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1. Introduction

1.1. Model and related studies

MHD is a discipline that studies the interaction between electric and magnetic fields in conductive
fluids based on fluid mechanics. The Navier-Stokes equations in fluid mechanics and the Maxwell
equations in electrodynamics contribute to the fundamental equations of the MHD system of equations.
The MHD equations are also of great interest in mathematics. The following is the standard expression
for the incompressible MHD equations:

∂tu + u · ∇u = µ∆u − ∇P + B · ∇B,
∂tB + u · ∇B = η∆B + B · ∇u,
∇ · u = 0, ∇ · B = 0,

(1.1)

where u = u(x, t), B = B(x, t) and P = P(x, t) represent the velocity field, the magnetic field and the
pressure, respectively. µ denotes the viscosity coefficient and η the diffusion coefficient.

In this paper, we study the 2D incompressible MHD equations without magnetic diffusion and
kinetic viscosity with damping only in the vertical component of the velocity equation in the periodic
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domain T2, 
∂tu + u · ∇u + ∇P + ν (0, u2)> = B · ∇B, x ∈ T2, t > 0,
∂tB + u · ∇B = B · ∇u, x ∈ T2, t > 0,
∇ · u = 0, ∇ · B = 0, x ∈ T2, t > 0,

(1.2)

where the parameter ν > 0 denotes the damping coefficient, and the 2D periodic domain is defined by
T2 = [−π, π]2.

In the whole plane R2, the global well-posedness and stability of the 2D incompressible MHD
equations without magnetic diffusion with damping only in the vertical component of velocity
equations remain unknown. If the magnetic field is ignored, the system reduces to Euler-like equations
with an additional Riesz transform-type term, and the global well-posedness of the Euler-like equations
remains an open problem in R2.

In recent years, important progresses have been made on the MHD equations. For the case of a
viscous and resistive MHD system, the MHD system is globally well-posed in the 2D space (see [1,8]).
For the case of inviscid and non-resistive MHD systems, Bardos, Sulem, and Sulem [3] proved their
global well-posedness. For cases when only viscosity exists, please refer to [11, 19, 20], and only
magnetic diffusion exists, please refer to [15, 21, 26]. For more results of these two dissipation cases
above, see [2, 7, 25]. Ji, Lin, Wu, and Yan [10] proved the stability of the 2D MHD equations with
mixed partial dissipation, and Ji and Li [9] studied the global regularity of 2 1

2 -D MHD equations with
mixed dissipation diffusion. For more results on the MHD equations with mixed partial dissipation
or fractional dissipation, please see [22, 23]. Prompted by Lin and Zhang [16], there’s been a lot of
research on the global well-posedness of the MHD system near a constant equilibrium (see [17,28,30]).

In addition, there are some results on the 2D MHD system involving damping in the equation
of the velocity. Boardman, Lin, and Wu [4] proved the stability for the MHD equations with vertical
velocity damping and full magnetic diffusion. Chen, Lin, and Wu [5] improved the work to the vertical
magnetic diffusion even further. Afterward, Lin and Zhang [18] proved the global well-posedness
of the 2D MHD equations with horizontal magnetic diffusion and vertical damping in the velocity
equation in T × R. Besides, Lai, Wu, and Zhang [13, 14] studied the stability of a 2D MHD system
with horizontal velocity damping and vertical damping in the magnetic equation.

Moreover, by using the Diophantine condition, Wu and Zhai [24] proved the global small solutions
of the 3D compressible viscous non-resistive MHD system. Chen, Zhang, and Zhou [6] proved the
global well-posedness of a 3D MHD system in T3. Compared with [6], the results of Zhai [27] reduces
the regularity requirement on initial data. Zhao and Zhai [29] proved the global small solutions to the
3D MHD system with a velocity damping term. Compared to the velocity damping term in [29], in
this paper, we require only its second component.

Let n ∈ R2 satisfy the so-called Diophantine condition: for any k ∈ Z2\{0}

|n · k| ≥
c
|k|r

, (1.3)

for some c > 0 and r > 1. Moreover, as demonstrated in [6].
The perturbation (u,b) with

b := B − n,

our Eq (1.2) becomes
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∂tu + u · ∇u + ν (0, u2)> + ∇P = b · ∇b + n · ∇b, x ∈ T2, t > 0,
∂tb + u · ∇b = b · ∇u + n · ∇u, x ∈ T2, t > 0,
∇ · u = 0, ∇ · b = 0, x ∈ T2, t > 0,
u(x, 0) = u0(x), b(x, 0) = b0(x).

(1.4)

1.2. Main result

The main result of the paper is stated as follows.

Theorem 1.1. For any γ ≥ 4r + 11 with r > 1. Consider (1.4) with initial data (u0,b0) ∈ Hγ(T2) with
∇ · u0 = ∇ · b0 = 0. There exists a constant ε such that, if

‖(u0,b0)‖Hγ ≤ ε,∫
T

u0dx1 =

∫
T2

b0dx = 0, (1.5)

then there exists a global solution (u,b) ∈ C([0,+∞) ; Hγ) to system (1.4) satisfying

‖u(t)‖Hγ + ‖b(t)‖Hγ ≤ Cε,

‖u(t)‖Hr+5 + ‖b(t)‖Hr+5 ≤ C(1 + t)−
3
2 .

Moreover, for any t ≥ 0 and r + 5 < α < γ, there holds

‖u(t)‖Hα + ‖b(t)‖Hα ≤ C(1 + t)−
3(γ−α)

2(γ−r−5) .

Remark 1.2. If the initial data (u0,b0) satisfies (1.5), for sufficiently regular solutions to the
system (1.4), this property will be conserved in time,∫

T2
u dx =

∫
T2

b dx = 0, (1.6)

using the two-dimensional Biot-Savart law, u2 = ∂1∆
−1ω, combined with the system (1.4), we can get

d
dt

∫
T2 b dx = d

dt

∫
T2 u dx = 0.

1.3. Purpose and difficulties

According to previous studies on 2D MHD equations with a velocity damping term, it was found
that the magnetic equation is either fully dissipative or partially dissipative. Our work focuses on the
challenging problem of the global well-posedness of the 2D incompressible MHD equations without
magnetic diffusion and kinetic viscosity with vertical velocity damping.

Due to the absence of magnetic diffusion and horizontal velocity damping, proving the theorem
is challenging. Indeed, the construction of global solutions to the incompressible non-resistive MHD
system with vertical velocity damping remains an open problem, even with small initial data in T2.
This work represents a meaningful step forward. It establishes the global well-posedness and stability
of solutions near background magnetic fields that satisfy a Diophantine condition.
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2. PRELIMINARIES

Some useful inequalities and properties are provided in this section for assistance in demonstrating
our main result.

Lemma 2.1. If n ∈ R2 satisfies the Diophantine condition (1.3), then it holds that

‖ f ‖Hs ≤ C‖n · ∇ f ‖Hs+r , (2.1)

for any s ∈ R, if ∇ f ∈ H s+r(T2) satisfies
∫
T2 f dx = 0.

The proof of the above lemma is provided in [27].

Lemma 2.2. Let s ≥ 0. The following inequalities hold

‖ f g‖Hs ≤ C(‖ f ‖L∞‖g‖Hs + ‖ f ‖Hs‖g‖L∞),
‖[Λs, f · ∇]g‖L2 ≤ C(‖∇ f ‖L∞‖Λsg‖L2 + ‖Λs f ‖L2‖∇g‖L∞),

where [a, b] = ab − ba is the commutator; please refer to [12] for details.

Lemma 2.3. Define ū = 1
2π

∫
T

u(x1, x2)dx1, let u be a smooth solution to (1.4) on [0,∞)×T2 satisfying∫
T

u dx1 = 0 , there holds

‖u‖L2(T2) ≤ C‖∂1u‖L2(T2). (2.2)

Because the integral average of u equals zero in the x1 direction, we have used Poincáre inequality.

3. Proof of theorem

The proof of Theorem 1.1 is highlighted below. First, denote Λ =
√
−∆ and 〈a, b〉 the L2(T2)

inner product of a and b. By using incompressible conditions, we can easily obtain:

‖∂1u‖L2 = ‖∇u2‖L2 . (3.1)

The standard energy method might be used to demonstrate the local well-posedness of (1.4) given
the initial data (u0,b0) ∈ Hγ. As a result, we can assume that there is a T > 0, which means that there
is only one solution for (u,b) ∈ C([0,T ]; Hγ) to system (1.4).

We demonstrate that this local solution can be expanded to a global one using the bootstrapping
argument. Theorem 1.1 is to derive a global a priori upper bound. For some 0 < δ < 1 to be specified
later, we assume that

sup
t∈[0,T ]

(‖u‖Hγ + ‖b‖Hγ) ≤ δ, (3.2)

in order to initiate the bootstrapping argument. Under the assumption (1.5′),

‖u0‖Hγ + ‖b0‖Hγ ≤ ε,

where ε > 0 is sufficiently small, our goal is to get

sup
t∈[0,T ]

(‖u‖Hγ + ‖b‖Hγ) ≤
δ

2
. (3.3)

Then the intended global bound is reached via the bootstrapping argument.
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3.1. Basic energy estimates

Taking the L2-inner product of (1.4) with (u,b), integrating by parts, we can obtain the standard
basic energy estimate,

1
2

d
dt

(‖u‖2L2 + ‖b‖2L2) + ν‖u2‖
2
L2 = 0, (3.4)

where we have used

〈u · ∇u,u〉 = 〈u · ∇b,b〉 = 0,
〈b · ∇b,u〉 + 〈b · ∇u,b〉 = 0,
〈n · ∇b,u〉 + 〈n · ∇u,b〉 = 0,

due to the incompressible condition ∇ · u = 0 and ∇ · b = 0.

3.2. Higher energy estimates

To get the higher energy estimates, the purpose of this subsection is to prove the following lemma.

Lemma 3.1. For any β ∈ [0, γ] and t ∈ [0,T ], it holds that

1
2

d
dt

(‖u(t)‖2Hβ + ‖b(t)‖2Hβ) + ν‖u2‖
2
Hβ ≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖u(t)‖2Hβ + ‖b(t)‖2Hβ). (3.5)

Proof. Operating Λk(1 ≤ k ≤ β) on (1.4) and using a commutator argument, we have
∂tΛ

ku + u · ∇Λku + Λk∇p + νΛk(0, u2)>

= Λk(n · ∇b) + b · ∇Λkb − [Λk,u · ∇]u + [Λk,b · ∇]b,
∂tΛ

kb + u · ∇Λkb = Λk(n · ∇u) + b · ∇Λku − [Λk,u · ∇]b + [Λk,b · ∇]u.

Taking L2 inner product with Λku,Λkb, we obtain

1
2

d
dt

(‖Λku‖2L2 + ‖Λkb‖2L2) + ν‖Λku2‖
2
L2 =

〈
[Λk,b · ∇]b,Λku

〉
−

〈
[Λk,u · ∇]u,Λku

〉
+

〈
[Λk,b · ∇]u,Λkb

〉
−

〈
[Λk,u · ∇]b,Λkb

〉
, (3.6)

where we have used 〈
u · ∇Λku,Λku

〉
=

〈
Λk∇P,Λku

〉
=

〈
u · ∇Λkb,Λkb

〉
= 0,〈

b · ∇Λkb,Λku
〉

+
〈
b · ∇Λku,Λkb

〉
= 0,〈

Λk(n · ∇b),Λku
〉

+
〈
Λk(n · ∇u),Λkb

〉
= 0.

By Lemma 2.2, we have

‖[Λk,u · ∇]u‖L2 + ‖[Λk,b · ∇]b‖L2 ≤ C(‖∇u‖L∞‖Λku‖L2 + ‖Λkb‖L2‖∇b‖L∞),
‖[Λk,u · ∇]b‖L2 + ‖[Λk,b · ∇]u‖L2 ≤ C(‖∇u‖L∞‖Λkb‖L2 + ‖Λku‖L2‖∇b‖L∞).
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As a result, applying the above two estimates and the Cauchy’s inequality, we can get the bound of the
right-hand side of (3.6),

|
〈
[Λk,b · ∇]b,Λku

〉
| ≤ C‖∇b‖L∞‖Λkb‖L2‖Λku‖L2

≤ C‖∇b‖L∞(‖Λku‖2L2 + ‖Λkb‖2L2), (3.6′)

|
〈
[Λk,b · ∇]u,Λkb

〉
| ≤ C(‖∇u‖L∞‖Λkb‖L2 + ‖Λku‖L2‖∇b‖L∞)‖Λkb‖L2

≤ C(‖∇u‖L∞‖Λkb‖2L2 + ‖∇b‖L∞(‖Λku‖2L2 + ‖Λkb‖2L2)). (3.6′′)

Similarly,

|
〈
[Λk,u · ∇]u,Λku

〉
| ≤ C‖∇u‖L∞‖Λku‖2L2 , (3.6′′′)

|
〈
[Λk,u · ∇]b,Λkb

〉
| ≤ C(‖∇u‖L∞‖Λkb‖2L2 + ‖∇b‖L∞(‖Λku‖2L2 + ‖Λkb‖2L2)). (3.6′′′′)

Plugging the (3.6 ′)-(3.6 ′′′′) into (3.6) yields

1
2

d
dt

(‖Λku‖2L2 + ‖Λkb‖2L2) + ν‖Λku2‖
2
L2 ≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖Λku‖2L2 + ‖Λkb‖2L2), (3.7)

which is the desired estimate (3.5). �

3.3. The dissipation of the magnetic field

The MHD system under consideration in this paper is not subject to magnetic diffusion. It is
necessary to take advantage of the hidden dissipation caused by the background magnetic field. This
subsection will show how to find the upper bound stated in the following lemma.

Lemma 3.2. For any γ ≥ r + 4 with r > 1. Assume that

sup
t∈[0,T ]

(‖u‖Hγ + ‖b‖Hγ) ≤ δ, (3.8)

for some 0 < δ < 1. Then there holds that

‖n · ∇b‖2Hr+3 −
∑

0≤s≤r+3

d
dt
〈Λsu,Λs(n · ∇b)〉 ≤ (2 + Cδ)‖u‖2Hr+4 + Cδ2‖b‖2H3 . (3.9)

Proof. Applying Λs(0 ≤ s ≤ r + 3) to the first equation of (1.4) and multiplying it by Λs(n · ∇b), then
taking L2-inner product over T2, we obtain

‖Λs(n · ∇b)‖2L2 = 〈Λs∂tu,Λs(n · ∇b)〉 + 〈Λs(u · ∇u),Λs(n · ∇b)〉
+

〈
Λs(0, u2)>,Λs(n · ∇b)

〉
− 〈Λs(b · ∇b),Λs(n · ∇b)〉 . (3.10)

Using Hölder’s inequality and Young’s inequality,

〈Λs(u · ∇u),Λs(n · ∇b)〉 ≤C‖Λs(u · ∇u)‖L2‖Λs(n · ∇b)‖L2

AIMS Mathematics Volume 9, Issue 12, 36371–36384.



36377

≤C(‖u‖L∞‖∇u‖Hs + ‖∇u‖L∞‖u‖Hs)‖Λs(n · ∇b)‖L2

≤ε‖Λs(n · ∇b)‖2L2 + Cδ‖∇u‖2Hs . (3.11)

By (3.9), similarly, 〈
Λs(0, u2)>,Λs(n · ∇b)

〉
≤ C‖Λsu2‖L2‖Λs(n · ∇b)‖L2

≤ ε‖Λs(n · ∇b)‖2L2 + C‖u2‖
2
Hs

≤ ε‖Λs(n · ∇b)‖2L2 + C‖u‖2Hs , (3.12)

and

〈Λs(b · ∇b),Λs(n · ∇b)〉 ≤C‖Λs(b · ∇b)‖L2‖Λs(n · ∇b)‖L2

≤C(‖b‖L∞‖∇b‖Hs + ‖∇b‖L∞‖b‖Hs)‖Λs(n · ∇b)‖L2

≤C(‖b‖H2‖b‖Hs+1 + ‖∇b‖H2‖b‖Hs)‖Λs(n · ∇b)‖L2

≤ε‖Λs(n · ∇b)‖2L2 + C‖b‖2Hs+1‖b‖2H3

≤ε‖Λs(n · ∇b)‖2L2 + C‖b‖2Hr+4‖b‖2H3

≤ε‖Λs(n · ∇b)‖2L2 + C‖b‖2Hγ‖b‖2H3

≤ε‖Λs(n · ∇b)‖2L2 + Cδ2‖b‖2H3 , (3.13)

where we have used assumption (3.2).
Subsequently, to control the first-time derivative term on the right-hand side of (3.10), we make

use of the second equation in (1.4) and obtain

〈Λs∂tu,Λs(n · ∇b)〉 =
d
dt
〈Λsu,Λs(n · ∇b)〉 − 〈Λsu,Λs(n · ∇∂tb)〉

=
d
dt
〈Λsu,Λs(n · ∇b)〉 + 〈Λs(n · ∇u),Λs(b · ∇u)〉

+ 〈Λs(n · ∇u),Λs(n · ∇u)〉 − 〈Λs(n · ∇u),Λs(u · ∇b)〉

=:
d
dt
〈Λsu,Λs(n · ∇b)〉 + J1 + J2 + J3.

By Lemma 2.2 and (3.8), we get

|J1| ≤ ‖Λ
s(n · ∇u)‖L2‖Λs(b · ∇u)‖L2

≤ C‖Λs(n · ∇u)‖L2(‖b‖L∞‖∇u‖Hs + ‖b‖Hs‖∇u‖L∞)
≤ C‖Λs(n · ∇u)‖L2(‖b‖H2‖∇u‖Hs + ‖b‖Hγ‖∇u‖H2)
≤ C‖Λs(n · ∇u)‖L2(‖b‖Hγ‖∇u‖Hs + ‖b‖Hγ‖∇u‖H2)
≤ Cδ‖u‖Hs+1(‖∇u‖Hs + ‖∇u‖H2)
≤ Cδ‖u‖2Hs+1 + Cδ‖u‖Hs+1‖u‖H3 ,

|J2| ≤ ‖n · ∇u‖2Hs ≤ ‖∇u‖2Hs .

