Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Global well-posedness for the 2D MHD equations with only vertical velocity damping term

  • Received: 15 October 2024 Revised: 03 December 2024 Accepted: 17 December 2024 Published: 31 December 2024
  • MSC : 35A05, 35Q35, 76D03

  • This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.

    Citation: Huan Long, Suhui Ye. Global well-posedness for the 2D MHD equations with only vertical velocity damping term[J]. AIMS Mathematics, 2024, 9(12): 36371-36384. doi: 10.3934/math.20241725

    Related Papers:

    [1] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [2] Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
    [3] Ruihong Ji, Liya Jiang, Wen Luo . Stability of the 3D MHD equations without vertical dissipation near an equilibrium. AIMS Mathematics, 2023, 8(5): 12143-12167. doi: 10.3934/math.2023612
    [4] Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687
    [5] Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256
    [6] Guanglei Zhang, Kexue Chen, Yifei Jia . Constructing boundary layer approximations in rotating magnetohydrodynamic fluids within cylindrical domains. AIMS Mathematics, 2025, 10(2): 2724-2749. doi: 10.3934/math.2025128
    [7] Zhongying Liu . Global well-posedness to the Cauchy problem of 2D inhomogeneous incompressible magnetic Bénard equations with large initial data and vacuum. AIMS Mathematics, 2021, 6(11): 12085-12103. doi: 10.3934/math.2021701
    [8] Ning Duan, Xiaopeng Zhao . On global well-posedness to 3D Navier-Stokes-Landau-Lifshitz equations. AIMS Mathematics, 2020, 5(6): 6457-6463. doi: 10.3934/math.2020416
    [9] E. Arul Vijayalakshmi, S. S. Santra, T. Botmart, H. Alotaibi, G. B. Loganathan, M. Kannan, J. Visuvasam, V. Govindan . Analysis of the magnetohydrodynamic flow in a porous medium. AIMS Mathematics, 2022, 7(8): 15182-15194. doi: 10.3934/math.2022832
    [10] Noufe H. Aljahdaly . Study tsunamis through approximate solution of damped geophysical Korteweg-de Vries equation. AIMS Mathematics, 2024, 9(5): 10926-10934. doi: 10.3934/math.2024534
  • This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.



    MHD is a discipline that studies the interaction between electric and magnetic fields in conductive fluids based on fluid mechanics. The Navier-Stokes equations in fluid mechanics and the Maxwell equations in electrodynamics contribute to the fundamental equations of the MHD system of equations. The MHD equations are also of great interest in mathematics. The following is the standard expression for the incompressible MHD equations:

    {tu+uu=μΔuP+BB,tB+uB=ηΔB+Bu,u=0,B=0, (1.1)

    where u=u(x,t), B=B(x,t) and P=P(x,t) represent the velocity field, the magnetic field and the pressure, respectively. μ denotes the viscosity coefficient and η the diffusion coefficient.

    In this paper, we study the 2D incompressible MHD equations without magnetic diffusion and kinetic viscosity with damping only in the vertical component of the velocity equation in the periodic domain T2,

    {tu+uu+P+ν(0,u2)=BB,xT2,t>0,tB+uB=Bu,xT2,t>0,u=0,B=0,xT2,t>0, (1.2)

    where the parameter ν>0 denotes the damping coefficient, and the 2D periodic domain is defined by T2=[π,π]2.

    In the whole plane R2, the global well-posedness and stability of the 2D incompressible MHD equations without magnetic diffusion with damping only in the vertical component of velocity equations remain unknown. If the magnetic field is ignored, the system reduces to Euler-like equations with an additional Riesz transform-type term, and the global well-posedness of the Euler-like equations remains an open problem in R2.

    In recent years, important progresses have been made on the MHD equations. For the case of a viscous and resistive MHD system, the MHD system is globally well-posed in the 2D space (see [1,8]). For the case of inviscid and non-resistive MHD systems, Bardos, Sulem, and Sulem [3] proved their global well-posedness. For cases when only viscosity exists, please refer to [11,19,20], and only magnetic diffusion exists, please refer to [15,21,26]. For more results of these two dissipation cases above, see [2,7,25]. Ji, Lin, Wu, and Yan [10] proved the stability of the 2D MHD equations with mixed partial dissipation, and Ji and Li [9] studied the global regularity of 212-D MHD equations with mixed dissipation diffusion. For more results on the MHD equations with mixed partial dissipation or fractional dissipation, please see [22,23]. Prompted by Lin and Zhang [16], there's been a lot of research on the global well-posedness of the MHD system near a constant equilibrium (see [17,28,30]).

    In addition, there are some results on the 2D MHD system involving damping in the equation of the velocity. Boardman, Lin, and Wu [4] proved the stability for the MHD equations with vertical velocity damping and full magnetic diffusion. Chen, Lin, and Wu [5] improved the work to the vertical magnetic diffusion even further. Afterward, Lin and Zhang [18] proved the global well-posedness of the 2D MHD equations with horizontal magnetic diffusion and vertical damping in the velocity equation in T×R. Besides, Lai, Wu, and Zhang [13,14] studied the stability of a 2D MHD system with horizontal velocity damping and vertical damping in the magnetic equation.

    Moreover, by using the Diophantine condition, Wu and Zhai [24] proved the global small solutions of the 3D compressible viscous non-resistive MHD system. Chen, Zhang, and Zhou [6] proved the global well-posedness of a 3D MHD system in T3. Compared with [6], the results of Zhai [27] reduces the regularity requirement on initial data. Zhao and Zhai [29] proved the global small solutions to the 3D MHD system with a velocity damping term. Compared to the velocity damping term in [29], in this paper, we require only its second component.

    Let nR2 satisfy the so-called Diophantine condition: for any kZ2{0}

    |n k|c|k|r, (1.3)

    for some c>0 and r>1. Moreover, as demonstrated in [6].

    The perturbation (u,b) with

    b:=Bn,

    our Eq (1.2) becomes

    {tu+uu+ν(0,u2)+P=bb+nb,xT2,t>0,tb+ub=bu+nu,xT2,t>0,u=0,b=0,xT2,t>0,u(x,0)=u0(x),b(x,0)=b0(x). (1.4)

    The main result of the paper is stated as follows.

    Theorem 1.1. For any γ4r+11 with r>1. Consider (1.4) with initial data (u0,b0)Hγ(T2) with u0=b0=0. There exists a constant ε such that, if

    (u0,b0)Hγε,Tu0dx1=T2b0dx=0, (1.5)

    then there exists a global solution (u,b)C([0,+);Hγ) to system (1.4) satisfying

    u(t)Hγ+b(t)HγCε,u(t)Hr+5+b(t)Hr+5C(1+t)32.

    Moreover, for any t0 and r+5<α<γ, there holds

    u(t)Hα+b(t)HαC(1+t)3(γα)2(γr5).

    Remark 1.2. If the initial data (u0,b0) satisfies (1.5), for sufficiently regular solutions to the system (1.4), this property will be conserved in time,

    T2udx=T2bdx=0, (1.6)

    using the two-dimensional Biot-Savart law, u2=1Δ1ω, combined with the system (1.4), we can get ddtT2bdx=ddtT2udx=0.

    According to previous studies on 2D MHD equations with a velocity damping term, it was found that the magnetic equation is either fully dissipative or partially dissipative. Our work focuses on the challenging problem of the global well-posedness of the 2D incompressible MHD equations without magnetic diffusion and kinetic viscosity with vertical velocity damping.

    Due to the absence of magnetic diffusion and horizontal velocity damping, proving the theorem is challenging. Indeed, the construction of global solutions to the incompressible non-resistive MHD system with vertical velocity damping remains an open problem, even with small initial data in T2. This work represents a meaningful step forward. It establishes the global well-posedness and stability of solutions near background magnetic fields that satisfy a Diophantine condition.

    Some useful inequalities and properties are provided in this section for assistance in demonstrating our main result.

    Lemma 2.1. If nR2 satisfies the Diophantine condition (1.3), then it holds that

    fHsCnfHs+r, (2.1)

    for any sR, if fHs+r(T2) satisfies T2fdx=0.

    The proof of the above lemma is provided in [27].

    Lemma 2.2. Let s0. The following inequalities hold

    fgHsC(fLgHs+fHsgL),[Λs,f]gL2C(fLΛsgL2+ΛsfL2gL),

    where [a,b]=abba is the commutator; please refer to [12] for details.

    Lemma 2.3. Define ˉu=12πTu(x1,x2)dx1, let u be a smooth solution to (1.4) on [0,)×T2 satisfying Tudx1=0, there holds

    uL2(T2)C1uL2(T2). (2.2)

    Because the integral average of u equals zero in the x1 direction, we have used Poincˊare inequality.

    The proof of Theorem 1.1 is highlighted below. First, denote Λ=Δ and a,b the L2(T2) inner product of a and b. By using incompressible conditions, we can easily obtain:

    1uL2=u2L2. (3.1)

    The standard energy method might be used to demonstrate the local well-posedness of (1.4) given the initial data (u0,b0)Hγ. As a result, we can assume that there is a T>0, which means that there is only one solution for (u,b)C([0,T];Hγ) to system (1.4).

    We demonstrate that this local solution can be expanded to a global one using the bootstrapping argument. Theorem 1.1 is to derive a global a priori upper bound. For some 0<δ<1 to be specified later, we assume that

    sup (3.2)

    in order to initiate the bootstrapping argument. Under the assumption (1.5 ' ),

    \begin{align*} \|{\mathbf u}_{0}\|_{H^{\gamma}}+\|{\mathbf b}_{0}\|_{H^{\gamma}} \le \varepsilon, \end{align*}

    where \varepsilon > 0 is sufficiently small, our goal is to get

    \begin{align} \sup\limits_{t\in[0, T]}(\|{\mathbf u}\|_{H^{\gamma}}+\|{\mathbf b}\|_{H^{\gamma}}) \le \frac{\delta}{2}. \end{align} (3.3)

    Then the intended global bound is reached via the bootstrapping argument.

    Taking the L^{2} -inner product of (1.4) with ({\mathbf u}, {\mathbf b}) , integrating by parts, we can obtain the standard basic energy estimate,

    \begin{align} \frac{1}{2} \frac{d}{dt}(\|{\mathbf u}\|^{2}_{L^2}+\|{\mathbf b}\|^{2}_{L^2})+\nu\|u_{2}\|^{2}_{L^2} = 0, \end{align} (3.4)

    where we have used

    \begin{align*} &\langle {\mathbf u}\cdot{\nabla} {\mathbf u}, {\mathbf u}\rangle = \langle {\mathbf u}\cdot{\nabla} {\mathbf b}, {\mathbf b}\rangle = 0, \\ &\langle {\mathbf b}\cdot{\nabla} {\mathbf b}, {\mathbf u}\rangle+\langle {\mathbf b}\cdot{\nabla} {\mathbf u}, {\mathbf b}\rangle = 0, \\ &\langle {\mathbf n}\cdot{\nabla} {\mathbf b}, {\mathbf u}\rangle+\langle {\mathbf n}\cdot{\nabla} {\mathbf u}, {\mathbf b}\rangle = 0, \end{align*}

    due to the incompressible condition \nabla \cdot {\mathbf u} = 0 and \nabla \cdot {\mathbf b} = 0 .

    To get the higher energy estimates, the purpose of this subsection is to prove the following lemma.

    Lemma 3.1. For any \beta \in [0, \gamma] and t \in [0, T] , it holds that

    \begin{align} \frac{1}{2} \frac{d}{dt}(\|{\mathbf u}(t)\|^{2}_{H^\beta}+\|{\mathbf b}(t)\|^{2}_{H^\beta})+\nu\|u_{2}\|^{2}_{H^\beta} \le C(\|{\nabla} {\mathbf u}\|_{L^\infty}+ \|{\nabla} {\mathbf b} \|_{L^\infty})(\|{\mathbf u}(t)\|^{2}_{H^\beta}+\|{\mathbf b}(t)\|^{2}_{H^\beta}). \end{align} (3.5)

    Proof. Operating \Lambda^{k}(1 \le k \le \beta) on (1.4) and using a commutator argument, we have

    \begin{equation*} \left \{ \begin{array}{l} \partial_t\Lambda^{k} {\mathbf u} + {\mathbf u}\cdot{\nabla} \Lambda^{k}{\mathbf u} + \Lambda^{k} {\nabla} p+\nu \Lambda^{k}(0, u_{2})^{\top} \\ \ \ = \Lambda^{k}({\mathbf n}\cdot {\nabla} {\mathbf b})+ {\mathbf b}\cdot {\nabla} \Lambda^{k}{\mathbf b}-[\Lambda^{k}, {\mathbf u}\cdot {\nabla}]{\mathbf u}+[\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf b} , \\ \partial_t\Lambda^{k} {\mathbf b} + {\mathbf u}\cdot{\nabla} \Lambda^{k}{\mathbf b} = \Lambda^{k}({\mathbf n}\cdot {\nabla} {\mathbf u})+ {\mathbf b}\cdot {\nabla} \Lambda^{k}{\mathbf u}-[\Lambda^{k}, {\mathbf u}\cdot {\nabla}]{\mathbf b}+[\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf u}. \end{array} \right. \end{equation*}

    Taking L^{2} inner product with \Lambda^{k} {\mathbf u}, \Lambda^{k} {\mathbf b} , we obtain

    \begin{align} \frac{1}{2} \frac{d}{dt}(\|\Lambda^{k} {\mathbf u}\|^{2}_{L^2}+\|\Lambda^{k} {\mathbf b}\|^{2}_{L^2})+\nu\|\Lambda^{k} u_{2}\|^{2}_{L^2} = \langle [\Lambda^{k}, {\mathbf b}\cdot {\nabla}]{\mathbf b}, \Lambda^{k}{\mathbf u}\rangle-\langle [\Lambda^{k}, {\mathbf u}\cdot {\nabla}]{\mathbf u}, \Lambda^{k}{\mathbf u}\rangle \\ +\langle [\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf u}, \Lambda^{k}{\mathbf b}\rangle-\langle [\Lambda^{k}, {\mathbf u}\cdot {\nabla}]{\mathbf b}, \Lambda^{k}{\mathbf b}\rangle, \end{align} (3.6)

    where we have used

    \begin{align*} &\langle {\mathbf u}\cdot{\nabla} \Lambda^{k}{\mathbf u}, \Lambda^{k}{\mathbf u}\rangle = \langle \Lambda^{k} {\nabla} P, \Lambda^{k}{\mathbf u}\rangle = \langle {\mathbf u}\cdot{\nabla} \Lambda^{k}{\mathbf b}, \Lambda^{k}{\mathbf b}\rangle = 0, \\ &\langle {\mathbf b}\cdot{\nabla} \Lambda^{k}{\mathbf b}, \Lambda^{k}{\mathbf u}\rangle+\langle {\mathbf b}\cdot{\nabla} \Lambda^{k}{\mathbf u}, \Lambda^{k}{\mathbf b}\rangle = 0, \\ &\langle \Lambda^{k}({\mathbf n}\cdot{\nabla} {\mathbf b}), \Lambda^{k}{\mathbf u}\rangle+\langle \Lambda^{k}({\mathbf n}\cdot{\nabla} {\mathbf u}), \Lambda^{k}{\mathbf b}\rangle = 0. \end{align*}

    By Lemma 2.2, we have

    \begin{align*} \|[\Lambda^{k}, {\mathbf u}\cdot{\nabla}]{\mathbf u}\|_{L^2}+\|[\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf b}\|_{L^2} \le C(\|{\nabla} {\mathbf u}\|_{L^\infty}\|\Lambda^{k} {\mathbf u} \|_{L^2}+ \|\Lambda^{k} {\mathbf b}\|_{L^2}\|{\nabla} {\mathbf b} \|_{L^\infty}), \\ \|[\Lambda^{k}, {\mathbf u}\cdot{\nabla}]{\mathbf b}\|_{L^2}+\|[\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf u}\|_{L^2} \le C(\|{\nabla} {\mathbf u}\|_{L^\infty}\|\Lambda^{k} {\mathbf b} \|_{L^2}+ \|\Lambda^{k} {\mathbf u}\|_{L^2}\|{\nabla} {\mathbf b} \|_{L^\infty}). \end{align*}

    As a result, applying the above two estimates and the Cauchy's inequality, we can get the bound of the right-hand side of (3.6),

    \begin{align*} |\langle [\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf b}, \Lambda^{k}{\mathbf u}\rangle| &\le C\|{\nabla} {\mathbf b}\|_{L^\infty}\|\Lambda^{k} {\mathbf b} \|_{L^2} \|\Lambda^{k} {\mathbf u} \|_{L^2} \nonumber \\ &\le C\|{\nabla} {\mathbf b} \|_{L^\infty}(\|\Lambda^{k} {\mathbf u} \|^2_{L^2}+ \|\Lambda^{k} {\mathbf b}\|^2_{L^2}), \end{align*} (3.6')
    \begin{align*} |\langle [\Lambda^{k}, {\mathbf b}\cdot{\nabla}]{\mathbf u}, \Lambda^{k}{\mathbf b}\rangle| &\le C(\|{\nabla} {\mathbf u}\|_{L^\infty}\|\Lambda^{k} {\mathbf b} \|_{L^2}+ \|\Lambda^{k} {\mathbf u}\|_{L^2}\|{\nabla} {\mathbf b} \|_{L^\infty})\|\Lambda^{k} {\mathbf b} \|_{L^2} \nonumber \\ &\le C(\|{\nabla} {\mathbf u} \|_{L^\infty}\|\Lambda^{k} {\mathbf b} \|^2_{L^2}+\|{\nabla} {\mathbf b} \|_{L^\infty} (\|\Lambda^{k} {\mathbf u} \|^2_{L^2}+ \|\Lambda^{k} {\mathbf b}\|^2_{L^2})). \end{align*} (3.6'')

    Similarly,

    \begin{align*} |\langle [\Lambda^{k}, {\mathbf u}\cdot{\nabla}]{\mathbf u}, \Lambda^{k}{\mathbf u}\rangle| &\le C\|{\nabla} {\mathbf u}\|_{L^\infty}\|\Lambda^{k} {\mathbf u} \|^{2}_{L^2}, \end{align*} (3.6''')
    \begin{align*} |\langle [\Lambda^{k}, {\mathbf u}\cdot{\nabla}]{\mathbf b}, \Lambda^{k}{\mathbf b}\rangle| &\le C(\|{\nabla} {\mathbf u} \|_{L^\infty}\|\Lambda^{k} {\mathbf b} \|^2_{L^2}+\|{\nabla} {\mathbf b} \|_{L^\infty} (\|\Lambda^{k} {\mathbf u} \|^2_{L^2}+ \|\Lambda^{k} {\mathbf b}\|^2_{L^2})). \end{align*} (3.6'''')

    Plugging the (3.6 ' )-(3.6 '''' ) into (3.6) yields

    \begin{align} \frac{1}{2} \frac{d}{dt}(\|\Lambda^{k} {\mathbf u}\|^{2}_{L^2}+\|\Lambda^{k} {\mathbf b}\|^{2}_{L^2})+\nu\|\Lambda^{k} u_{2}\|^{2}_{L^2} \le C(\|{\nabla} {\mathbf u}\|_{L^\infty}+ \|{\nabla} {\mathbf b} \|_{L^\infty})(\|\Lambda^{k} {\mathbf u} \|^2_{L^2}+ \|\Lambda^{k} {\mathbf b}\|^2_{L^2}), \end{align} (3.7)

    which is the desired estimate (3.5).

    The MHD system under consideration in this paper is not subject to magnetic diffusion. It is necessary to take advantage of the hidden dissipation caused by the background magnetic field. This subsection will show how to find the upper bound stated in the following lemma.

    Lemma 3.2. For any \gamma \ge r+4 with r > 1 . Assume that

    \begin{align} \sup\limits_{t\in[0, T]}(\|{\mathbf u}\|_{H^{\gamma}}+\|{\mathbf b}\|_{H^{\gamma}}) \le \delta, \end{align} (3.8)

    for some 0 < \delta < 1 . Then there holds that

    \begin{align} \|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^2_{H^{r+3}}-\sum\limits_{0 \le s \le r+3}\frac{d}{dt}\langle \Lambda^{s}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle \le (2+C \delta)\|{\mathbf u}\|^2_{H^{r+4}}+C \delta^{2} \|{\mathbf b}\|^2_{H^3}. \end{align} (3.9)

    Proof. Applying \Lambda^{s}(0 \le s \le r+3) to the first equation of (1.4) and multiplying it by \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b}) , then taking L^2 -inner product over {\mathbb{T}^2} , we obtain

    \begin{align} \|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}} & = \langle \Lambda^{s} \partial_{t}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle+\langle \Lambda^{s} ({\mathbf u}\cdot{\nabla} {\mathbf u}), \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle \\ &+\langle \Lambda^{s} (0, u_{2})^{\top}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle-\langle \Lambda^{s} ({\mathbf b}\cdot{\nabla} {\mathbf b}), \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle. \end{align} (3.10)

    Using H \ddot{o} lder's inequality and Young's inequality,

    \begin{align} \langle \Lambda^{s} ({\mathbf u}\cdot{\nabla} {\mathbf u}), \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle \le& C\|\Lambda^{s}({\mathbf u}\cdot{\nabla} {\mathbf u})\|_{L^{2}}\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ \le& C(\|{\mathbf u}\|_{L^{\infty}}\|{\nabla} {\mathbf u}\|_{H^{s}}+\|{\nabla} {\mathbf u}\|_{L^{\infty}}\| {\mathbf u}\|_{H^{s}})\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ \le& \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\delta\|{\nabla} {\mathbf u}\|^2_{H^{s}}. \end{align} (3.11)

    By (3.9), similarly,

    \begin{align} \langle \Lambda^{s} (0, u_{2})^{\top}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle &\le C\|\Lambda^{s} u_{2}\|_{L^2}\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ &\le \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\| u_{2}\|^2_{H^{s}} \\ &\le \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\| {\mathbf u}\|^2_{H^{s}}, \end{align} (3.12)

    and

    \begin{align} \langle \Lambda^{s} ({\mathbf b}\cdot{\nabla} {\mathbf b}), \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle \le& C\|\Lambda^{s}({\mathbf b}\cdot{\nabla} {\mathbf b})\|_{L^{2}}\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ \le& C(\|{\mathbf b}\|_{L^{\infty}}\|{\nabla} {\mathbf b}\|_{H^{s}}+\|{\nabla} {\mathbf b}\|_{L^{\infty}}\| {\mathbf b}\|_{H^{s}})\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ \le& C(\|{\mathbf b}\|_{H^{2}}\| {\mathbf b}\|_{H^{s+1}}+\|{\nabla} {\mathbf b}\|_{H^{2}}\| {\mathbf b}\|_{H^{s}})\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|_{L^{2}} \\ \le& \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\|{\mathbf b}\|^2_{H^{s+1}}\| {\mathbf b}\|^2_{H^{3}} \\ \le& \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\|{\mathbf b}\|^2_{H^{r+4}}\| {\mathbf b}\|^2_{H^{3}} \\ \le& \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C\|{\mathbf b}\|^2_{H^{\gamma}}\| {\mathbf b}\|^2_{H^{3}} \\ \le& \varepsilon\|\Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\|^2_{L^{2}}+C \delta^{2}\| {\mathbf b}\|^2_{H^{3}}, \end{align} (3.13)

    where we have used assumption (3.2).

    Subsequently, to control the first-time derivative term on the right-hand side of (3.10), we make use of the second equation in (1.4) and obtain

    \begin{align*} \langle \Lambda^{s} \partial_{t}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle = &\frac{d}{dt}\langle \Lambda^{s} {\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle-\langle \Lambda^{s} {\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} \partial_{t} {\mathbf b})\rangle \nonumber \\ = &\frac{d}{dt}\langle \Lambda^{s} {\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle+\langle \Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u}), \Lambda^{s}({\mathbf b}\cdot{\nabla} {\mathbf u})\rangle \nonumber \\ +&\langle \Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u}), \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf u})\rangle-\langle \Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u}), \Lambda^{s}({\mathbf u}\cdot{\nabla} {\mathbf b})\rangle \nonumber \\ = :&\frac{d}{dt}\langle \Lambda^{s} {\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle+J_{1}+J_{2}+J_{3}. \end{align*}

    By Lemma 2.2 and (3.8), we get

    \begin{align*} |J_{1}| &\le \|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2} \|\Lambda^{s}({\mathbf b}\cdot{\nabla} {\mathbf u})\|_{L^2} \\ &\le C\|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2}(\|{\mathbf b}\|_{L^\infty}\|{\nabla} {\mathbf u} \|_{H^s}+ \|{\mathbf b}\|_{H^s}\|{\nabla} {\mathbf u} \|_{L^\infty}) \\ &\le C\|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2}(\|{\mathbf b}\|_{H^2}\|{\nabla} {\mathbf u} \|_{H^s}+ \|{\mathbf b}\|_{H^\gamma}\|{\nabla} {\mathbf u} \|_{H^2}) \\ &\le C\|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2}(\|{\mathbf b}\|_{H^\gamma}\|{\nabla} {\mathbf u} \|_{H^s}+ \|{\mathbf b}\|_{H^\gamma}\|{\nabla} {\mathbf u} \|_{H^2}) \\ &\le C\delta\|{\mathbf u}\|_{H^{s+1}}(\|{\nabla} {\mathbf u} \|_{H^s}+\|{\nabla} {\mathbf u} \|_{H^2}) \\ &\le C \delta \|{\mathbf u}\|^2_{H^{s+1}}+C\delta \|{\mathbf u}\|_{H^{s+1}}\|{\mathbf u} \|_{H^3}, \\ |J_{2}| &\le \|{\mathbf n} \cdot {\nabla} {\mathbf u}\|^2_{H^{s}} \le \|{\nabla} {\mathbf u}\|^2_{H^{s}}. \end{align*}

    Likewise,

    \begin{align*} |J_{3}| &\le \|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2} \|\Lambda^{s}({\mathbf u}\cdot{\nabla} {\mathbf b})\|_{L^2} \\ &\le C\|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2}(\|{\mathbf u}\|_{L^\infty}\|{\nabla} {\mathbf b} \|_{H^s}+ \|{\mathbf u}\|_{H^s}\|{\nabla} {\mathbf b} \|_{L^\infty}) \\ &\le C\|\Lambda^{s} ({\mathbf n}\cdot{\nabla} {\mathbf u})\|_{L^2}(\|{\mathbf u}\|_{H^2}\|{\mathbf b} \|_{H^\gamma}+ \|{\mathbf u}\|_{H^s}\|{\mathbf b} \|_{H^\gamma}) \\ &\le C\delta\|{\mathbf u}\|_{H^{s+1}}(\|{\mathbf u} \|_{H^s}+\|{\mathbf u} \|_{H^2}) \\ &\le C \delta \|{\mathbf u}\|^2_{H^{s+1}}+C\delta \|{\mathbf u}\|_{H^{s+1}}\|{\mathbf u} \|_{H^3}. \end{align*}

    This shows that

    \begin{align} \langle \Lambda^{s} \partial_{t}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle \le \frac{d}{dt}\langle \Lambda^{s} {\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle+(1+C \delta)\|{\mathbf u}\|^2_{H^{s+1}}+C\delta \|{\mathbf u}\|_{H^{s+1}}\|{\mathbf u} \|_{H^3}. \end{align} (3.14)

    For any 0 \le s \le r+3 and r > 1 , summing up (3.10)–(3.14) and taking \delta small enough, we get the result of Lemma 3.2.

    There are no dissipative terms in equations {\mathbf u} and {\mathbf b} in (1.4). However, in order to demonstrate the intended stability results, we do require these stabilizing effects. We solve this difficulty by combining Lemma 2.3 and {\mathbf n} \cdot {\nabla} {\mathbf b} .

    First, taking \beta = r+5 in Lemma 3.1,

    \begin{align} &\frac{1}{2} \frac{d}{dt}(\|{\mathbf u}(t)\|^{2}_{H^{{r+5}}}+\|{\mathbf b}(t)\|^{2}_{H^{r+5}})+\nu\|u_{2}\|^{2}_{H^{r+5}} \\ &\le C(\|{\nabla} {\mathbf u}\|_{L^\infty}+ \|{\nabla} {\mathbf b} \|_{L^\infty})(\|{\mathbf u}(t)\|^{2}_{H^{r+5}}+\|{\mathbf b}(t)\|^{2}_{H^{r+5}}). \end{align} (3.15)

    Multiplying (3.15) by a suitable large constant \lambda and then adding it to (3.9), we have

    \begin{align} \frac{d}{dt} &\left\{\lambda(\|{\mathbf u}(t)\|^2_{H^{r+5}}+\|{\mathbf b}(t)\|^2_{H^{r+5}})-\sum\limits_{0 \le s \le r+3}\langle \Lambda^{s}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle\right\} \\ &+\lambda\|u_{2}\|^2_{H^{r+5}}+\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^2_{H^{r+3}} \\ &\le C\lambda\|{\nabla} {\mathbf u}\|_{L^\infty}\|{\mathbf u}\|^2_{H^{r+5}}+C\lambda\|{\nabla} {\mathbf u}\|_{L^\infty}\|{\mathbf b}\|^2_{H^{r+5}}+C\lambda\|{\nabla} {\mathbf b}\|_{L^\infty}\|{\mathbf u}\|^2_{H^{r+5}} \\ &+C\lambda\|{\nabla} {\mathbf b}\|_{L^\infty}\|{\mathbf b}\|^2_{H^{r+5}}+(2+C \delta)\|{\mathbf u}\|^2_{H^{r+4}}+C \delta^{2} \|{\mathbf b}\|^2_{H^3}, \end{align} (3.16)

    where \lambda > 1 is a constant to be determined later.

    The terms on the right-hand side of (3.16) can be bounded. Next, for any \gamma \ge 2r+7 , by (3.1), Lemma 2.1, 2.3, and the interpolation inequality, we have

    \begin{align} &\|{\mathbf b}\|^2_{H^{3}} \leq C\|{\mathbf n}\cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}, \\ &\|{\mathbf b}\|^2_{H^{r+5}} \le C\|{\mathbf b}\|_{H^{3}}\|{\mathbf b}\|_{H^{\gamma}} \leq C \delta\|{\mathbf n}\cdot {\nabla} {\mathbf b}\|_{H^{r+3}}, \\ &\|{\mathbf u}\|^2_{H^{r+4}} \le \| \partial_{1}{\mathbf u}\|^2_{H^{r+4}} \le \|u_{2}\|^2_{H^{r+5}}, \\ &\|{\mathbf u}\|^2_{H^{r+5}} \le C\|{\mathbf u}\|_{H^{3}}\|{\mathbf u}\|_{H^{\gamma}} \leq C \delta\|{\mathbf u}\|_{H^{3}} \leq C \delta\|{\mathbf u}\|_{H^{r+4}}, \end{align} (3.17)

    which gives

    \begin{align} &\|{\mathbf b}\|^4_{H^{r+5}} \leq C \delta^{2} \|{\mathbf n}\cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}, \\ &\|{\mathbf u}\|^4_{H^{r+5}} \leq C \delta^{2} \|{\mathbf u}\|^2_{H^{r+4}}. \end{align} (3.18)

    By Young's inequality, (2.2), (3.1), (3.17), and (3.18), we get

    \begin{align} C\lambda \|{\nabla} {\mathbf u}\|_{L^\infty}\|{\mathbf u}\|^2_{H^{r+5}} \le& C\lambda\|{\nabla} {\mathbf u}\|_{H^2}\|{\mathbf u}\|^2_{H^{r+5}} \\ \le& \lambda(\varepsilon \|{\mathbf u}\|^2_{H^3}+C\|{\mathbf u}\|^4_{H^{r+5}}) \\ \le& \lambda \varepsilon \|{\mathbf u}\|^2_{H^{r+4}}+C \lambda \delta^{2}\|{\mathbf u}\|^2_{H^{r+4}} \\ \le& \lambda \varepsilon \| \partial_{1}{\mathbf u}\|^2_{H^{r+4}}+C \lambda \delta^{2}\| \partial_{1}{\mathbf u}\|^2_{H^{r+4}} \\ \le& \lambda\varepsilon \|{\nabla} u_{2}\|^2_{H^{r+4}}+C\lambda \delta^{2}\|{\nabla} u_{2}\|^2_{H^{r+4}} \\ \le& \lambda\varepsilon \| u_{2}\|^2_{H^{r+5}}+C\lambda \delta^{2}\| u_{2}\|^2_{H^{r+5}}, \\ C\lambda\|{\nabla} {\mathbf u}\|_{L^\infty}\|{\mathbf b}\|^2_{H^{r+5}} \le& C\lambda\|{\nabla} {\mathbf u}\|_{H^2}\|{\mathbf b}\|^2_{H^{r+5}} \\ \le& \lambda\varepsilon \|{\mathbf u}\|^2_{H^{r+4}}+C\|{\mathbf b}\|^4_{H^{r+5}} \\ \le& \lambda\varepsilon \| \partial_{1}{\mathbf u}\|^2_{H^{r+4}}+C \delta^{2}\|{\mathbf n} \cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}} \\ \le& \lambda\varepsilon \|u_{2}\|^2_{H^{r+5}}+C \delta^{2}\|{\mathbf n} \cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}. \end{align} (3.19)

    Similarly,

    \begin{align} C\lambda\|{\nabla} {\mathbf b}\|_{L^\infty}\|{\mathbf u}\|^2_{H^{r+5}} \le& C\lambda\|{\mathbf b}\|_{H^3}\|{\mathbf u}\|^2_{H^{r+5}} \\ \le& \lambda\varepsilon \|{\mathbf n}\cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}+C\lambda\|{\mathbf u}\|^4_{H^{r+5}} \\ \le& \lambda \varepsilon \|{\mathbf n}\cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}+C\lambda\delta^{2}\|u_{2}\|^2_{H^{r+5}}, \\ C\lambda\|{\nabla} {\mathbf b}\|_{L^\infty}\|{\mathbf b}\|^2_{H^{r+5}} \le& C\lambda\|{\mathbf b}\|_{H^3}\|{\mathbf b}\|^2_{H^{r+5}} \\ \le& C\lambda \|{\mathbf n} \cdot {\nabla} {\mathbf b}\|_{H^{r+3}} (C\delta\|{\mathbf n} \cdot {\nabla} {\mathbf b}\|_{H^{r+3}}) \\ \le& C\lambda\delta\|{\mathbf n} \cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}. \end{align} (3.20)

    Hence, inserting (3.17)–(3.20) in (3.16), we obtain

    \begin{align} \frac{d}{dt} &\left\{\lambda(\|{\mathbf u}(t)\|^2_{H^{r+5}}+\|{\mathbf b}(t)\|^2_{H^{r+5}})-\sum\limits_{0 \le s \le r+3}\langle \Lambda^{s}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle\right\} \\ & \ \ \ +\lambda\|u_{2}\|^2_{H^{r+5}}+\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^2_{H^{r+3}} \\ &\le (C\lambda \delta^{2}+2+C\delta+2\lambda\varepsilon) \|u_{2}\|^2_{H^{r+5}}+(C\lambda\delta+C\delta^{2}+\lambda\varepsilon)\|{\mathbf n} \cdot {\nabla} {\mathbf b}\|^2_{H^{r+3}}. \end{align} (3.21)

    Taking \delta, \varepsilon > 0 small enough, we get

    \begin{align} \frac{d}{dt} &\left\{\lambda(\|{\mathbf u}(t)\|^2_{H^{r+5}}+\|{\mathbf b}(t)\|^2_{H^{r+5}})-\sum\limits_{0 \le s \le r+3}\langle \Lambda^{s}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle\right\} \\ & \ \ \ +\frac{\lambda}{2}\|u_{2}\|^2_{H^{r+5}}+\frac{1}{2}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^2_{H^{r+3}} \\ &\le 0. \end{align} (3.22)

    Define

    \begin{align*} &E(t) = \lambda(\|{\mathbf u}(t)\|^2_{H^{r+5}}+\|{\mathbf b}(t)\|^2_{H^{r+5}})-\sum\limits_{0 \le s \le r+3}\langle \Lambda^{s}{\mathbf u}, \Lambda^{s}({\mathbf n}\cdot{\nabla} {\mathbf b})\rangle, \\ &D(t) = \lambda\|u_{2}\|^2_{H^{r+5}}+\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^2_{H^{r+3}}, \end{align*}

    then (3.22) becomes

    \begin{align} \frac{d}{dt}E(t)+\frac{1}{2}D(t) \le 0. \end{align} (3.23)

    We take \lambda > 1 so that

    \begin{align*} E(t) \ge (\|{\mathbf u}(t)\|^2_{H^{r+5}}+\|{\mathbf b}(t)\|^2_{H^{r+5}}). \end{align*}

    For any \gamma \ge 4r+11 , we use interpolation inequality

    \begin{align*} \|{\mathbf b}\|^2_{H^{r+5}} \le \|{\mathbf b}\|^\frac{3}{2}_{H^{3}}\|{\mathbf b}\|^\frac{1}{2}_{H^{\gamma}} \le C\delta^{\frac{1}{2}}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^\frac{3}{2}_{H^{r+3}}, \end{align*}

    which implies

    \begin{align*} E(t) &\le C(\|{\mathbf u}\|^2_{H^{r+5}}+\|{\mathbf b}\|^2_{H^{r+5}}) \\ &\le C\|{\mathbf u}\|^\frac{3}{2}_{H^{3}}\|{\mathbf u}\|^\frac{1}{2}_{H^{\gamma}} +\|{\mathbf b}\|^\frac{3}{2}_{H^{3}}\|{\mathbf b}\|^\frac{1}{2}_{H^{\gamma}} \\ &\le C\delta^{\frac{1}{2}}\| {\mathbf n}\cdot{\nabla} {\mathbf u}\|^\frac{3}{2}_{H^{r+3}}+C\delta^{\frac{1}{2}}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^\frac{3}{2}_{H^{r+3}} \\ &\le C\delta^{\frac{1}{2}}\| {\mathbf u}\|^\frac{3}{2}_{H^{r+4}}+C\delta^{\frac{1}{2}}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^\frac{3}{2}_{H^{r+3}} \\ &\le C\delta^{\frac{1}{2}}\| \partial_{1}{\mathbf u}\|^\frac{3}{2}_{H^{r+4}}+C\delta^{\frac{1}{2}}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^\frac{3}{2}_{H^{r+3}} \\ &\le C\delta^{\frac{1}{2}}\|u_{2}\|^\frac{3}{2}_{H^{r+5}}+C\delta^{\frac{1}{2}}\|{\mathbf n}\cdot{\nabla} {\mathbf b}\|^\frac{3}{2}_{H^{r+3}} \\ &\le C(D(t))^{\frac{3}{4}}, \end{align*}

    i.e., D(t) \ge C(E(t))^{\frac{4}{3}} for some C > 0 . Thus, inserting this inequality in (3.23), we get

    \begin{align*} \frac{d}{dt}E(t)+c(E(t))^{\frac{4}{3}} \le 0. \end{align*}

    Integrating this inequality gives

    \begin{align} E(t) \le C(1+t)^{-3}. \end{align} (3.24)

    Thus, by (3.24), we can demonstrate the decay rate

    \begin{align*} &\|{\mathbf u}(t)\|_{H^{r+5}}+\|{\mathbf b}(t)\|_{H^{r+5}} \le C(1+t)^{-\frac{3}{2}}, \end{align*}

    for any t \in \left[0, +\infty\right) .

    Next, for any \alpha > r+5 , choosing \gamma > \alpha , we have the following interpolation inequality

    \begin{align} \|f(t)\|_{H^{\alpha}} \le \|f(t)\|^{\frac{\gamma-\alpha}{\gamma-r-5}}_{H^{r+5}}\|f(t)\|^{\frac{\alpha-r-5}{\gamma-r-5}}_{H^{\gamma}}. \end{align} (3.25)

    In the end, in order to get the stability of {\mathbf u} and {\mathbf b} in the desired Sobolev space, we need to sacrifice some decay of {\mathbf u} and {\mathbf b} in much higher space. Inserting (3.25) in (3.24), we obtain

    \begin{align*} \|{\mathbf u}(t)\|_{H^{\alpha}}+\|{\mathbf b}(t)\|_{H^{\alpha}} \le C(1+t)^ {-\frac{3(\gamma-\alpha)}{2(\gamma-r-5)}}. \end{align*}

    Then using Sobolev's inequalities and Lemma 3.1 with \beta = \gamma , for any \gamma \ge 4r+11 , we obtain

    \begin{align*} \frac{d}{dt}(\|{\mathbf u}(t)\|^{2}_{H^\gamma}+\|{\mathbf b}(t)\|^{2}_{H^\gamma}) \le C(\|{\mathbf u}\|_{H^3}+ \|{\mathbf b} \|_{H^3})(\|{\mathbf u}(t)\|^{2}_{H^\gamma}+\|{\mathbf b}(t)\|^{2}_{H^\gamma}). \end{align*}

    Obviously, (3.24) implies the decay upper bound

    \begin{align*} \int^{t}_{0}(\|{\mathbf u}(\tau)\|_{H^3}+ \|{\mathbf b}(\tau) \|_{H^3})\, d\tau \le C. \end{align*}

    By Gronwall inequality, we have

    \begin{align*} \|{\mathbf u}\|^{2}_{H^\gamma}+\|{\mathbf b}\|^{2}_{H^\gamma} \le& C(\|{\mathbf u}_{0}\|^{2}_{H^\gamma}+\|{\mathbf b}_{0}\|^{2}_{H^\gamma}) \exp (\int^{t}_{0}(\|{\mathbf u}(\tau)\|_{H^3}+ \|{\mathbf b}(\tau) \|_{H^3})\, d\tau) \\ \le& C(\|{\mathbf u}_{0}\|^{2}_{H^\gamma}+\|{\mathbf b}_{0}\|^{2}_{H^\gamma}) \\ \le& C\varepsilon^{2}. \end{align*}

    Taking \varepsilon small enough so that \sqrt{C}\varepsilon \le \frac{\delta}{2} , we have

    \begin{align*} \|{\mathbf u}\|_{H^\gamma}+\|{\mathbf b}\|_{H^\gamma} \le \frac{\delta}{2}. \end{align*}

    Consequently, the bootstrapping argument suggests that the local solution can eventually be expanded to a global one.

    This completes the proof of Theorem 1.1.

    Based on the above proof process of the theorem, we can obtain that there has a global solution ({\mathbf u}, {\mathbf b})\in C(\left[0, +\infty\right); H^{\gamma}) to system (1.4) satisfying

    \begin{align*} &\|{\mathbf u}(t)\|_{H^{\gamma}}+\|{\mathbf b}(t)\|_{H^{\gamma}} \leq C\varepsilon, \\ &\|{\mathbf u}(t)\|_{H^{r+5}}+\|{\mathbf b}(t)\|_{H^{r+5}} \leq C(1+t)^{-\frac{3}{2}}. \end{align*}

    Moreover, for any t \ge 0 and r+5 < \alpha < \gamma , there holds

    \begin{align*} \|{\mathbf u}(t)\|_{H^{\alpha}}+\|{\mathbf b}(t)\|_{H^{\alpha}} \le C(1+t)^ {-\frac{3(\gamma-\alpha)}{2(\gamma-r-5)}}. \end{align*}

    Long: Study conception, design, methodology and write the first draft of the manuscript. Ye: Material preparation, data collection and analysis. All authors have read and approved the final version of the manuscript for publication.

    The authors declare that have not used Artificial Intelligence (AI) tools in the creation of this article.

    Long and Ye is partially supported by the National Natural Science Foundation of China (Grants No. 12371232, 12001065) and Creative Research Groups of the Natural Science Foundation of Sichuan (Grants No. 2023NSFSC1984).

    The authors are appreciative to Prof. Ruihong Ji for her important suggestions and the referees for carefully reading the paper and providing valuable comments.

    The authors declare no conflict of interest.



    [1] H. Abidi, M. Paicu, Global existence for the magnetohydrodynamics system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447–476. http://dx.doi.org/10.1017/S0308210506001181 doi: 10.1017/S0308210506001181
    [2] H. Abidi, P. Zhang, On the global solution of 3-D MHD system with initial data near equilibrium, Commun. Pure Appl. Math., 70 (2017), 1509–1561. http://dx.doi.org/10.1002/cpa.21645 doi: 10.1002/cpa.21645
    [3] C. Bardos, C. Sulem, P. L. Sulem, Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Amer. Math. Soc., 305 (1988), 175–191. http://dx.doi.org/10.1090/S0002-9947-1988-0920153-5 doi: 10.1090/S0002-9947-1988-0920153-5
    [4] N. Boardman, H. Lin, J. Wu, Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow, SIAM J. Math. Anal., 52 (2020), 5001–5035. http://dx.doi.org/10.1137/20M1324776 doi: 10.1137/20M1324776
    [5] T. Chen, H. Lin, J. Wu, The 2D magnetohydrodynamic system with Euler-like velocity equation and partial magnetic diffusion, Stud. Appl. Math., 150 (2023), 629–649. http://dx.doi.org/10.1111/sapm.12551 doi: 10.1111/sapm.12551
    [6] W. Chen, Z. Zhang, J. Zhou, Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain, Sci. China Math, 65 (2022), 309–318. http://dx.doi.org/10.1007/s11425-021-1861-y doi: 10.1007/s11425-021-1861-y
    [7] W. Deng, P. Zhang, Large time behavior of solutions to 3-D MHD system with initial data near equilibrium, Arch. Ration. Mech. Anal., 230 (2018), 1017–1102. http://dx.doi.org/10.1007/s00205-018-1265-x doi: 10.1007/s00205-018-1265-x
    [8] G. Duvaut, J. L. Lions, In\acute{e}quations en thermo\acute{e}lasticit\acute{e} et magn\acute{e}tohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241–279. http://dx.doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [9] R. Ji, S. Li, Global well-posedness for MHD system with mixed partial dissipation and magnetic diffusion in 2\frac{1}{2} dimensions, Appl. Math. Comput., 258 (2015), 325–341. http://dx.doi.org/10.1016/j.amc.2015.01.078 doi: 10.1016/j.amc.2015.01.078
    [10] R. Ji, H. Lin, J. Wu, L. Yan, Stability for a system of the 2D magnetohydrodynamic equations with partial dissipation, Appl. Math. Lett., 94 (2019), 244–249. http://dx.doi.org/10.1016/j.aml.2019.03.013 doi: 10.1016/j.aml.2019.03.013
    [11] R. Ji, J. Wu, The resistive magnetohydrodynamic equation near an equilibrium, J. Differ. Equ., 268 (2020), 1854–1871. http://dx.doi.org/10.1016/j.jde.2019.09.027 doi: 10.1016/j.jde.2019.09.027
    [12] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [13] S. Lai, J. Wu, J. Zhang, Stabilizing phenomenon for 2D anisotropic magnetohydrodynamic system near a background magnetic field, SIAM J. Math. Anal., 53 (2021), 6073–6093. http://dx.doi.org/10.1137/21M139791X doi: 10.1137/21M139791X
    [14] S. Lai, J. Wu, J. Zhang, Stabilizing effect of magnetic field on the 2D ideal magnetohydrodynamic flow with mixed partial damping, Calculus Var. Partial Differ. Equations, 61 (2022), 126. http://dx.doi.org/10.1007/s00526-022-02230-7 doi: 10.1007/s00526-022-02230-7
    [15] Z. Lei, Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete. Dyn. Syst., 25 (2009), 575–583. http://dx.doi.org/10.3934/dcds.2009.25.575 doi: 10.3934/dcds.2009.25.575
    [16] F. Lin, P. Zhang, Global small solutions to MHD-type system: the three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531–580. http://dx.doi.org/10.1002/cpa.21506 doi: 10.1002/cpa.21506
    [17] F. Lin, L. Xu, P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differ. Equations, 259 (2015), 5440–5485. http://dx.doi.org/10.1016/j.jde.2015.06.034 doi: 10.1016/j.jde.2015.06.034
    [18] H. Lin, H. Zhang, Global well-posedness and decay of the 2D incompressible MHD equations with horizontal magnetic diffusion, J. Math. Phys., 64 (2023), 1–15. http://dx.doi.org/10.1063/5.0155296 doi: 10.1063/5.0155296
    [19] R. Pan, Y. Zhou, Y. Zhu, Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes, Arch. Ration. Mech. Anal., 227 (2018), 637–662. http://dx.doi.org/10.1007/s00205-017-1170-8 doi: 10.1007/s00205-017-1170-8
    [20] X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503–541. http://dx.doi.org/10.1016/j.jfa.2014.04.020 doi: 10.1016/j.jfa.2014.04.020
    [21] D. Wei, Z. Zhang, Global well-posedness for the 2-D MHD equations with magnetic diffusion, Comm. Math. Res., 36 (2020), 377–389. http://dx.doi.org/10.4208/cmr.2020-0022 doi: 10.4208/cmr.2020-0022
    [22] J. Wu, Generalized MHD equations, J. Differ. Equations, 195 (2003), 284–312. http://dx.doi.org/10.1016/j.jde.2003.07.007 doi: 10.1016/j.jde.2003.07.007
    [23] J. Wu, The 2D magnetohydrodynamic equations with partial or fractional dissipation, Lect. Anal. Nonlinear Partial Differ. Equ., 5 (2018), 283–332.
    [24] J, Wu, X. Zhai, Global small solutions to the 3D compressible viscous non-resistive MHD system, Math. Models Meth. Appl. Sci., 33 (2023), 2629–2656. http://dx.doi.org/10.1142/s0218202523500574 doi: 10.1142/s0218202523500574
    [25] L. Xu, P. Zhang, Global small solutions to three-dimensional incompressible magnetohydrodynamical system, SIAM J. Math. Anal., 47 (2015), 26–65. http://dx.doi.org/10.1137/14095515X doi: 10.1137/14095515X
    [26] W. Ye, Z. Yin, Global well-posedness for the non-viscous MHD equations with magnetic diffusion in critical Besov spaces, Acta Math. Sin. (Engl. Ser.), 38 (2022), 1493–1511. http://dx.doi.org/10.1007/s10114-022-1400-3 doi: 10.1007/s10114-022-1400-3
    [27] X. Zhai, Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differ. Equations, 374 (2023), 267–278. http://dx.doi.org/10.1016/j.jde.2023.07.033 doi: 10.1016/j.jde.2023.07.033
    [28] T. Zhang, Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field, J. Differential Equations, 260 (2016), 5450–5480. http://dx.doi.org/10.1016/j.jde.2015.12.005 doi: 10.1016/j.jde.2015.12.005
    [29] Y. Zhao, X. Zhai, Global small solutions to the 3D MHD system with a velocity damping term, Appl. Math. Lett., 121 (2021), 107481. http://dx.doi.org/10.1016/j.aml.2021.107481 doi: 10.1016/j.aml.2021.107481
    [30] Y. Zhou, Y. Zhu, Global classical solutions of 2D MHD system with only magnetic diffusion on periodic domain, J. Math. Phys., 59 (2018), 081505. http://dx.doi.org/10.1063/1.5018641 doi: 10.1063/1.5018641
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(399) PDF downloads(37) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog