Research article

Periodic solutions and limit cycles of mixed Lienard-type differential equations

  • Received: 29 March 2022 Revised: 25 May 2022 Accepted: 02 June 2022 Published: 16 June 2022
  • MSC : 34A05, 34C05, 34C25, 34C15

  • In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.

    Citation: K. K. D. Adjaï, J. Akande, A. V. R. Yehossou, M. D. Monsia. Periodic solutions and limit cycles of mixed Lienard-type differential equations[J]. AIMS Mathematics, 2022, 7(8): 15195-15211. doi: 10.3934/math.2022833

    Related Papers:

  • In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.



    加载中


    [1] D. W. Jordan, P. Smith, Nonlinear ordinary differential equations: An introduction for scientists and engineers, New York: Oxford University press, 2007.
    [2] R. E. Mickens, Oscillations in planar dynamic systems, Vol. 37, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1996.
    [3] S. Saha, G. Gangopadhyay, D. S. Ray, Reduction of kinetic equations to Lienard-Levinson-Smith form: Counting limit cycles, Int. J. Appl. Comput. Math., 5 (2019), 2–11. https://doi.org/10.1007/s40819-019-0628-9 doi: 10.1007/s40819-019-0628-9
    [4] S. Saha, G. Gangopadhyay, Where the Lienard-Levinson-Smith (LLS) theorem cannot be applied for a generalised Lienard system, arXiv, 2021. https://doi.org/10.48550/arXiv.2104.06043
    [5] R. Benterki, J. Llibre, Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, J. Comput. Appl. Math., 313 (2016), 273–283. https://doi.org/10.1016/j.cam.2016.08.047 doi: 10.1016/j.cam.2016.08.047
    [6] N. Levinson, O. K. Smith, A general equation for relaxation oscillations, Duke Math. J., 9 (1942), 382–403. https://doi.org/10.1215/S0012-7094-42-00928-1 doi: 10.1215/S0012-7094-42-00928-1
    [7] G. Villari, F. Zanolin, On the qualitative behavior of a class of generalized lienard planar systems, J. Dyn. Differ. Equ., 34 (2021), 179–207. https://doi.org/10.1007/s10884-021-09984-2 doi: 10.1007/s10884-021-09984-2
    [8] K. K. D. Adjaï, J. Akande, M. Nonti, M. D. Monsia, Limit cycles of polynomial and nonpolynomial systems of differential equations, 2021.
    [9] K. K. D. Adjaï, J. Akande, M. Nonti, M. D. Monsia, Truly nonlinear oscillators with limit cycles and harmonic solutions, 2021.
    [10] J. Akande, K. K. D. Adjaï, A. V. R. Yehossou, M. D. Monsia, Limit cycles of truly nonlinear oscillator equations, 2021.
    [11] J. Akande, K. K. D. Adjaï, M. Nonti, M. D. Monsia, Counter-examples to the existence theorems of limit cycles of differential equations, 2021.
    [12] J. Akande, M. Nonti, K. K. D. Adjaï, M. D. Monsia, A modified hybrid Rayleigh-Van der Pol oscillator equation with exact harmonic solution, 2021.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1723) PDF downloads(90) Cited by(3)

Article outline

Figures and Tables

Figures(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog