Here, P = M(b) and R = M(d).
The mean cosine similarity degree CS (M(b)) of M(b) to the others is calculated by

CS (M(b)) =
1

m − 1

n∑
i=1,b,d

CS (M(b),M(d)), b = 1, 2, 3, . . . , l. (3.4)

Stage IV. Evaluate the scores Ca
b, determined by CS (M(b)) of the expert eb:

Ca
b =

CS
(
M(b)
)

l∑
i=1

CS
(
M(i)) , b = 1, 2, 3, . . . , l. (3.5)

Stage V. Evaluate the “objective” scores C2
b of the expert eb:

C2
b = η C1

b + (1 − η) Ca
b, ∀ η ∈ [0, 1], b = 1, 2, 3, . . . , l. (3.6)

Stage VI. Evaluate the subjective and objective scores C1
b and C2

b of the expert eb:

Cb = γ C1
b + (1 − γ) C2

b, ∀ γ ∈ [0, 1], b = 1, 2, 3, . . . , l. (3.7)

3.2. Working procedure I

Stage I. Evaluate the mean hesitancy fuzzy values (HFVs) r(k)
i of replacements ti to the others

replacements:

r(k)
i =

1
n

n∑
j=1

ri j
(k), j = 1, 2, 3, . . . , n. (3.8)

Stage II. Calculate the values of r(k)
i equivalent to m experts in to a collection of HFVs of the

replacements ti to other replacements:

r(k)
i =

l∑
b=1

Cb r(k)
i j , (3.9)

Stage III. Calculate the score function of ri:

CS (ri) =
µi − γi + βi√
µ2

i + γ
2
i + β

2
i

, (3.10)

where the highest value of the score function is the greater of the replacement ti and then build a ranking
order of the replacements.
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3.3. Working procedure II

Stage I. Evaluate the cooperative HFPR M = (ri j)n×n by

ri j =

 l∑
b=1

Cb µ
(b)
i j ,

l∑
b=1

Cb γ
(b)
i j ,

l∑
b=1

Cb β
(b)
i j

 , ∀ i, j = 1, 2, 3, . . . , n. (3.11)

Stage II. Calculate the CSMs CS (M(i),M(+)) between Mi and M+ for every replacement ti:

CS
(
M(i),M(+)

)
=

1
n

 n∑
j=i

det

µi j(1) − γi j(0) + βi j(1)
(µ2

i j + γi j
2 + β2

i j)


 . (3.12)

Stage III. Calculate the CSMs CS (M(i),M(−)) between Mi and M− for every replacement ti:

CS
(
M(i),M(−)

)
=

1
n

 n∑
j=i

det

µi j(0) − γi j(1) + βi j(0)
(µ2

i j + γi j
2 + β2

i j)


 . (3.13)

Stage IV. Evaluate the values of g(ti), for every replacement ti:

g(ti) =
CS
(
M(i),M(+)

)
CS
(
M(i),M(+)) +CS

(
M(i),M(−)) . (3.14)

The highest value of g(ti) is greater to the replacements ti. And we estimate the rank of the
replacements. Procedures I and II are given to illustrate how to achieve absorbed scores to classify
replacements in the two following instances. Now the order of ranking of the replacements is
conformed.

3.4. Application 1: the selection of finest television company models

A television (TV) channel allows for one-way communication between the sender and recipient.
This approach may be used by the sender to inform, entertain, and persuade. TV is an important
method of communicating information and plays a key part in our lives today. In today’s modern
world, we would not be where we are today without some sort of media. The purpose of television
is to inform, educate, and amuse the general public. It serves as a link between the public and the
government. There are hundreds of channels devoted to movies, music, fashion, sports, and news. As
well as offering entertainment, it also provides links to a range of information and happenings across
the globe. Mr. Punarv wishes to purchase a smart TV from a recognised brand for a variety of purposes.
Various smart TVs are available nowadays, such as the Toshiba, Samsung, One Plus, MI, etc. There are
several firms offering smart TVs for sale. However, he needs to choose a firm that sells the cheapest and
best quality smart TVs. We assume that A = {v1, v2, v3, v4} be the set of four smart TV firms (alternatives
v1 = Toshiba, v2 = S amsung, v3 = OnePlus, and v4 = MI), and C = {c1, c2, c3} be the set of three
criteria for specifying value and quality in relation to “Price”, “Picture quality” and “Audio” with
preference information provided in the form of HFPR R = (ri j), where R = (µi j, γi j, βi j) the hesitancy
fuzzy element allotted by Mr. Punarv expert with µi j as the degree to which the firm vi is chosen over
the firm v1 with respect to the specified criteria. In terms of the specified criterion, γi j and βi j are the
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degrees at which the firm vi is not favoured above the firm v1. The HFPR R = (ri j) for the specified
constraints appears in the matrices below, respectively. We consider that in the GDM issue, we have
four replacements ti and three experts eb (b = 1, 2, 3). Assume each expert’s scores are 0, 0.3, 0.5, 0.8
and 1.0. Furthermore, the ranking orders of the alternatives using the criteria prepared from an experts
are in the framework shown in Figure 2. The four replacement units are composed of the following
every expert eb (b = 1, 2, 3) and the HFPRs M(b) = r(b)

i j (b = 1, 2, 3) are constructed individually, as
shown below.

Figure 2. The Framework of evaluation ranking order for the alternatives.

Adjacency matrix from Figure 3, we get

M(1) = A(HG) =


(0, 0, 0) (0.2, 0.4, 0.3) (0.2, 0.4, 0.2) (0.2, 0.4, 0.3)

(0.2, 0.4, 0.3) (0, 0, 0) (0.5, 0.2, 0.2) (0.5, 0.1, 0.3)
(0.2, 0.4, 0.2) (0.5, 0.2, 0.2) (0, 0, 0) (0.6, 0.1, 0.2)
(0.2, 0.4, 0.3) (0.5, 0.1, 0.3) (0.6, 0.1, 0.2) (0, 0, 0)

.
Adjacency matrix from Figure 4, we get

M(2) = A(HG) =


(0, 0, 0) (0.2, 0.5, 0.3) (0.2, 0.5, 0.2) (0.1, 0.6, 0.2)

(0.2, 0.5, 0.3) (0, 0, 0) (0.2, 0.5, 0.2) (0.1, 0.5, 0.3)
(0.2, 0.5, 0.2) (0.2, 0.5, 0.2) (0, 0, 0) (0.1, 0.6, 0.2)
(0.1, 0.6, 0.2) (0.1, 0.5, 0.3) (0.1, 0.6, 0.2) (0, 0, 0)

.
Adjacency matrix from Figure 5, we get
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M(3) = A(HG) =


(0, 0, 0) (0.4, 0.4, 0.2) (0.2, 0.4, 0.2) (0.4, 0.4, 0.1)

(0.4, 0.4, 0.2) (0, 0, 0) (0.2, 0.3, 0.2) (0.5, 0.3, 0.1)
(0.2, 0.4, 0.2) (0.2, 0.3, 0.2) (0, 0, 0) (0.2, 0.3, 0.1)
(0.4, 0.4, 0.1) (0.5, 0.3, 0.1) (0.2, 0.3, 0.1) (0, 0, 0)

.

Figure 3. HFPR for the criteria price.

Figure 4. HFPR for the criteria price.

Figure 5. HFPR for the criteria price.
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Stage I. The energy of the adjacency matrices M(1), M(2) and M(3) were calculated using Eq (3.1):

E(M(1)) = (2.3410, 1.6806, 1.5166),

E(M(2)) = (0.9292, 3.2047, 1.4111),

E(M(3)) = (1.9792, 2.1100, 0.9292).

Stage II. The scores C1
b of each expert eb is determined by using Eq (3.2), we get

C1
1 = [0.4227, 0.3035, 0.2738],

C1
2 = [0.1676, 0.5779, 0.2546],

C1
3 = [0.3944, 0.4205, 0.1852].

Stage III. The CSMs CS (M(b)), CS (M(d)) between M(b) and M(d) is determined by using Eq (3.3),
we get

CS
(
M(1),M(2)

)
= 2.2887,

CS
(
M(2),M(3)

)
= 2.6381,

CS
(
M(1),M(3)

)
= 2.6205.

Using Eq (3.4), the mean CS degree (CSD) CS (M(b)) of M(b) is determined as below:

CS (M(1)) = 2.4546,

CS (M(2)) = 2.4634,

CS (M(3)) = 2.6293.

Stage IV. The values of the scores Ca
b of each expert eb is determined by using Eq (3.5), we get

Cb = (0.3253, 0.3484, 0.3264).

Stage V. The objective scores C2
b of every expert eb is determined by using Eq (3.6) and η = 0.5,

we get
C2

1 = [0.3740, 0.3260, 0.3001],

C2
2 = [0.2645, 0.4632, 0.2905],

C2
3 = [0.3624, 0.3845, 0.2558].

Stage VI. Using Eq (3.7), we find the scores of subjective and objective C1
b and C2

b of each expert eb

and substitute γ = 0.3, we have

C1 = [0.3899, 0.3193, 0.2922],

C2 = [0.2228, 0.4976, 0.2797],

C3 = [0.3720, 0.3953, 0.2346].
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According to working procedure I

Stage I. The mean HFVs r(b)
i of the replacements ti to the other replacements is calculated by using

Eq (3.8), we get

r(1)
1 = (0.2000, 0.4000, 0.2667), r(1)

2 = (0.4000, 0.2333, 0.2667),

r(1)
3 = (0.4333, 0.2333, 0.2000), r(1)

4 = (0.4333, 0.2000, 0.2667),

r(2)
1 = (0.1667, 0.5333, 0.2333), r(2)

2 = (0.1667, 0.5000, 0.2667),

r(2)
3 = (0.1667, 0.5333, 0.2000), r(2)

4 = (0.1000, 0.5667, 0.2333),

r(3)
1 = (0.3333, 0.3000, 0.1667), r(3)

2 = (0.3667, 0.3333, 0.1667),

r(3)
3 = (0.2000, 0.3333, 0.1667), r(3)

4 = (0.3667, 0.3333, 0.1000).

Stage II. Using Eq (3.9), we find the values of ri, we get

r1 = (0.2391, 0.5117, 0.1823),

r2 = (0.3295, 0.4550, 0.1916),

r3 = (0.2805, 0.4716, 0.1535),

r4 = (0.3276, 0.4776, 0.1666).

Stage III. The values of the score function CS (ri) of ri is determined by using Eq (3.10), we get

CS (r1) = −0.1521,

CS (r2) = 0.1114,

CS (r3) = −0.0660,

CS (r4) = 0.0275.

Therefore,
CS (r2) > CS (r4) > CS (r3) > CS (r1).

Hence,
t2 > t4 > t3 > t1.

Therefore, t2 is the top place, while t1 be the last place, as a final point t3 and t4 be the centre place
ranking order.
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According to working procedure II

In this part, we offer the ranking conclusions ability by our relative CS technique.
Stage I. The HFPR’s cooperative M = (ri j)n×n are calculated by using Eq (3.11), we get

M =


(0, 0, 0) (0.2713, 0.5346, 0.2185) (0.1969, 0.5346, 0.1613) (0.2491, 0.5844, 0.1671)

(0.2713, 0.5346, 0.2185) (0, 0, 0) (0.3139, 0.4313, 0.1613) (0.4032, 0.3993, 0.1950)
(0.1969, 0.5346, 0.1613) (0.3139, 0.4313, 0.1613) (0, 0, 0) (0.3306, 0.4491, 0.1378)
(0.2491, 0.5844, 0.1671) (0.4032, 0.3993, 0.1950) (0.3306, 0.4491, 0.1378) (0, 0, 0)

.

Stage II. The CSMs CS (Mi,M+) between Mi and M+ for every replacement ti is calculated by
using Eq (3.12), we get

CS (M1,M+) = 0.4995,

CS (M2,M+) = 0.6543,

CS (M3,M+) = 0.5683,

CS (M4,M+) = 0.6094.

Stage III. The CSMs CS (Mi,M−) between Mi and M− for every replacement ti is calculated by
using Eq (3.13), we get

CS (M1,M−) = 0.6576, CS (M2,M−) = 0.5693,

CS (M3,M−) = 0.6147, CS (M4,M−) = 0.5843.

Stage IV. The values of g(ti), for every replacement ti is determined by using Eq (3.14):

g(t1) = 0.4317,

g(t2) = 0.5347,

g(t3) = 0.4804,

g(t4) = 0.5105.

Hence,
g(t2) > g(t4) > g(t3) > g(t1).

Therefore,
t2 > t4 > t3 > t1,

where t2 is the top place, while t1 be the last place, as a final point t3 and t4 be the centre place ranking
order.

Likewise, we calculate the place position conclusions of the values γ = 0, 0.3, 0.5, 0.8 and 1.0 by
using the above working procedure I and II in Tables 1–4.
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Table 1. The ranking order of the replacements for distinct values of γ using working
procedure I.

γ C r
C1 = (0.3740, 0.3260, 0.3001) r1 = (0.2397, 0.4928, 0.1905)

0 C2 = (0.2645, 0.4632, 0.2905) r2 = (0.3266, 0.4358, 0.2002)
C3 = (0.3624, 0.3845, 0.2558) r3 = (0.2786, 0.4512, 0.1608)

r4 = (0.3214, 0.4558, 0.1734)
C1 = (0.3255, 0.3764, 0.2667) r1 = (0.2391, 0.5117, 0.1823)

0.3 C2 = (0.2971, 0.4670, 0.2359) r2 = (0.3295, 0.4550, 0.1916)
C3 = (0.3090, 0.3595, 0.3905) r3 = (0.2805, 0.4716, 0.1535)

r4 = (0.3276, 0.4776, 0.1666)
C1 = (0.3616, 0.3821, 0.2564) r1 = (0.2423, 0.5297, 0.1623)

0.5 C2 = (0.2925, 0.4866, 0.2692) r2 = (0.3351, 0.4739, 0.1714)
C3 = (0.3062, 0.3626, 0.3734) r3 = (0.2854, 0.4912, 0.1377)

r4 = (0.3341, 0.4981, 0.1476)
C1 = (0.3527, 0.3878, 0.2461) r1 = (0.2439, 0.5432, 0.1687)

0.8 C2 = (0.2878, 0.4662, 0.2060) r2 = (0.3403, 0.4871, 0.1775)
C3 = (0.3034, 0.3657, 0.3563) r3 = (0.2895, 0.5056, 0.1414)

r4 = (0.3417, 0.5139, 0.1554)
C1 = (0.4277, 0.3035, 0.2738) r1 = (0.2449, 0.5557, 0.1633)

1.0 C2 = (0.1676, 0.5779, 0.2546) r2 = (0.3436, 0.4999, 0.1718)
C3 = (0.3944, 0.4205, 0.1852) r3 = (0.2921, 0.5192, 0.1366)

r4 = (0.3467, 0.5283, 0.1509)

Table 2. The ranking order of the replacements by using working procedure.

γ CS(r1) CS(r2) CS(r3) CS(r4) Ranking
0 −0.1079 0.1568 −0.0213 0.0390 t2 > t4 > t3 > t1

0.3 −0.1521 0.1114 −0.0660 0.0275 t2 > t4 > t3 > t1

0.5 −0.2069 0.0539 −0.1165 −0.0266 t2 > t4 > t3 > t1

0.8 −0.2110 0.0495 −0.1246 −0.0264 t2 > t4 > t3 > t1

1.0 −0.2346 0.0246 −0.1559 −0.0473 t2 > t4 > t3 > t1
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Table 3. The ranking order of the replacements for distinct values of γ using working
procedure I.

γ C CS(Mi,M+) CS(Mi,M−)
(0.3740, 0.3260, 0.3001) (0.5137, 0.6612, 0.5819, 0.6197) (0.6490, 0.5577, 0.6045, 0.5752)

0 (0.2645, 0.4632, 0.2905)
(0.3624, 0.3845, 0.2558)
(0.3255, 0.3764, 0.2667) (0.4995, 0.6543, 0.5683, 0.6094) (0.6576, 0.5693, 0.6147, 0.5843)

0.3 (0.2971, 0.4670, 0.2359)
(0.3090, 0.3595, 0.3905)
(0.3616, 0.3821, 0.2564) (0.4713, 0.6240, 0.5402, 0.5821) (0.6672, 0.5815, 0.6241, 0.5946)

0.5 (0.2925, 0.4866, 0.2692)
(0.3062, 0.3626, 0.3734)
(0.3527, 0.3878, 0.2461) (0.5029, 0.6567, 0.5662, 0.6143) (0.6579, 0.5721, 0.6186, 0.5872)

0.8 (0.2878, 0.4662, 0.2060)
(0.3034, 0.3657, 0.3563)
(0.4277, 0.3035, 0.2738) (0.4580, 0.6087, 0.5230, 0.5716) (0.6721, 0.5892, 0.6312, 0.6001)

1.0 (0.1676, 0.5779, 0.2546)
(0.3944, 0.4205, 0.1852)

Table 4. The ranking order of the replacements for distinct values of γ using working
procedure II.

γ CS(r1) CS(r2) CS(r3) CS(r4) Ranking
0 0.4418 0.5425 0.4905 0.5186 t2 > t4 > t3 > t1

0.3 0.4317 0.5347 0.4804 0.5105 t2 > t4 > t3 > t1

0.5 0.4140 0.5176 0.4640 0.4947 t2 > t4 > t3 > t1

0.8 0.4332 0.5344 0.4779 0.5113 t2 > t4 > t3 > t1

1.0 0.4053 0.5081 0.4531 0.4878 t2 > t4 > t3 > t1

According to the working procedure and Xu’s technique, by substituting the values of γ =
0, 0.3, 0.5, 0.8 and 1.0, we get the same results for all the values. Therefore,

t2 > t4 > t3 > t1.

Hence, t2 place the highest position, while t1 place the last position, finally t3 and t4 places the
centre position orders and which is mentioned in the above Tables 2 and 4. According to the reults
of the study shown above, we believe that the selection of televisions manufactured by the Samsung
Company is the best.

Based on the findings of the study shown above, we believe that Mr. Punarv would benefit most
from purchasing a television manufactured by the Samsung company.
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3.5. Application 2: the selection of maize seeds for agriculture maize farming

In this part, we utilize the hesitancy fuzzy cosine similarity measure in the weighted sum
model (WSM) for evaluating the four varieties of agricultural maize crops seeds (AMCSs). Assume
that A = {V1,V2,V3,V4} is the set of four varieties of AMCSs (Alternatives V1 = Pioneer Seeds-P3396,
V2 = Dekalb-DKC 9178, V3 = Syngenta NK7328, and V4 = Tata seeds-DMH 8255). An agricultural
scientist examines the AMCS for particular aspects, making use of a short priority sheet for evaluating
the AMCS. In this research, the priority sheet was assigned by an agricultural scientist and used as
the criteria for determining the standard level (decision-maker). The wide category of the priority list
has been chosen to be a soil, seedling growth, crop yield, and market price. The four alternatives are
composed of the following agri scientists, and the HFPRs M(b) = ri j

(b) (b = 1, 2, 3, 4) are constructed
individually, as shown below.

The adjacency matrix is obtained from Figure 6,

M(1) = A(HG) =


(0, 0, 0) (0.60, 0.06, 0.04) (0.80, 0.05, 0.05) (0.10, 0.15, 0.00)

(0.60, 0.06, 0.04) (0, 0, 0) (0.22, 0.12, 0.01) (0.54, 0.08, 0.03)
(0.80, 0.05, 0.05) (0.22, 0.12, 0.01) (0, 0, 0) (0.33, 0.10, 0.02)
(0.10, 0.15, 0.00) (0.54, 0.08, 0.03) (0.33, 0.10, 0.02) (0, 0, 0)

.

Figure 6. The hesitancy fuzzy preference relation for soil criteria.

The adjacency matrix is obtained from Figure 7,

M(2) = A(HG) =


(0, 0, 0) (0.54, 0.08, 0.03) (0.33, 0.10, 0.02) (0.22, 0.12, 0.01)

(0.54, 0.08, 0.03) (0, 0, 0) (0.10, 0.15, 0.00) (0.60, 0.06, 0.04)
(0.33, 0.10, 0.02) (0.10, 0.15, 0.00) (0, 0, 0) (0.80, 0.05, 0.05)
(0.22, 0.12, 0.01) (0.60, 0.06, 0.04) (0.80, 0.05, 0.05) (0, 0, 0)

.
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Figure 7. The hesitancy fuzzy preference relation for seedling growth criteria.

The adjacency matrix is obtained from Figure 8,

M(3) = A(HG) =


(0, 0, 0) (0.10, 0.15, 0.00) (0.54, 0.08, 0.03) (0.33, 0.10, 0.02)

(0.10, 0.15, 0.00) (0, 0, 0) (0.22, 0.12, 0.01) (0.80, 0.05, 0.05)
(0.54, 0.08, 0.03) (0.22, 0.12, 0.01) (0, 0, 0) (0.60, 0.06, 0.04)
(0.33, 0.10, 0.02) (0.80, 0.05, 0.05) (0.60, 0.06, 0.04) (0, 0, 0)

.

Figure 8. The hesitancy fuzzy preference relation for crop yield criteria.

The adjacency matrix is obtained from Figure 9,

M(4) = A(HG) =


(0, 0, 0) (0.33, 0.10, 0.02) (0.10, 0.15, 0.00) (0.54, 0.08, 0.03)

(0.33, 0.10, 0.02) (0, 0, 0) (0.80, 0.05, 0.05) (0.22, 0.12, 0.01)
(0.10, 0.15, 0.00) (0.80, 0.05, 0.05) (0, 0, 0) (0.60, 0.06, 0.04)
(0.54, 0.08, 0.03) (0.22, 0.12, 0.01) (0.60, 0.06, 0.04) (0, 0, 0)

.
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Figure 9. The hesitancy fuzzy preference relation for market price criteria.

The energy of the adjacency matrices M(1),M(2) and M(3) of HFGby using the Eq (3.1), we get

E(M(1)) = (2.7590, 0.5641, 0.1676),

E(M(2)) = (2.7534, 0.6190, 0.1818),

E(M(3)) = (2.8790, 0.5641, 0.1676),

E(M(4)) = (2.7590, 0.5641, 0.1676).

The scores C1
b of each expert eb is determined by using Eq (3.2), we get

C1
1 = [0.7904, 0.1616, 0.0480], C1

2 = [0.7747, 0.1742, 0.0512],

C1
3 = [0.7974, 0.1562, 0.0464], C1

4 = [0.7904, 0.1616, 0.0480].

The CSMs CS (M(b)), CS (M(d)) between M(b) and M(d) is determined by using Eq (3.3), we get

CS
(
M(1),M(2)

)
= 2.8568, CS

(
M(1),M(3)

)
= 2.6891,

CS
(
M(1),M(4)

)
= 2.3400, CS

(
M(2),M(3)

)
= 2.7417,

CS
(
M(2),M(4)

)
= 2.6117, CS

(
M(3),M(4)

)
= 2.7732.

Using Eq (3.4), the mean CS degree (CSD) CS (M(b)) of M(b) is determined as below:

CS (M(1)) = 2.6286, CS (M(2)) = 2.7367,

CS (M(3)) = 2.7347, CS (M(4)) = 2.5750.

The values of the scores Ca
b of each expert eb is determined by using Eq (3.5), we get

Cb = (0.2462, 0.2564, 0.2562, 0.2412).
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The objective scores C2
b of every expert eb is determined by using Eq (3.6) and η = 0.5, we get

C2
1 = [0.5183, 0.2039, 0.1471], C2

2 = [0.5156, 0.2153, 0.1538],

C2
3 = [0.5268, 0.2062, 0.1513], C2

4 = [0.5158, 0.2014, 0.1446].

Using Eq (3.7), we find the scores of subjective and objective C1
b and C2

b of each expert eb and substitute
γ = 0.3, we have

C1 = [0.6544, 0.1828, 0.0976],

C2 = [0.6452, 0.1948, 0.1025],

C3 = [0.6621, 0.1812, 0.0989],

C4 = [0.6531, 0.1815, 0.0979].

According to working procedure I

The mean HFVs r(b)
i of the replacements ti to the other replacements is calculated by using Eq (3.8),

we get
r(1)

1 = (0.5000, 0.0867, 0.0300), r(1)
2 = (0.4533, 0.0867, 0.0267),

r(1)
3 = (0.4500, 0.0900, 0.0267), r(1)

4 = (0.3233, 0.1100, 0.0167),

r(2)
1 = (0.3633, 0.1000, 0.0600), r(2)

2 = (0.4133, 0.0967, 0.0233)

r(2)
3 = (0.4100, 0.1000, 0.0233), r(2)

4 = (0.5400, 0.0767, 0.0333),

r(3)
1 = (0.3233, 0.1100, 0.0167), r(3)

2 = (0.3733, 0.1067, 0.0200),

r(3)
3 = (0.4067, 0.0867, 0.0267), r(3)

4 = (0.5767, 0.0700, 0.0367),

r(4)
1 = (0.3233, 0.1100, 0.0167), r(4)

2 = (0.4500, 0.0900, 0.0267),

r(4)
3 = (0.5000, 0.0867, 0.0300), r(4)

4 = (0.4533, 0.0867, 0.0267).

Using Eq (3.9), we find the values of ri, we get

r1 = (1.1288, 0.0690, 0.0099), r2 = (1.1285, 0.0692, 0.0138),

r3 = (1.0983, 0.0693, 0.0099), r4 = (1.1290, 0.0691, 0.0099).

The values of the score function CS (ri) of ri is determined by using Eq (3.10), we get

CS (r1) = 0.9458 , CS (r2) = 0.9491,

CS (r3) = 0.9440, CS (r4) = 0.9420.

Therefore, CS (r2) > CS (r4) > CS (r3) > CS (r1).
Hence,

t2 > t1 > t3 > t4.

Therefore, t2 is the top place, while t4 be the last place, as a final point t1 and t3 be the centre place
ranking order.
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According to working procedure II

In this part, we offer the ranking conclusions ability by our relative CS technique.
The HFPR’s cooperative M = (ri j)n×n are calculated by using Eq (3.11), we get

M =


(0, 0, 0) (1.0228, 0.0719, 0.0089) (1.1593, 0.0528, 0.0148) (0.7786, 0.0834, 0.0059)

(1.0228, 0.0719, 0.0089) (0, 0, 0) (0.8766, 0.0820, 0.0069) (1.4139, 0.0572, 0.0130)
(1.1593, 0.0528, 0.0148) (0.8766, 0.0820, 0.0069) (0, 0, 0) (1.5212, 0.0498, 0.0149)
(0.7786, 0.0834, 0.0059) (1.4139, 0.0572, 0.0130) (1.5212, 0.0498, 0.0149) (0, 0, 0)

 .

The CSMs CS (Mi,M+) between Mi and M+ for every replacement ti is calculated by using
Eq (3.12), we get

CS (M1,M+) = 0.7529, CS (M2,M+) = 0.7545,

CS (M3,M+) = 0.7541, CS (M4,M+) = 0.7548.

The CSMs CS (Mi,M−) between Mi and M− for every replacement ti is calculated by using
Eq (3.13), we get

CS (M1,M−) = 0.0449, CS (M2,M−) = 0.0427,

CS (M3,M−) = 0.0509, CS (M4,M−) = 0.0554.

The values of g(ti), for every replacement ti, is determined by using Eq (3.14),

g(t1) = 0.9437, g(t2) = 0.9464,

g(t3) = 0.9368, g(t4) = 0.9315.

Hence,
g(t2) > g(t1) > g(t3) > g(t4).

Therefore,
t2 > t1 > t3 > t4.

Hence, t2 place the highest position, while t1 place the last position, finally t3 and t4 places the centre
position orders and which is mentioned in the above tables.

4. Conclusions

This research introduced an innovative process to evaluating the relative reputational scores of an
expert by calculating the unclear information of HFPRs and the mean similarity grade of a particular
HFPR to all the remaining. Also, this article established the CSMs, and energy on the undetermined
signs of HFPRs. This research constructed a tool for evaluating the score values of experts that takes
both the subjective and objective scores of the experts into consideration. The scored CSMs was
implemented to decision-making issues, and the outcomes are explained in more detail. This research
illustrated the real time numerical examples to find out the best television from television firms and
the selection of maize seeds for agriculture maize farming by applying the WSM working procedure I
and II, after applied these WSM working procedures we got the finest one in both the cases.

Forthcoming, we implement the TOPSIS technique based on the correlation coefficient using HFGs
information and its application to decision-making issues [23, 29, 34, 39, 45, 46].
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