Research article Special Issues

Numerical study of stagnation point flow of Casson-Carreau fluid over a continuous moving sheet

  • Received: 02 October 2022 Revised: 07 December 2022 Accepted: 15 December 2022 Published: 11 January 2023
  • MSC : 65D07, 65M25, 76W05

  • This paper is devoted to analysis the behavior of heat transfer of Casson-Carreau fluid at the magnetohydrodynamic (MHD) stagnation point with thermal radiation over a continuous moving sheet. The suitable similarity transform is utilized to transfer the governing differential equations into a system of differential equations and then solve the converted non-linear system by the collocation technique based on the B-spline function (CTBS) and Runge-Kutta method (RK). The quasi-linearization technique is utilized to approach the non-linear equations of the model to a system of linear equations and used CTBS to acquire the solution of the system of linear equations. The obtained results are investigated with the present literature by direct comparison. It is found that an increment in the value of the Weissenberg number decreases the velocity profile and enhances the temperature profile for Casson and Carreau fluids. Conversely, increasing the values of the magnetic parameter, shrinking parameter, and Casson fluid parameter improve the velocity profile and depreciate the thermal distribution. Further, the temperature profile declines with an improvement in radiation parameter and Prandtl number for Casson and Carreau fluids. The influence of distinct physical parameters on the velocity and temperature profiles are depicted via tables and illustrative graphs.

    Citation: Muhammad Amin Sadiq Murad, Faraidun Kadir Hamasalh, Hajar F. Ismael. Numerical study of stagnation point flow of Casson-Carreau fluid over a continuous moving sheet[J]. AIMS Mathematics, 2023, 8(3): 7005-7020. doi: 10.3934/math.2023353

    Related Papers:

  • This paper is devoted to analysis the behavior of heat transfer of Casson-Carreau fluid at the magnetohydrodynamic (MHD) stagnation point with thermal radiation over a continuous moving sheet. The suitable similarity transform is utilized to transfer the governing differential equations into a system of differential equations and then solve the converted non-linear system by the collocation technique based on the B-spline function (CTBS) and Runge-Kutta method (RK). The quasi-linearization technique is utilized to approach the non-linear equations of the model to a system of linear equations and used CTBS to acquire the solution of the system of linear equations. The obtained results are investigated with the present literature by direct comparison. It is found that an increment in the value of the Weissenberg number decreases the velocity profile and enhances the temperature profile for Casson and Carreau fluids. Conversely, increasing the values of the magnetic parameter, shrinking parameter, and Casson fluid parameter improve the velocity profile and depreciate the thermal distribution. Further, the temperature profile declines with an improvement in radiation parameter and Prandtl number for Casson and Carreau fluids. The influence of distinct physical parameters on the velocity and temperature profiles are depicted via tables and illustrative graphs.



    加载中


    [1] K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., 326 (1911), 321–324.
    [2] B. Sakiadis, Boundary‐layer behavior on continuous solid surfaces: Ⅱ, the boundary layer on a continuous flat surface, AiChE J., 7 (1961), 221–225. https://doi.org/10.1002/aic.690070211 doi: 10.1002/aic.690070211
    [3] B. Sakiadis, Boundary‐layer behavior on continuous solid surfaces: Ⅲ. the boundary layer on a continuous cylindrical surface, AiChE J., 7 (1961), 467–472. https://doi.org/10.1002/aic.690070325 doi: 10.1002/aic.690070325
    [4] L. Crane, Flow past a stretching plate, Z. Angew Math. Phys., 21 (1970), 645–647. https://doi.org/10.1007/BF01587695 doi: 10.1007/BF01587695
    [5] P. Gupta, A. Gupta, Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng., 55 (1977), 744–746. https://doi.org/10.1002/cjce.5450550619 doi: 10.1002/cjce.5450550619
    [6] P. Carragher, L. Crane, Heat transfer on a continuous stretching sheet, 62 (1982), 564–565. https://doi.org/10.1002/zamm.19820621009
    [7] D. Malo, R. Masiha, M. Murad, S. Abdulazeez, A new computational method based on integral transform for solving linear and nonlinear fractional systems, Jurnal Matematika MANTIK, 7 (2021), 9–19. https://doi.org/10.15642/mantik.2021.7.1.9-19 doi: 10.15642/mantik.2021.7.1.9-19
    [8] G. Georgiou, The time-dependent, compressible Poiseuille and extrudate-swell flows of a Carreau fluid with slip at the wall, J. Non-newton Fluid, 109 (2003), 93–114. https://doi.org/10.1016/S0377-0257(02)00164-7 doi: 10.1016/S0377-0257(02)00164-7
    [9] A. El Hakeem, A. El Misery, M. El Kareem, Separation in the flow through peristaltic motion of a Carreau fluid in uniform tube, Physica A, 343 (2004), 1–14. https://doi.org/10.1016/j.physa.2004.05.072 doi: 10.1016/j.physa.2004.05.072
    [10] M. Murad, Modified integral equation combined with the decomposition method for time fractional differential equations with variable coefficients, Appl. Math. J. Chin. Univ., 37 (2022), 404–414. https://doi.org/10.1007/s11766-022-4159-5 doi: 10.1007/s11766-022-4159-5
    [11] T. Hayat, N. Saleem, N. Ali, Effect of induced magnetic field on peristaltic transport of a Carreau fluid, Commun. Nonlinear Sci., 15 (2010), 2407–2423. https://doi.org/10.1016/j.cnsns.2009.09.032 doi: 10.1016/j.cnsns.2009.09.032
    [12] N. Sandeep, V. Sugunamma, P. Mohan Krishna, Effects of radiation on an unsteady natural convective flow of a EG-Nimonic 80a nanofluid past an infinite vertical plate, Advances in Physics Theories and Applications, 23 (2013), 36–43.
    [13] M. Murad, Property claim services by compound Poisson process and inhomogeneous Levy process, Science Journal of University of Zakho, 6 (2018), 32–34. https://doi.org/10.25271/2018.6.1.420 doi: 10.25271/2018.6.1.420
    [14] M. Ashraf, M. Rashid, MHD boundary layer stagnation point flow and heat transfer of a micropolar fluid towards a heated shrinking sheet with radiation and heat generation, World Appl. Sci. J., 16 (2012), 1338–1351.
    [15] M. Turkyilmazoglu, Wall stretching in magnetohydrodynamics rotating flows in inertial and rotating frames, J. Thermophys. Heat Tr., 25 (2011), 606–613. https://doi.org/10.2514/1.T3750 doi: 10.2514/1.T3750
    [16] K. Zaimi, A. Ishak, I. Pop, Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model, PLoS One, 9 (2014), 111743. https://doi.org/10.1371/journal.pone.0111743 doi: 10.1371/journal.pone.0111743
    [17] G. Mahanta, S. Shaw, 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition, Alex. Eng. J., 54 (2015), 653–659. https://doi.org/10.1016/j.aej.2015.04.014 doi: 10.1016/j.aej.2015.04.014
    [18] S. Shehzad, T. Hayat, A. Alsaedi, Three-dimensional MHD flow of Casson fluid in porous medium with heat generation, J. Appl. Fluid Mech., 9 (2015), 215–223. https://doi.org/10.18869/ACADPUB.JAFM.68.224.24042 doi: 10.18869/ACADPUB.JAFM.68.224.24042
    [19] C. Raju, N. Sandeep, Unsteady three-dimensional flow of Casson-Carreau fluids past a stretching surface, Alex. Eng. J., 55 (2016), 1115–1126. https://doi.org/10.1016/j.aej.2016.03.023 doi: 10.1016/j.aej.2016.03.023
    [20] P. Kameswaran, S. Shaw, P. Sibanda, Dual solutions of Casson fluid flow over a stretching or shrinking sheet, Sadhana, 39 (2014), 1573–1583. https://doi.org/10.1007/s12046-014-0289-7 doi: 10.1007/s12046-014-0289-7
    [21] M. Riaz Khan, M. Elkotb, R. Matoog, N. Alshehri, M. Abdelmohimen, Thermal features and heat transfer enhancement of a casson fluid across a porous stretching/shrinking sheet: analysis of dual solutions, Case Stud. Therm. Eng., 28 (2021), 101594. https://doi.org/10.1016/j.csite.2021.101594 doi: 10.1016/j.csite.2021.101594
    [22] M. El-Aziz, A. Afify, MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence, Entropy, 21 (2019), 592. https://doi.org/10.3390/e21060592 doi: 10.3390/e21060592
    [23] M. Turkyilmazoglu, Stagnation-point flow and heat transfer over stretchable plates and cylinders with an oncoming flow: exact solutions, Chem. Eng. Sci., 238 (2021), 116596. https://doi.org/10.1016/j.ces.2021.116596 doi: 10.1016/j.ces.2021.116596
    [24] L. Ali, B. Ali, M. Ghori, Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach, Comput. Math. Appl., 109 (2022), 260–269. https://doi.org/10.1016/j.camwa.2022.01.009 doi: 10.1016/j.camwa.2022.01.009
    [25] L. Ali, B. Ali, X. Liu, T. Iqbal, R. Zulqarnain, M. Javid, A comparative study of unsteady MHD Falkner-Skan wedge flow for non-Newtonian nanofluids considering thermal radiation and activation energy, Chinese J. Phys., 77 (2022), 1625–1638. https://doi.org/10.1016/j.cjph.2021.10.045 doi: 10.1016/j.cjph.2021.10.045
    [26] P. Kumar, H. Poonia, L. Ali, S. Areekara, The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow, Case Stud. Therm. Eng., 37 (2022), 102247. https://doi.org/10.1016/j.csite.2022.102247 doi: 10.1016/j.csite.2022.102247
    [27] L. Ali, Y. Wu, B. Ali, S. Abdal, S. Hussain, The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: a FEM approach, Comput. Math. Appl., 123 (2022), 241–251. https://doi.org/10.1016/j.camwa.2022.08.028 doi: 10.1016/j.camwa.2022.08.028
    [28] U. Mahabaleshwar, K. Sneha, H. Huang, Newtonian flow over a porous stretching/shrinking sheet with CNTS and heat transfer, J. Taiwan Inst. Chem. Eng., 134 (2022), 104298. https://doi.org/10.1016/j.jtice.2022.104298 doi: 10.1016/j.jtice.2022.104298
    [29] M. Qureshi, M. Faisal, Q. Raza, B. Ali, T. Botmart, N. Shah, Morphological nanolayer impact on hybrid nanofluids flow due to dispersion of polymer/CNT matrix nanocomposite material, AIMS Mathematics, 8 (2023), 633–656. https://doi.org/10.3934/math.2023030 doi: 10.3934/math.2023030
    [30] A. Rauf, N. Shah, A. Mushtaq, T. Botmart, Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet, AIMS Mathematics, 8 (2023), 164–193. https://doi.org/10.3934/math.2023008 doi: 10.3934/math.2023008
    [31] Y. Lok, N. Amin, I. Pop, Non-orthogonal stagnation point flow towards a stretching sheet, Int. J. Nonlin. Mech., 41 (2006), 622–627. https://doi.org/10.1016/j.ijnonlinmec.2006.03.002 doi: 10.1016/j.ijnonlinmec.2006.03.002
    [32] C. Wang, Stagnation flow towards a shrinking sheet, Int. J. Nonlin. Mech., 43 (2008), 377–382.
    [33] J. Shercliff, A textbook of magnetohydrodynamics, Oxford: Pergamon, 1965.
    [34] A. Raptis, C. Perdiki, H. Takhar, Effect of thermal radiation on MHD flow, Appl. Math. Comput., 153 (2004), 645–649. https://doi.org/10.1016/S0096-3003(03)00657-X doi: 10.1016/S0096-3003(03)00657-X
    [35] M. Murad, F. Hamasalh, Computational technique for the modeling on MHD boundary layer flow unsteady stretching sheet by B-spline function, Proceedings of International Conference on Computer Science and Software Engineering, 2022,236–240. https://doi.org/10.1109/CSASE51777.2022.9759738 doi: 10.1109/CSASE51777.2022.9759738
    [36] E. Cheney, D. Kincaid, Numerical mathematics and computing, New York: Cengage Learning, 2012.
    [37] P. Prenter, Splines and variational methods, New York: Dover Publication, 2008.
    [38] J. Rashidinia, S. Jamalzadeh, Modified b-spline collocation approach for pricing american style asian options, Mediterr. J. Math., 14 (2017), 111. https://doi.org/10.1007/s00009-017-0913-y doi: 10.1007/s00009-017-0913-y
    [39] V. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Commun., 141 (2001), 268–281. https://doi.org/10.1016/S0010-4655(01)00415-5 doi: 10.1016/S0010-4655(01)00415-5
    [40] K. Parand, M. Shahini, M. Dehghan, Rational Legendre pseudospectral approach for solving nonlinear differential equations of Lane-Emden type, J. Comput. Phys., 228 (2009), 8830–8840. https://doi.org/10.1016/j.jcp.2009.08.029 doi: 10.1016/j.jcp.2009.08.029
    [41] K. Parand, N. Bajalan, A numerical approach based on B-spline basis functions to solve boundary layer flow model of a non-Newtonian fluid, J. Braz. Soc. Mech. Sci. Eng., 40 (2018), 485. https://doi.org/10.1007/s40430-018-1402-3 doi: 10.1007/s40430-018-1402-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1605) PDF downloads(72) Cited by(11)

Article outline

Figures and Tables

Figures(8)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog