This paper develops the combined effects of free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous medium. The dimensionless coupled non-linear equations are solved to get the approximate analytical expression for the concentration by using the homotopy perturbation method. For all possible values of parameters, skin lubrication, Nusselt number and Sherwood number are derived.
Citation: E. Arul Vijayalakshmi, S. S. Santra, T. Botmart, H. Alotaibi, G. B. Loganathan, M. Kannan, J. Visuvasam, V. Govindan. Analysis of the magnetohydrodynamic flow in a porous medium[J]. AIMS Mathematics, 2022, 7(8): 15182-15194. doi: 10.3934/math.2022832
This paper develops the combined effects of free convection magnetohydrodynamic (MHD) flow past a vertical plate embedded in a porous medium. The dimensionless coupled non-linear equations are solved to get the approximate analytical expression for the concentration by using the homotopy perturbation method. For all possible values of parameters, skin lubrication, Nusselt number and Sherwood number are derived.
[1] | M. Garnier, Magneto hydrodynamics in materials processing, Philos. Trans. R. Soc. Phys. Sci. Eng., 344 (1962), 249–263. |
[2] | A. Chakrabarti, A. S. Gupta, Hydromagnetic flow and heat transfer over a stretching sheet, Quart Appl. Math., 37 (1979), 13–78. https://doi.org/10.1090/qam/99636 doi: 10.1090/qam/99636 |
[3] | S. Nadeem, U. I. HaqRizwana, C. Lee, MHD flow of a casson fluid over an exponentially shrinking sheet, Sci. Iran., 19 (2012), 1550–1553. https://doi.org/10.1016/j.scient.2012.10.021 doi: 10.1016/j.scient.2012.10.021 |
[4] | K. Bhattacharya, MHD stagnation point flow of casson fluid and heat transfer over a stretching sheet with thermal radiation, J. Thermody., 2013 (2013), Article ID 169674. https://doi.org/10.1155/2013/169674 doi: 10.1155/2013/169674 |
[5] | A. Ishak, R. Nazar, I. Pop, Mixed convection on the stagnation pit flow toward a vertical, continuously stretching sheet, J. Heat Transfer, 129 (2007), 1087–1090. https://doi.org/10.1115/1.2737482 doi: 10.1115/1.2737482 |
[6] | A. Ishak, R. Nazar, I. Pop, Post stagnation point boundary layer flow and mixed convection heat transfer over a vertical, linearly stretching sheet, Arch. Mech., 60 (2008), 303–322. |
[7] | A. Ishak, K. Jafar, R. Nazar, Pop, MHD stagnation point flow towards a stretching sheet, Physics A, 388 (2009), 3377–3383. https://doi.org/10.1016/j.physa.2009.05.026 doi: 10.1016/j.physa.2009.05.026 |
[8] | S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz–Morrey spaces, Appl. Anal., 93 (2014), 356–368. https://doi.org/10.1080/00036811.2013.772582 doi: 10.1080/00036811.2013.772582 |
[9] | R. P. Agarwal, O. Bazighifan, M. A. Ragusa, Nonlinear neutral delay differential equations of fourth-Order: Oscillation of solutions, Entropy, 23 (2021), 129. https://doi.org/10.3390/e23020129 doi: 10.3390/e23020129 |
[10] | T. Hayat, M. Bilal Ashraf, S. A. Shehzad, A. Alsaedi, Mixed convection flow of Cassonnanofluid over a stretching sheet with convectively heated chemical reaction and heat source/sink, J. Appl. Fluid Mech., 8 (2015), 803–813. https://doi.org/10.18869/acadpub.jafm.67.223.22995 doi: 10.18869/acadpub.jafm.67.223.22995 |
[11] | M. S. Abel, M. Mareppa, MHD flow and heat transfer of the mixed hydrodynamic/thermal slip over a linear vertically stretching sheet, Int. J. Math. Archive, 4 (2013), 156–163. |
[12] | M. Shen, F. Wang, H. Chen, MHD mixed convection slip flow near a stagnation point on a non-linearly vertical stretching sheet, Boundary Value Probl., 2015 (2015), 78. https://doi.org/10.1186/s13661-015-0340-6 doi: 10.1186/s13661-015-0340-6 |
[13] | N. Ashikin, A. Bakar, W. MohdKhairy, A. W. Zaimi, R. A. Hamid, B. Bidin, et al., Boundary layer flow over a stretching sheet with a convective boundary condition and slip effect, World Appl. Sci. J., 17 (2012), 49–53. |
[14] | M. A. Imran, S. Sarwar, M. Imran, Effects of slip on free convection flow of Casson fluid over an oscillating vertical plate, Boundary Value Probl., 2016 (2016), 30. https://doi.org/10.1186/s13661-016-0538-2 doi: 10.1186/s13661-016-0538-2 |
[15] | N. Uddin Md, A. MA, MMK. Chowdhury, Effects of mass transfer on MHD mixed convective flow along inclined porous plate, Procedia Eng., 90 (2014), 491–496. https://doi.org/10.1016/j.proeng.2014.11.762 doi: 10.1016/j.proeng.2014.11.762 |
[16] | R. N. Barik, G. C. Dash, Thermal radiation effect on an unsteady magnetohydrodynamic flow past inclined porous heated plate in the presence of chemical reaction and viscous dissipation, Appl. Math. Comput., 226 (2014), 423–434. https://doi.org/10.1016/j.amc.2013.09.077 doi: 10.1016/j.amc.2013.09.077 |
[17] | R. M. Ramana, J. G. Kumar, Chemical reaction effects on MHD free convective flow past an inclined plate, Asian J. Current Eng. Math., 3 (2014), 66–71. |
[18] | H. Mondal, D. Pal, S. Chatterjee, P. Sibanda, Thermophoresis and Soret-Dufour on MHD mixed convection mass transfer over an inclined plate with non-uniform heat source/sink and chemical reaction, Ain Shams Eng. J., 9 (2018), 2111–2121. https://doi.org/10.1016/j.asej.2016.10.015 doi: 10.1016/j.asej.2016.10.015 |
[19] | F. Ali, I. Khan, S. Shafie, N. Musthapa, Heat and mass transfer with free convection MHD flow past a vertical plate embedded in a porous medium, Math. Probl. Eng., 2013 (2013), Art. ID 346281, 13 pp. https://doi.org/10.1155/2013/346281 doi: 10.1155/2013/346281 |
[20] | S. Thamizh, P. Suganya, L. Balaganesan, M. A. Rajendran, Analytical discussion and sensitivity analysis of parameters of magnetohydrodynamic free convective flow in an inclined plate, Eur. J. Pure Appl. Math., 13 (2020), 631–644. https://doi.org/10.29020/nybg.ejpam.v13i3.3730 doi: 10.29020/nybg.ejpam.v13i3.3730 |
[21] | H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/S0045-7825(99)00018-3 doi: 10.1016/S0045-7825(99)00018-3 |
[22] | J. H. He, Application of homotopy perturbation method to non-linear wave equations, Chaos Soliton. Fract., 26 (2005), 695–700. https://doi.org/10.1016/j.chaos.2005.03.006 doi: 10.1016/j.chaos.2005.03.006 |
[23] | A. Meena, L. Rajendran, Mathematical modeling of amperometric and potentiometric biosensors and system of non-linear equations Homotopy perturbation approach, J. Electroanal. Chem., 644 (2010), 50–59. https://doi.org/10.1016/j.jelechem.2010.03.027 doi: 10.1016/j.jelechem.2010.03.027 |
[24] | S. T. Suganya, P. Balaganesan, J. Visuvasam, L. Rajendran, An analytical expression of Non-Nernstian catalytic mechanism at Micro and Macro electroduces at voltammetry, Asia Mathematika, 5 (2021), 1–10. |