Research article

Global well-posedness for the 2D MHD equations with only vertical velocity damping term

  • Received: 15 October 2024 Revised: 03 December 2024 Accepted: 17 December 2024 Published: 31 December 2024
  • MSC : 35A05, 35Q35, 76D03

  • This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.

    Citation: Huan Long, Suhui Ye. Global well-posedness for the 2D MHD equations with only vertical velocity damping term[J]. AIMS Mathematics, 2024, 9(12): 36371-36384. doi: 10.3934/math.20241725

    Related Papers:

  • This paper concerns two-dimensional (2D) incompressible magnetohydrodynamic (MHD) equations without magnetic diffusion with only vertical velocity damping term in the periodic domain. We prove the stability and decay rate for smooth solutions on perturbations near a background magnetic field of the system under the assumptions that the initial magnetic field satisfies the Diophantine condition.



    加载中


    [1] H. Abidi, M. Paicu, Global existence for the magnetohydrodynamics system in critical spaces, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 447–476. http://dx.doi.org/10.1017/S0308210506001181 doi: 10.1017/S0308210506001181
    [2] H. Abidi, P. Zhang, On the global solution of 3-D MHD system with initial data near equilibrium, Commun. Pure Appl. Math., 70 (2017), 1509–1561. http://dx.doi.org/10.1002/cpa.21645 doi: 10.1002/cpa.21645
    [3] C. Bardos, C. Sulem, P. L. Sulem, Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Amer. Math. Soc., 305 (1988), 175–191. http://dx.doi.org/10.1090/S0002-9947-1988-0920153-5 doi: 10.1090/S0002-9947-1988-0920153-5
    [4] N. Boardman, H. Lin, J. Wu, Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow, SIAM J. Math. Anal., 52 (2020), 5001–5035. http://dx.doi.org/10.1137/20M1324776 doi: 10.1137/20M1324776
    [5] T. Chen, H. Lin, J. Wu, The 2D magnetohydrodynamic system with Euler-like velocity equation and partial magnetic diffusion, Stud. Appl. Math., 150 (2023), 629–649. http://dx.doi.org/10.1111/sapm.12551 doi: 10.1111/sapm.12551
    [6] W. Chen, Z. Zhang, J. Zhou, Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain, Sci. China Math, 65 (2022), 309–318. http://dx.doi.org/10.1007/s11425-021-1861-y doi: 10.1007/s11425-021-1861-y
    [7] W. Deng, P. Zhang, Large time behavior of solutions to 3-D MHD system with initial data near equilibrium, Arch. Ration. Mech. Anal., 230 (2018), 1017–1102. http://dx.doi.org/10.1007/s00205-018-1265-x doi: 10.1007/s00205-018-1265-x
    [8] G. Duvaut, J. L. Lions, In$\acute{e}$quations en thermo$\acute{e}$lasticit$\acute{e}$ et magn$\acute{e}$tohydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241–279. http://dx.doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
    [9] R. Ji, S. Li, Global well-posedness for MHD system with mixed partial dissipation and magnetic diffusion in $2\frac{1}{2}$ dimensions, Appl. Math. Comput., 258 (2015), 325–341. http://dx.doi.org/10.1016/j.amc.2015.01.078 doi: 10.1016/j.amc.2015.01.078
    [10] R. Ji, H. Lin, J. Wu, L. Yan, Stability for a system of the 2D magnetohydrodynamic equations with partial dissipation, Appl. Math. Lett., 94 (2019), 244–249. http://dx.doi.org/10.1016/j.aml.2019.03.013 doi: 10.1016/j.aml.2019.03.013
    [11] R. Ji, J. Wu, The resistive magnetohydrodynamic equation near an equilibrium, J. Differ. Equ., 268 (2020), 1854–1871. http://dx.doi.org/10.1016/j.jde.2019.09.027 doi: 10.1016/j.jde.2019.09.027
    [12] T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [13] S. Lai, J. Wu, J. Zhang, Stabilizing phenomenon for 2D anisotropic magnetohydrodynamic system near a background magnetic field, SIAM J. Math. Anal., 53 (2021), 6073–6093. http://dx.doi.org/10.1137/21M139791X doi: 10.1137/21M139791X
