In this article, we study the existence and uniqueness results for a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions by using the Banach contraction principle and Schaefer's fixed point theorem. Furthermore, we also show the existence of a positive solution. Our problem contains different orders and four fractional difference operators. Finally, we present an example to display the importance of these results.
Citation: Chanisara Metpattarahiran, Thitiporn Linitda, Thanin Sitthiwirattham. Existence results of sequential fractional Caputo sum-difference boundary value problem[J]. AIMS Mathematics, 2022, 7(8): 15120-15137. doi: 10.3934/math.2022829
In this article, we study the existence and uniqueness results for a sequential nonlinear Caputo fractional sum-difference equation with fractional difference boundary conditions by using the Banach contraction principle and Schaefer's fixed point theorem. Furthermore, we also show the existence of a positive solution. Our problem contains different orders and four fractional difference operators. Finally, we present an example to display the importance of these results.
[1] | G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dyn., 75 (2014), 283–287. https://doi.org/10.1007/s11071-013-1065-7 doi: 10.1007/s11071-013-1065-7 |
[2] | G. C. Wu, D. Baleanu, Chaos synchronization of the discrete fractional logistic map, Signal Process., 102 (2014), 96–99. https://doi.org/10.1016/j.sigpro.2014.02.022 doi: 10.1016/j.sigpro.2014.02.022 |
[3] | G. C. Wu, D. Baleanu, H. P. Xie, F. L. Chen, Chaos synchronization of fractional chaotic maps based on stability results, Physica A, 460 (2016), 374–383. https://doi.org/10.1016/j.physa.2016.05.045 doi: 10.1016/j.physa.2016.05.045 |
[4] | T. Sitthiwirattham, A. Zeb, S. Chasreechai, Z. Eskandari, M. Tilioua, S. Djilali, Analysis of a discrete mathematical COVID-19 model, Results Phys., 28 (2021), 104668. https://doi.org/10.1016/j.rinp.2021.104668 doi: 10.1016/j.rinp.2021.104668 |
[5] | A. N. Chatterjee, B. Ahmad, A fractional-order differential equation model of COVID-19 infection of epithelial cells, Chaos Soliton. Fract., 147 (2021), 110952. https://doi.org/10.1016/j.chaos.2021.110952 doi: 10.1016/j.chaos.2021.110952 |
[6] | C. Goodrich, A. C. Peterson, Discrete fractional calculus, New York: Springer, 2015. |
[7] | B. Ahmad, J. Henderson, R. Luca, Boundary value problems for fractional differential equations and systems, New York: World Scientific, 2021. https://doi.org/10.1142/11942 |
[8] | B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, New York: World Scientific, 2021. https://doi.org/10.1142/12102 |
[9] | F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176. |
[10] | F. M. Atici, P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Differ. Equ. Appl., 17 (2011), 445–456. https://doi.org/10.1080/10236190903029241 doi: 10.1080/10236190903029241 |
[11] | T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036 |
[12] | C. S. Goodrich, On discrete sequential fractional boundary value problems, J. Math. Anal. Appl., 385 (2012), 111-124. https://doi.org/10.1016/j.jmaa.2011.06.022 doi: 10.1016/j.jmaa.2011.06.022 |
[13] | C. S. Goodrich, On a discrete fractional three-point boundary value problem, J. Differ. Equ. Appl., 18 (2012), 397–415. https://doi.org/10.1080/10236198.2010.503240 doi: 10.1080/10236198.2010.503240 |
[14] | W. D. Lv, Existence of solutions for discrete fractional boundary value problems witha $p$-Laplacian operator, Adv. Differ. Equ., 2012 (2012), 163. https://doi.org/10.1186/1687-1847-2012-163 doi: 10.1186/1687-1847-2012-163 |
[15] | R. A. C. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, J. Differ. Equ. Appl., 19 (2013), 712–718. https://doi.org/10.1080/10236198.2012.682577 doi: 10.1080/10236198.2012.682577 |
[16] | T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Existence results for fractional difference equations with three-point fractional sum boundary conditions, Discrete. Dyn. Nat. Soc., 2013 (2013), 104276. http://doi.org/10.1155/2013/104276 doi: 10.1155/2013/104276 |
[17] | T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions, Adv. Differ. Equ., 2013 (2013), 296. http://doi.org/10.1186/1687-1847-2013-296 doi: 10.1186/1687-1847-2013-296 |
[18] | R. P. Agarwal, D. Baleanu, S. Rezapour, S. Salehi, The existence of solutions for some fractional finite difference equations via sum boundary conditions, Adv. Differ. Equ., 2014 (2014), 282. http://doi.org/10.1186/1687-1847-2014-282 doi: 10.1186/1687-1847-2014-282 |
[19] | W. D. Lv, Existence and uniqueness of solutions for a discrete fractional mixed type sum-difference equation boundary value problem, Discrete. Dyn. Nat. Soc., 2015 (2015), 376261. https://doi.org/10.1155/2015/376261 doi: 10.1155/2015/376261 |
[20] | T. Sitthiwirattham, Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions, Math. Method. Appl. Sci., 38 (2015), 2809–2815. https://doi.org/10.1002/mma.3263 doi: 10.1002/mma.3263 |
[21] | S. Chasreechai, C. Kiataramkul, T. Sitthiwirattham, On nonlinear fractional sum-difference equations via fractional sum boundary conditions involving different orders, Math. Probl. Eng., 2015 (2015), 519072. https://doi.org/10.1155/2015/519072 doi: 10.1155/2015/519072 |
[22] | J. Reunsumrit, T. Sitthiwirattham, On positive solutions to fractional sum boundary value problems for nonlinear fractional difference equations, Math. Method. Appl. Sci., 39 (2016), 2737–2751. https://doi.org/10.1002/mma.3725 doi: 10.1002/mma.3725 |
[23] | J. Reunsumrit, T. Sitthiwirattham, A New class of four-point fractional sum boundary value problems for nonlinear sequential fractional difference equationsinvolving shift operators, Kragujevac J. Math., 42 (2018), 371-387. |
[24] | S. Chasreechai, T. Sitthiwirattham, Existence results of initial value problems for hybrid fractional sum-difference equations, Discrete Dyn. Nat. Soc., 2018 (2018), 5268528. https://doi.org/10.1155/2018/5268528 doi: 10.1155/2018/5268528 |
[25] | S. Chasreechai, T. Sitthiwirattham, On separate fractional sum-difference boundary value problems with n-point fractional sum-difference boundary conditions via arbitrary different fractional orders, Mathematics, 7 (2019), 471. https://doi.org/10.3390/math7050471 doi: 10.3390/math7050471 |
[26] | C. Promsakon, S. Chasreechai, T. Sitthiwirattham, Existence of positive solution to a coupled system of singular fractional difference equations via fractional sum boundary value conditions, Adv. Differ. Equ., 2019 (2019), 128. https://doi.org/10.1186/s13662-019-2069-5 doi: 10.1186/s13662-019-2069-5 |
[27] | P. Siricharuanun, S. Chasreechai, T. Sitthiwirattham, Existence and multiplicity of positive solutions to a system of fractional difference equations with parameters, Adv. Differ. Equ., 2020 (2020), 445. https://doi.org/10.1186/s13662-020-02904-6 doi: 10.1186/s13662-020-02904-6 |
[28] | P. Siricharuanun, S. Chasreechai, T. Sitthiwirattham, On a coupled system of fractional sum-difference equations with $p$-Laplacian operator, Adv. Differ. Equ., 2020 (2020), 361. https://doi.org/10.1186/s13662-020-02826-3 doi: 10.1186/s13662-020-02826-3 |
[29] | R. Ouncharoen, S. Chasreechai, T. Sitthiwirattham, On nonlinear fractional difference equation with delay and impulses, Symmetry, 12 (2020), 980. https://doi.org/10.3390/sym12060980 doi: 10.3390/sym12060980 |
[30] | J. Reunsumrit, T. Sitthiwirattham, Existence results of fractional Delta-Nabla difference equations via mixed boundary conditions, Adv. Differ. Equ., 2020 (2020), 370. https://doi.org/10.1186/s13662-020-02835-2 doi: 10.1186/s13662-020-02835-2 |
[31] | J. Reunsumrit, T. Sitthiwirattham, On the nonlocal fractional Delta-Nabla sum boundary value problem for sequential fractional Delta-Nabla sum-difference equations, Mathematics, 8 (2020), 476. https://doi.org/10.3390/math8040476 doi: 10.3390/math8040476 |
[32] | A. Cabada, N. Dimitrov, Nontrivial solutions of non-autonomous dirichlet fractional discrete problems, Fract. Calc. Appl. Anal., 23 (2020), 980–995. https://doi.org/10.1515/fca-2020-0051 doi: 10.1515/fca-2020-0051 |
[33] | S. S. Haider, M. ur Rehman, On substantial fractional difference operator, Adv. Differ. Equ., 2020 (2020), 154. https://doi.org/10.1186/s13662-020-02594-0 doi: 10.1186/s13662-020-02594-0 |
[34] | J. Henderson, J. T. Neugebauer, Existence of local solutions for fractional difference equations with left focal boundary conditions, Fract. Calc. Appl. Anal., 24 (2021), 324–331. https://doi.org/10.1515/fca-2021-0014 doi: 10.1515/fca-2021-0014 |
[35] | R. A. C. Ferreira, Discrete weighted fractional calculus and applications, Nonlinear Dyn., 104 (2021), 2531-2536. https://doi.org/10.1007/s11071-021-06410-6 doi: 10.1007/s11071-021-06410-6 |
[36] | F. Chen, Y. Zhou, Existence and ulam stability of solutions for discrete fractional boundary value problem, Discrete Dyn. Nat. Soc., 2013 (2013), 459161. https://doi.org/10.1155/2013/459161 doi: 10.1155/2013/459161 |
[37] | Z. P. Liu, S. G. Kang, H. Q. Chen, J. M. Guo, Y. Q. Cui, C. X. Guo, Existence of solutions for boundary value problem of a Caputo fractional difference equation, Discrete Dyn. Nat. Soc., 2015 (2015), 206261. https://doi.org/10.1155/2015/206261 doi: 10.1155/2015/206261 |
[38] | S. G. Kang, H. Q. Chen, J. M. Guo, Existence of positive solutions for a system of Caputo fractional difference equations depending on parameters, Adv. Differ. Equ., 2015 (2015), 138. |
[39] | J. Reunsumrit, T. Sitthiwirattham, Positive solutions of three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift, Positivity, 20 (2016), 861–876. https://doi.org/10.1007/s11117-015-0391-z doi: 10.1007/s11117-015-0391-z |
[40] | J. Soontharanon, N. Jasthitikulchai, T. Sitthiwirattham, Nonlocal fractional sum boundary value problems for mixed types of Riemann-Liouville and Caputo fractional difference equations, Dynam. Syst. Appl., 25 (2016), 409–414. |
[41] | P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On discrete delta Caputo–Fabrizio fractional operators and monotonicity analysis, Fractal Fract., 5 (2021), 116. https://doi.org/10.3390/fractalfract5030116 doi: 10.3390/fractalfract5030116 |
[42] | T. Sitthiwirattham, Boundary value problem for $p- $Laplacian Caputo fractional difference equations with fractional sum boundary conditions, Math. Method. Appl. Sci., 39 (2016), 1522–1534. https://doi.org/10.1002/mma.3586 doi: 10.1002/mma.3586 |
[43] | B. Kaewwisetkul, T. Sitthiwirattham, On Nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay, Adv. Differ. Equ., 2017 (2017), 219. https://doi.org/10.1186/s13662-017-1283-2 doi: 10.1186/s13662-017-1283-2 |
[44] | R. Ouncharoen, S. Chasreechai, T. Sitthiwirattham, Existence and stability analysis for fractional impulsive Caputo difference-sum equations with periodic boundary condition. Mathematics, 8 (2020), 843. https://doi.org/10.3390/math8050843 doi: 10.3390/math8050843 |
[45] | D. H. Griffel, Applied functional analysis, Chichester: Ellis Horwood, 1981. |
[46] | H. Schaefer, Über die Methode der a priori-Schranken, Math. Ann., 129 (1955), 415–416. https://doi.org/10.1007/BF01362380 doi: 10.1007/BF01362380 |