Likewise,

|J3| ≤ ‖Λ
s(n · ∇u)‖L2‖Λs(u · ∇b)‖L2
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≤ C‖Λs(n · ∇u)‖L2(‖u‖L∞‖∇b‖Hs + ‖u‖Hs‖∇b‖L∞)
≤ C‖Λs(n · ∇u)‖L2(‖u‖H2‖b‖Hγ + ‖u‖Hs‖b‖Hγ)
≤ Cδ‖u‖Hs+1(‖u‖Hs + ‖u‖H2)
≤ Cδ‖u‖2Hs+1 + Cδ‖u‖Hs+1‖u‖H3 .

This shows that

〈Λs∂tu,Λs(n · ∇b)〉 ≤
d
dt
〈Λsu,Λs(n · ∇b)〉 + (1 + Cδ)‖u‖2Hs+1 + Cδ‖u‖Hs+1‖u‖H3 . (3.14)

For any 0 ≤ s ≤ r + 3 and r > 1, summing up (3.10)–(3.14) and taking δ small enough, we get the
result of Lemma 3.2. �

3.4. Proof of Theorem 1.1

There are no dissipative terms in equations u and b in (1.4). However, in order to demonstrate the
intended stability results, we do require these stabilizing effects. We solve this difficulty by combining
Lemma 2.3 and n · ∇b.

First, taking β = r + 5 in Lemma 3.1,

1
2

d
dt

(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5) + ν‖u2‖
2
Hr+5

≤ C(‖∇u‖L∞ + ‖∇b‖L∞)(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5). (3.15)

Multiplying (3.15) by a suitable large constant λ and then adding it to (3.9), we have

d
dt

λ(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5) −
∑

0≤s≤r+3

〈Λsu,Λs(n · ∇b)〉


+ λ‖u2‖

2
Hr+5 + ‖n · ∇b‖2Hr+3

≤ Cλ‖∇u‖L∞‖u‖2Hr+5 + Cλ‖∇u‖L∞‖b‖2Hr+5 + Cλ‖∇b‖L∞‖u‖2Hr+5

+ Cλ‖∇b‖L∞‖b‖2Hr+5 + (2 + Cδ)‖u‖2Hr+4 + Cδ2‖b‖2H3 , (3.16)

where λ > 1 is a constant to be determined later.
The terms on the right-hand side of (3.16) can be bounded. Next, for any γ ≥ 2r + 7, by (3.1),

Lemma 2.1, 2.3, and the interpolation inequality, we have

‖b‖2H3 ≤ C‖n · ∇b‖2Hr+3 ,

‖b‖2Hr+5 ≤ C‖b‖H3‖b‖Hγ ≤ Cδ‖n · ∇b‖Hr+3 ,

‖u‖2Hr+4 ≤ ‖∂1u‖2Hr+4 ≤ ‖u2‖
2
Hr+5 ,

‖u‖2Hr+5 ≤ C‖u‖H3‖u‖Hγ ≤ Cδ‖u‖H3 ≤ Cδ‖u‖Hr+4 , (3.17)

which gives

‖b‖4Hr+5 ≤ Cδ2‖n · ∇b‖2Hr+3 ,

‖u‖4Hr+5 ≤ Cδ2‖u‖2Hr+4 . (3.18)
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By Young’s inequality, (2.2), (3.1), (3.17), and (3.18), we get

Cλ‖∇u‖L∞‖u‖2Hr+5 ≤Cλ‖∇u‖H2‖u‖2Hr+5

≤λ(ε‖u‖2H3 + C‖u‖4Hr+5)
≤λε‖u‖2Hr+4 + Cλδ2‖u‖2Hr+4

≤λε‖∂1u‖2Hr+4 + Cλδ2‖∂1u‖2Hr+4

≤λε‖∇u2‖
2
Hr+4 + Cλδ2‖∇u2‖

2
Hr+4

≤λε‖u2‖
2
Hr+5 + Cλδ2‖u2‖

2
Hr+5 ,

Cλ‖∇u‖L∞‖b‖2Hr+5 ≤Cλ‖∇u‖H2‖b‖2Hr+5

≤λε‖u‖2Hr+4 + C‖b‖4Hr+5

≤λε‖∂1u‖2Hr+4 + Cδ2‖n · ∇b‖2Hr+3

≤λε‖u2‖
2
Hr+5 + Cδ2‖n · ∇b‖2Hr+3 . (3.19)

Similarly,

Cλ‖∇b‖L∞‖u‖2Hr+5 ≤Cλ‖b‖H3‖u‖2Hr+5

≤λε‖n · ∇b‖2Hr+3 + Cλ‖u‖4Hr+5

≤λε‖n · ∇b‖2Hr+3 + Cλδ2‖u2‖
2
Hr+5 ,

Cλ‖∇b‖L∞‖b‖2Hr+5 ≤Cλ‖b‖H3‖b‖2Hr+5

≤Cλ‖n · ∇b‖Hr+3(Cδ‖n · ∇b‖Hr+3)
≤Cλδ‖n · ∇b‖2Hr+3 . (3.20)

Hence, inserting (3.17)–(3.20) in (3.16), we obtain

d
dt

λ(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5) −
∑

0≤s≤r+3

〈Λsu,Λs(n · ∇b)〉


+ λ‖u2‖

2
Hr+5 + ‖n · ∇b‖2Hr+3

≤ (Cλδ2 + 2 + Cδ + 2λε)‖u2‖
2
Hr+5 + (Cλδ + Cδ2 + λε)‖n · ∇b‖2Hr+3 . (3.21)

Taking δ, ε > 0 small enough, we get

d
dt

λ(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5) −
∑

0≤s≤r+3

〈Λsu,Λs(n · ∇b)〉


+
λ

2
‖u2‖

2
Hr+5 +

1
2
‖n · ∇b‖2Hr+3

≤ 0. (3.22)

Define

E(t) = λ(‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5) −
∑

0≤s≤r+3

〈Λsu,Λs(n · ∇b)〉 ,

D(t) = λ‖u2‖
2
Hr+5 + ‖n · ∇b‖2Hr+3 ,
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then (3.22) becomes

d
dt

E(t) +
1
2

D(t) ≤ 0. (3.23)

We take λ > 1 so that

E(t) ≥ (‖u(t)‖2Hr+5 + ‖b(t)‖2Hr+5).

For any γ ≥ 4r + 11, we use interpolation inequality

‖b‖2Hr+5 ≤ ‖b‖
3
2
H3‖b‖

1
2
Hγ ≤ Cδ

1
2 ‖n · ∇b‖

3
2
Hr+3 ,

which implies

E(t) ≤ C(‖u‖2Hr+5 + ‖b‖2Hr+5)

≤ C‖u‖
3
2
H3‖u‖

1
2
Hγ + ‖b‖

3
2
H3‖b‖

1
2
Hγ

≤ Cδ
1
2 ‖n · ∇u‖

3
2
Hr+3 + Cδ

1
2 ‖n · ∇b‖

3
2
Hr+3

≤ Cδ
1
2 ‖u‖

3
2
Hr+4 + Cδ

1
2 ‖n · ∇b‖

3
2
Hr+3

≤ Cδ
1
2 ‖∂1u‖

3
2
Hr+4 + Cδ

1
2 ‖n · ∇b‖

3
2
Hr+3

≤ Cδ
1
2 ‖u2‖

3
2

Hr+5 + Cδ
1
2 ‖n · ∇b‖

3
2
Hr+3

≤ C(D(t))
3
4 ,

i.e., D(t) ≥ C(E(t))
4
3 for some C > 0. Thus, inserting this inequality in (3.23), we get

d
dt

E(t) + c(E(t))
4
3 ≤ 0.

Integrating this inequality gives

E(t) ≤ C(1 + t)−3. (3.24)

Thus, by (3.24), we can demonstrate the decay rate

‖u(t)‖Hr+5 + ‖b(t)‖Hr+5 ≤ C(1 + t)−
3
2 ,

for any t ∈ [0,+∞).
Next, for any α > r + 5, choosing γ > α, we have the following interpolation inequality

‖ f (t)‖Hα ≤ ‖ f (t)‖
γ−α
γ−r−5

Hr+5 ‖ f (t)‖
α−r−5
γ−r−5

Hγ . (3.25)

In the end, in order to get the stability of u and b in the desired Sobolev space, we need to sacrifice
some decay of u and b in much higher space. Inserting (3.25) in (3.24), we obtain

‖u(t)‖Hα + ‖b(t)‖Hα ≤ C(1 + t)−
3(γ−α)

2(γ−r−5) .
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36381

Then using Sobolev’s inequalities and Lemma 3.1 with β = γ, for any γ ≥ 4r + 11, we obtain

d
dt

(‖u(t)‖2Hγ + ‖b(t)‖2Hγ) ≤ C(‖u‖H3 + ‖b‖H3)(‖u(t)‖2Hγ + ‖b(t)‖2Hγ).

Obviously, (3.24) implies the decay upper bound∫ t

0
(‖u(τ)‖H3 + ‖b(τ)‖H3) dτ ≤ C.

By Gronwall inequality, we have

‖u‖2Hγ + ‖b‖2Hγ ≤C(‖u0‖
2
Hγ + ‖b0‖

2
Hγ) exp(

∫ t

0
(‖u(τ)‖H3 + ‖b(τ)‖H3) dτ)

≤C(‖u0‖
2
Hγ + ‖b0‖

2
Hγ)

≤Cε2.

Taking ε small enough so that
√

Cε ≤ δ
2 , we have

‖u‖Hγ + ‖b‖Hγ ≤
δ

2
.

Consequently, the bootstrapping argument suggests that the local solution can eventually be expanded
to a global one.

This completes the proof of Theorem 1.1. �

4. Conclusions

Based on the above proof process of the theorem, we can obtain that there has a global solution
(u,b) ∈ C([0,+∞) ; Hγ) to system (1.4) satisfying

‖u(t)‖Hγ + ‖b(t)‖Hγ ≤ Cε,

‖u(t)‖Hr+5 + ‖b(t)‖Hr+5 ≤ C(1 + t)−
3
2 .

Moreover, for any t ≥ 0 and r + 5 < α < γ, there holds

‖u(t)‖Hα + ‖b(t)‖Hα ≤ C(1 + t)−
3(γ−α)

2(γ−r−5) .
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Mech. Anal., 46 (1972), 241–279. http://dx.doi.org/10.1007/BF00250512

9. R. Ji, S. Li, Global well-posedness for MHD system with mixed partial dissipation
and magnetic diffusion in 2 1

2 dimensions, Appl. Math. Comput., 258 (2015), 325–341.
http://dx.doi.org/10.1016/j.amc.2015.01.078

10. R. Ji, H. Lin, J. Wu, L. Yan, Stability for a system of the 2D magnetohydrodynamic
equations with partial dissipation, Appl. Math. Lett., 94 (2019), 244–249.
http://dx.doi.org/10.1016/j.aml.2019.03.013

AIMS Mathematics Volume 9, Issue 12, 36371–36384.

http://dx.doi.org/http://dx.doi.org/10.1017/S0308210506001181
http://dx.doi.org/http://dx.doi.org/10.1002/cpa.21645
http://dx.doi.org/http://dx.doi.org/10.1090/S0002-9947-1988-0920153-5
http://dx.doi.org/http://dx.doi.org/10.1137/20M1324776
http://dx.doi.org/http://dx.doi.org/10.1111/sapm.12551
http://dx.doi.org/http://dx.doi.org/10.1007/s11425-021-1861-y
http://dx.doi.org/http://dx.doi.org/10.1007/s00205-018-1265-x
http://dx.doi.org/http://dx.doi.org/10.1007/s00205-018-1265-x
http://dx.doi.org/http://dx.doi.org/10.1007/BF00250512
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2015.01.078
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2019.03.013


36383

11. R. Ji, J. Wu, The resistive magnetohydrodynamic equation near an equilibrium, J. Differ. Equ., 268
(2020), 1854–1871. http://dx.doi.org/10.1016/j.jde.2019.09.027

12. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure
Appl. Math., 41 (1988), 891–907. http://dx.doi.org/10.1002/cpa.3160410704

13. S. Lai, J. Wu, J. Zhang, Stabilizing phenomenon for 2D anisotropic magnetohydrodynamic
system near a background magnetic field, SIAM J. Math. Anal., 53 (2021), 6073–6093.
http://dx.doi.org/10.1137/21M139791X

14. S. Lai, J. Wu, J. Zhang, Stabilizing effect of magnetic field on the 2D ideal magnetohydrodynamic
flow with mixed partial damping, Calculus Var. Partial Differ. Equations, 61 (2022), 126.
http://dx.doi.org/10.1007/s00526-022-02230-7

15. Z. Lei, Y. Zhou, BKM’s criterion and global weak solutions for magnetohydrodynamics with zero
viscosity, Discrete. Dyn. Syst., 25 (2009), 575–583. http://dx.doi.org/10.3934/dcds.2009.25.575

16. F. Lin, P. Zhang, Global small solutions to MHD-type system: the three-dimensional case, Comm.
Pure Appl. Math., 67 (2014), 531–580. http://dx.doi.org/10.1002/cpa.21506

17. F. Lin, L. Xu, P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differ.
Equations, 259 (2015), 5440–5485. http://dx.doi.org/10.1016/j.jde.2015.06.034

18. H. Lin, H. Zhang, Global well-posedness and decay of the 2D incompressible
MHD equations with horizontal magnetic diffusion, J. Math. Phys., 64 (2023), 1–15.
http://dx.doi.org/10.1063/5.0155296

19. R. Pan, Y. Zhou, Y. Zhu, Global classical solutions of three dimensional viscous MHD system
without magnetic diffusion on periodic boxes, Arch. Ration. Mech. Anal., 227 (2018), 637–662.
http://dx.doi.org/10.1007/s00205-017-1170-8

20. X. Ren, J. Wu, Z. Xiang, Z. Zhang, Global existence and decay of smooth solution for
the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267 (2014), 503–541.
http://dx.doi.org/10.1016/j.jfa.2014.04.020

21. D. Wei, Z. Zhang, Global well-posedness for the 2-D MHD equations with magnetic diffusion,
Comm. Math. Res., 36 (2020), 377–389. http://dx.doi.org/10.4208/cmr.2020-0022

22. J. Wu, Generalized MHD equations, J. Differ. Equations, 195 (2003), 284–312.
http://dx.doi.org/10.1016/j.jde.2003.07.007

23. J. Wu, The 2D magnetohydrodynamic equations with partial or fractional dissipation, Lect. Anal.
Nonlinear Partial Differ. Equ., 5 (2018), 283–332.

24. J, Wu, X. Zhai, Global small solutions to the 3D compressible viscous non-
resistive MHD system, Math. Models Meth. Appl. Sci., 33 (2023), 2629–2656.
http://dx.doi.org/10.1142/s0218202523500574

25. L. Xu, P. Zhang, Global small solutions to three-dimensional incompressible
magnetohydrodynamical system, SIAM J. Math. Anal., 47 (2015), 26–65.
http://dx.doi.org/10.1137/14095515X

26. W. Ye, Z. Yin, Global well-posedness for the non-viscous MHD equations with magnetic
diffusion in critical Besov spaces, Acta Math. Sin. (Engl. Ser.), 38 (2022), 1493–1511.
http://dx.doi.org/10.1007/s10114-022-1400-3

AIMS Mathematics Volume 9, Issue 12, 36371–36384.

http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2019.09.027
http://dx.doi.org/http://dx.doi.org/10.1002/cpa.3160410704
http://dx.doi.org/http://dx.doi.org/10.1137/21M139791X
http://dx.doi.org/http://dx.doi.org/10.1007/s00526-022-02230-7
http://dx.doi.org/http://dx.doi.org/10.3934/dcds.2009.25.575
http://dx.doi.org/http://dx.doi.org/10.1002/cpa.21506
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2015.06.034
http://dx.doi.org/http://dx.doi.org/10.1063/5.0155296
http://dx.doi.org/http://dx.doi.org/10.1007/s00205-017-1170-8
http://dx.doi.org/http://dx.doi.org/10.1016/j.jfa.2014.04.020
http://dx.doi.org/http://dx.doi.org/10.4208/cmr.2020-0022
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2003.07.007
http://dx.doi.org/http://dx.doi.org/10.1142/s0218202523500574
http://dx.doi.org/http://dx.doi.org/10.1137/14095515X
http://dx.doi.org/http://dx.doi.org/10.1007/s10114-022-1400-3


36384

27. X. Zhai, Stability for the 2D incompressible MHD equations with only magnetic diffusion, J. Differ.
Equations, 374 (2023), 267–278. http://dx.doi.org/10.1016/j.jde.2023.07.033

28. T. Zhang, Global solutions to the 2D viscous, non-resistive MHD system with
large background magnetic field, J. Differential Equations, 260 (2016), 5450–5480.
http://dx.doi.org/10.1016/j.jde.2015.12.005

29. Y. Zhao, X. Zhai, Global small solutions to the 3D MHD system with a velocity damping term,
Appl. Math. Lett., 121 (2021), 107481. http://dx.doi.org/10.1016/j.aml.2021.107481

30. Y. Zhou, Y. Zhu, Global classical solutions of 2D MHD system with only magnetic diffusion on
periodic domain, J. Math. Phys., 59 (2018), 081505. http://dx.doi.org/10.1063/1.5018641

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 12, 36371–36384.

http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2023.07.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.jde.2015.12.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2021.107481
http://dx.doi.org/http://dx.doi.org/10.1063/1.5018641
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model and related studies
	Main result
	Purpose and difficulties

	PRELIMINARIES
	Proof of theorem
	Basic energy estimates
	Higher energy estimates
	The dissipation of the magnetic field
	Proof of Theorem 1.1

	Conclusions