    [14] S. Lai, J. Wu, J. Zhang, Stabilizing effect of magnetic field on the 2D ideal magnetohydrodynamic flow with mixed partial damping, Calculus Var. Partial Differ. Equations, 61 (2022), 126. http://dx.doi.org/10.1007/s00526-022-02230-7 doi: 10.1007/s00526-022-02230-7
    [15] Z. Lei, Y. Zhou, BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete. Dyn. Syst., 25 (2009), 575–583. http://dx.doi.org/10.3934/dcds.2009.25.575 doi: 10.3934/dcds.2009.25.575
    [16] F. Lin, P. Zhang, Global small solutions to MHD-type system: the three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531–580. http://dx.doi.org/10.1002/cpa.21506 doi: 10.1002/cpa.21506
    [17] F. Lin, L. Xu, P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differ. Equations, 259 (2015), 5440–5485. http://dx.doi.org/10.1016/j.jde.2015.06.034 doi: 10.1016/j.jde.2015.06.034
    [18] H. Lin, H. Zhang, Global well-posedness and decay of the 2D incompressible MHD equations with horizontal magnetic diffusion, J. Math. Phys., 64 (2023), 1–15. http://dx.doi.org/10.1063/5.0155296 doi: 10.1063/5.0155296
    [19] R. Pan, Y. Zhou, Y. Zhu, Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes, Arch. Ration. Mech. Anal., 227 (2018), 637–662. http://dx.doi.org/10.1007/s00205-017-1170-8 doi: 10.1007/s00205-017-1170-8
    [20] X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503–541. http://dx.doi.org/10.1016/j.jfa.2014.04.020 doi: 10.1016/j.jfa.2014.04.020
    [21] D. Wei, Z. Zhang, Global well-posedness for the 2-D MHD equations with magnetic diffusion, Comm. Math. Res., 36 (2020), 377–389. http://dx.doi.org/10.4208/cmr.2020-0022 doi: 10.4208/cmr.2020-0022
    [22] J. Wu, Generalized MHD equations, J. Differ. Equations, 195 (2003), 284–312. http://dx.doi.org/10.1016/j.jde.2003.07.007 doi: 10.1016/j.jde.2003.07.007
    [23] J. Wu, The 2D magnetohydrodynamic equations with partial or fractional dissipation, Lect. Anal. Nonlinear Partial Differ. Equ., 5 (2018), 283–332.
    [24] J, Wu, X. Zhai, Global small solutions to the 3D compressible viscous non-resistive MHD system, Math. Models Meth. Appl. Sci., 33 (2023), 2629–2656. http://dx.doi.org/10.1142/s0218202523500574 doi: 10.1142/s0218202523500574
    [25] L. Xu, P. Zhang, Global small solutions to three-dimensional incompressible magnetohydrodynamical system, SIAM J. Math. Anal., 47 (2015), 26–65. http://dx.doi.org/10.1137/14095515X doi: 10.1137/14095515X
    [26] W. Ye, Z. Yin, Global well-posedness for the non-viscous MHD equations with magnetic diffusion in critical Besov spaces, Acta Math. Sin. (Engl. Ser.), 38 (2022), 1493–1511. http://dx.doi.org/10.1007/s10114-022-1400-3 doi: 10.1007/s10114-022-1400-3
    [27] X. Zhai, Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differ. Equations, 374 (2023), 267–278. http://dx.doi.org/10.1016/j.jde.2023.07.033 doi: 10.1016/j.jde.2023.07.033
    [28] T. Zhang, Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field, J. Differential Equations, 260 (2016), 5450–5480. http://dx.doi.org/10.1016/j.jde.2015.12.005 doi: 10.1016/j.jde.2015.12.005
    [29] Y. Zhao, X. Zhai, Global small solutions to the 3D MHD system with a velocity damping term, Appl. Math. Lett., 121 (2021), 107481. http://dx.doi.org/10.1016/j.aml.2021.107481 doi: 10.1016/j.aml.2021.107481
    [30] Y. Zhou, Y. Zhu, Global classical solutions of 2D MHD system with only magnetic diffusion on periodic domain, J. Math. Phys., 59 (2018), 081505. http://dx.doi.org/10.1063/1.5018641 doi: 10.1063/1.5018641
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(104) PDF downloads(17) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog