AIMS Mathematics, 7(3): 3939-3958.
ATIMS Mathematics DOI:10.3934/math.2022217
g : Received: 01 August 2021
o Accepted: 28 November 2021
http://www.aimspress.com/journal/Math Published: 10 December 2021

Research article

Fractional Ostrowski type inequalities for differentiable harmonically
convex functions

Thanin Sitthiwirattham', Muhammad Aamir Ali>*, Hiiseyin Budak?, Sotiris K. Ntouyas*> and
Chanon Promsakon®

! Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok,

10300, Thailand

Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal
University, Nanjing, 210023, China

Department of Mathematics, Faculty of Science and Arts, Diizce University, Diizce-Turkey
Department of Mathematics, University of loannina, 451 10 Ioannina, Greece

Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of
Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi
Arabia

Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of
Technology North Bangkok, Bangkok, 10800, Thailand

* Correspondence: Email: mahr.muhammad.aamir @ gmail.com.

Abstract:  In this paper, we prove some new Ostrowski type inequalities for differentiable
harmonically convex functions using generalized fractional integrals. Since we are using generalized
fractional integrals to establish these inequalities, therefore we obtain some new inequalities of
Ostrowski type for Riemann-Liouville fractional integrals and k-Riemann-Liouville fractional integrals
in special cases. Finally, we give some applications to special means of real numbers for newly
established inequalities.

Keywords: Hermite-Hadamard inequalities; generalized fractional integrals; harmonically convex
functions
Mathematics Subject Classification: 26D07, 26D10, 26D15



http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022217

3940

1. Introduction

In convex functions theory, Hermite-Hadamard inequality is very important which was discovered
by C. Hermite and J. Hadamard independently (see, also [1], and [2, p.137])

?(”1”2)3 ! f?(x)d%sﬂm”ﬂm, (1.1)
2 T — 701 2

where ¥ is a convex function. In the case of concave mappings, the above inequality is satisfied in
reverse order.

Over the last twenty years, numerous studies have focused on obtaining trapezoid and midpoint
type inequalities which give bounds for the right-hand side and left-hand side of the inequality (1.1),
respectively. For example, the authors first obtained trapezoid and midpoint type inequalities for
convex functions in [3] and in [4], respectively. In [5], Sarikaya et al. obtained the inequalities (1.1)
for Riemann-Liouville fractional integrals and the authors also proved some corresponding trapezoid
type inequalities for fractional integrals. Igbal et al. presented some fractional midpoint type
inequalities for convex functions in [6]. Sarikaya and Ertugral [7] introduced the notions of
generalized fractional integrals and proved some Hermite-Hadamard type inequalities for convex
functions. In [8], Budak et al. used the generalized fractional integrals to prove Hermite-Hadamard
type inequalities for twice differentiable convex functions. After that, the authors used generalized
fractional integrals and proved the different variants of integral inequalities in [9-14].

On the other hand, Iscan [15] defined the following class of functions called harmonically convex
functions:

If the mapping ¥ : I € R\ {0} — R satisfies the inequality

T[g +11;0] SoF )+ -0)F (y),

y

for all ¥,y € I and o € [0,1], then ¥ is called harmonically convex function. In the case of
harmonically concave mappings, the above inequality is satisfied in reverse order.

It is worth noting that the harmonic feature has been important in a variety of disciplines in pure
and applied sciences. The authors explore the significance of the harmonic mean in Asian stock
company [16]. Harmonic methods are used in electric circuit theory, which is interesting. The overall
resistance of a set of parallel resistors is just half of the entire resistors’ harmonic mean. If r; and r,
are the resistances of two parallel resistors, the total resistance may be calculated using the following
formula:

rr

1
Vo = =§7‘((”1,1’2),

rn+nr

which is the half of the harmonic mean.

The harmonic mean, according to Noor [17], is also important in the creation of parallel algorithms
for solving nonlinear problems. Several researchers have proposed iterative approaches for solving
linear and nonlinear systems of equations using harmonic means and harmonically convex functions.

Several research articles have recently been published on various generalizations of integral
inequalities using various approaches. For example, Iscan established some new Hermite-Hadamard
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type inequalities for harmonically convex functions and trapezoid type inequalities for this class of
functions in [15]. In [18], i§can and Wu established Hermite-Hadamard type inequalities for
harmonically convex functions via Riemann-Liouville fractional integrals. They also proved some
fractional trapezoid type inequalities for mapping whose derivatives in absolute value are
harmonically convex. Iscan proved Ostrowski type integral inequalities for harmonically s-convex
functions in [19] and in [20], Chen gave an extension of fractional Hermite-Hadamard type
inequalities for harmonically convex functions. Kunt et al. [21] and Set et al. [22] used the
Riemann-Liouville fractional integrals and proved Hermite-Hadamard type inequalities for
harmonically convex functions. In [23], Sanli proved several fractional midpoint type inequalities
utilizing differentiable convex functions. The authors used the generalized fractional integrals and
proved Hermite-Hadamard type inequalities for harmonically convex functions in [24,25]. Mohsen
et al. [26] used the h- harmonically convexity to prove some new Ostrowski type inequalities and
in [27], Akhtar et al. proved a new variant of Ostrowski inequalities for harmonically convex
functions. In the literature there are several papers on the inequalities for harmonically convex
functions. For some recent developments in integral inequalities and harmonically convexity, one can
consult [28-30].

Inspired by the ongoing studies, we use the generalized fractional integrals to develop some new
Ostrowski type inequalities for differentiable harmonically convex functions. We also show that the
newly developed inequalities are extensions of some previously known inequalities.

The following is the structure of this paper: Section 2 provides a brief overview of the fractional
calculus as well as other related studies in this field. In Section 3, we establish Ostrowski type
inequalities for differentiable functions. The relationship between the findings reported here and
similar findings in the literature are also taken into account. We discuss the special cases of newly
established inequalities in Section 4 and obtain several new Ostrowski type inequalities. We give
some applications to special means of real numbers in Section 5. Section 6 concludes with some
recommendations for future research.

2. Preliminaries

In this section, we recall some basic concepts of fractional integrals and related integral inequalities.

Definition 2.1. [7] The left and right-sided generalized fractional integrals given as follows:

xn

R ACE f %T(a)dm %> 7, 2.1)
oI, F () = f %ﬂa)da, % < 1, (2.2)

x

where the function ¢ : [0,00) — [0, c0) satisfies fol @da < oo. For the details about the genrarlized
fractional integrals, one can consult [7].

The most important feature of the generalized fractional integrals is that they generalize some
types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville
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fractional integral, Katugampola fractional integrals, conformable fractional integral, Hadamard
fractional integrals, etc. Few important special cases of the integral operators (2.1) and (2.2) are
mentioned below.

1) Taking ¢ (07) = o, the operators (2.1) and (2.2) reduces to the classical Riemann integrals as follows:

I, F (%)= f F(o)do, »>m,

L, F () :f F(o)do, »x < m.

i1) Taking ¢ (o) = r( ), the operators (2.1) and (2.2) reduces to the well-known Riemann—Liouville
fractional integrals as follows:

J;’j"(% f (¢ — )V F(odo, x>,

T()

J%?"(%) = ﬁ f 2 (o —2) " Fo)do, < .

(1/

iii) Taking ¢ (07) = ka (a) , the operators (2.1) and (2.2) reduces to the well-known k—Riemann-Liouville
fractional integrals as follows:

JEAF () = o j; | (% — )i F(oydo, » >,
T2
T F () = e f (o -2V F(o)do, » <,
where .
I'y (@) :f o"’_le_%do; R(a) >0
0
and

Iy () = k%-lr(%), R(@) > 0: k > 0.

Recently, Zhao et al. used the generalized fractional integrals and proved the following Hermite-
Hadamard type inequalities.

Theorem 2.2. [25] For any harmonically convex mapping, the following inequality holds:

271'17(2 1 @ (7 1
?‘(mﬂrz) < oM {Jl (TOg)( 2)+J”12+(9’0g)(ﬂ—1)}

F (1) + F (r2)
— 5

(2.3)

where g(x) = i and © (o) = fo(r wds < 400.
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Remark 2.3. It is obvious that if we set ¢ (07) = o in inequality (2.3), then we obtain the following
inequality of Hermite-Hadamard type inequality (see, [15]):

¢( 27, ) T, f F () d < T(m)+ T(ﬂz)

T+ M T — M 2

Remark 2.4. It is obvious that if we set ¢ (o) = r(() in inequality (2.3), then we obtain the following
inequality of Hermite-Hadamard type inequality for Riemann-Liouville fractional integrals (see, [18]):

() < N (AR rop(2]e s on(s ]}
T+ 2 T, — T 7 m mt al

F () + F (r2)
< —

(l

Remark 2.5. It is obvious that if we set ¢ (07) = kF (a) in inequality (2.3), then we obtain the following
inequality of Hermite-Hadamard type inequality for k-Riemann Liouville fractional integrals

(see, [25]):

77( 2"‘”2) < krk(mrk)( i )k {J";" ((FOg)(i)JrJ“;" (9f0g)(l)}
T+ m 2 T — T o 10 T T

F () + F (m2)
S

3. Main results

In this section, we prove some new Ostrowski type inequalities for differentiable harmonically
convex functions via the generalized fractional integrals. For brevity, we give the following special
functions:

(1) The Beta function:

TGOl (y)

BGxe,y) = T+ )

1
= f o' - oy ldo, %,y > 0.
0

(2) The hypergeometric function:
1 1
2Fi(my,mo5032) = mf o' (1 -o) ™ (1 —z0) %o, ¢c>m >0, |z<]1.
25 - A2

Lemma 3.1. Let ¥ : I = [m,m,] C (0,+00) — R be a differentiable function on I° such that F e
L ([my,m5]). Then, the following generalized fractional integrals identity holds for all »x € (7, m,):

1 A(o) 7 ( % )

0o (cm+(1-0)x)? \om+1-0)x

! A(o) , il
—%0 (71 — %) o (om+(1— O.)%)ZY: (0'71'2 +(1 - 0')%)dg

i (% —my)
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1 1
= (A +A)F () - [ 1.1, (Fog) (ﬂ—) + 1 1, (F og) (ﬂ—)] , (3.1)
1 ‘ 2
where the mappings A and A are defined as:
_relE)
A(o) = ————=ds < +0o,
0 S
and
AT
A(o) = fguds < +o00,
0 S
Proof. Consider
: A
min(x —mp) @) 27'( % )dcr
o (om+(1—-0)x) om+(1-o)x
! A
s (7 — %) (@) 2?"( o )d(f
o (cm+(1-0)x) om+(1-o0)x
= I] - 12. (32)
From fundamentals of integrations, we have
' A
I, = mx(x—m) (@) ZT'( % )dO'
0o (cm+(-0)x) om+(—-o0)x
1
X
= A(o)d d
fo @) 7:(0'”1 + (1 —0')%) 7
1 ) (7;-—7:{1)0.
= A(l)?(x)—f (5 )7-‘ nx do
0 o om+(1—-o0)xn
1
1
Similarly, we have
! A
12 = X (7T2 —%) (O-) 27:,( % )dO'
0 (om+(1—-0)x) omy+(l—0)x
1
= - AMFC)+ 1 L,(F og) (—)
% b 0)
Thus, we obtain the required identity (3.1) by using the calculated values of I and I, in (3.2). O

Remark 3.2. If we set ¢ (00) = 0 in Lemma 3.1, then we obtain the following equality:

AIMS Mathematics

USUY)

1
2 o , VST
- F d
Ty — My {(% 1) o (o + (1 = o) %) (0ﬂ1+(1—0)%) 7
VoY

1 o /
o (om+(1 —0')%)27: (0'7T2+(1 —0')%’)d0_}

—(my = %)’
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mmy (T F (w) i

o =T Jny u?

= F(x)—

This is proved by Iscan in [19, Lemma 2.1].

Poasd

Remark 3.3. In Lemma 3.1, if we set ¢ (o) = @ then we have the following equality for Riemann-
Liouwville fractional integrals:

(¢ — )™ fl o ,( i )
F do
(i) Jo (om + (1 — o) x)? om+(1—-0)x
(=)™ fl i 7_.,( % )do-
)t Jo (om+ (1 = 0)x)? om+ (1 —0)xn
- | ) e
VISV THX

T(a+1) [ 1, Je (?og)(—) + 1 J(F o g)(i)]
1

1
T V()

This is proved by Iscan in [31].

Corollary 3.4. In Lemma 3.1, if we set ¢ (o) = %, then we have the following new equality for
k-Riemann-Liouville fractional integrals:

(x—m) T fl o 7,,( % )da
(m%)% o (om + (1 =0)x)? om+(1l—-0)x

(my — )T fl ot 7_.,( X )d
_ v -
(%ﬂz)%k 0o (om+(1 —0')%)2 om+(1—-0)x
)+ ()
= +
X X

crren(l)e raen(L)

1
T T

F ()

—Fk (CZ + k)

Theorem 3.5. We assume that the conditions of Lemma 3.1 are valid. If |7:'|q is harmonically convex
on [y, m,] for some g > 1, then the following inequality holds for the generalized fractional integrals:

1 1
l(A(l) + A()F (%) - [ L, (F o g)(—) + o L,(Fo g)(—)”
. o R p
< mGe—1)OL (@ 1F (ol + O3 [F ()Y
(3 — #) @) 1 (@5 |F ()| + O IF” (m)l")7 .

where

1
@ = f Alo) _do,
o (om+(1-0)x)
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1
0, - f oA (o) 2d0‘,
o (om+(-0)x)
1
0, = f (1-0)A(0) _do,
o (om+(1—-0)x)

1
e, :f AD s
0o (om+(1—-0)x)

1
0. - f oA (o) . do,
0o (om+(1-0)x)

o - f (1- ) A@)
0

(o7 + (1 = o) %)?
Proof. Taking absolute in Lemma 3.1 and then applying the well known power mean inequality, we
have

and

'(A(1)+A(1))T(%)—[;+1¢(9’Og)( )+;_1¢(9‘70g)( )”

1 1
T V)

1 A(O’) , X
< mxle-m) o (om + (1 -0)x)? 7:(0”1+(1_0)%) v
1 A (o)

+7105¢ (717 — %) do

, VY4
o (o + (1 = o) %)? 4 (mrz +(1 - a)%)

! A(0) =
e =) (fo (m +(1-0) x)2d(7)
A il i
o (om +(=0)x)? om+(1—-o0)x
| A(0) =
=) (fo @+ (1L-0) %)2‘1(’)

I
o (om+ (1 —0o)x)? omy+ (1 —-0o)xn

Now from harmonically convexity of |F’|?, we have

1 -2/ Al q ;
( f A (o) dO') ( f A (o) T'( T ) dO’)
o (o + (1 =o)n)? o (o + (1 = o) %) om+(-0)x

1 1 1 _ %
o (17 eor [ T —ao i [ UDRD )
0 0

(o + (1 = o) »)? (o + (1 = o) »)?

IA

4 \i
dO')

q q
d(T) .

IA

0" (O,1F Gl + O |7 (m)I")" .

1 -4/ Al q :
o) [ ot o as)
0 (om + (1 =) x)? o (om + (1 = o) %)
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: ! ! _ :
< 0, (|¢' Gl f D 4o+ 17 () f 1-DA @) 2da)
0 (om+(1-0)x) 0o (om+(1-0)x)
= 0, " (B5IF (Ol + OglF ()7
Thus, the proof is completed. O

Remark 3.6. In Theorem 3.5, if we assume ¢ (07) = o, then we have the following Ostrowski type
inequalities:

‘7—'(%) - ﬂflﬂ; T(u) ‘
— A1
< nfl_ﬂjn {xl (1,20 0= 70 (2 (01, 26 1, D IF GO + s (1, 2, 1, D [F7 (m)|7)

by " (20 002 = 20 (s Gt 1 DIF? GO s G2, 1 DIF (el

where
1 1 Inx-Inv
xi1(v,%) = -,
x—v|v X—U
+21
X2 (my, %, v, ) = (ﬂ )2F1(2vu+2 u+3; 1—;)
+1 1
X3 (o, %,u,0) = ﬁ(,u )2F1(2v,,u+1;,u+3;1—ﬂ),
X
1 2
Xa (M, n,u, 1) = ﬁ( ,u+ )2F1(2v,1;y+3;1—£),
Yy
2 +1
X5(7T2,%,U,,L[) = ﬁ( # )2F1(2U,2,'u+3,1—£)
Uy

This is proved by Iscan in [19, Theorem 2.4 for s = 1].

Corollary 3.7. In Theorem 3.5, if we set |¥' (x)] < M, x € [n,m,], then we obtain the following
Ostrowski type inequality for generalized fractional integrals:

‘(A(1)+A(1))T(%)—[ W/ (7:08)( )+ T (ﬂrog)( )”
< M{m% (x —711) @i‘é (@, + ©3)7 + Mo (my — %) @ﬁ (@5 + @6)34}.

Remark 3.8. In Theorem 3.5, if we set p(0) = r( ), then we obtain the following Ostrowski type

inequality for Riemann-Liouville fractional integrals:

(=) (5 oo
VISV TOX

+F(a+1)[ ]“(Tog)( )+1Ja(7:og)( )]
Uy
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(o _ﬂl)m—l l_é ’ q ’ Y
WQ (my, 2, @) (Qs (my, 2, ) |F GOl + Q4 (711,22, @) |F7 (1y)|?)
1
(7T2 — %)QH _é ’ q ’ q 1
+(n792 (702, %, @) (Qs (702, 2, @) [ (0)|* + Qg (2, %, @) |F (m2)|*)7,
2

where

Q (1, %, @) %_22F1(2,C¥+1;a+2;1—%),

Q, (12, %, @) ﬂ£22F1(2,1;6¥+2;1—£)

YY)

Q3 (7(1,%, a/)

B(a+22,1) 2F1(
%
Qi (my,%,a) — Q3 (11, %, ),
l,a+2)
/“_2F1(
772
Q2 (7T27%aa/)_Q5 (7[27%sa)'

2,a+2;a+3;1—ﬂ),
X

Q4 (ﬂ'la%’ a/)

Q5(7r2,%,a) 2,1,C¥+3 1——)

YY)

Q6 (7T2a x, a/)
This is proved by Iscan in [31].

(Y

Corollary 3.9. In Theorem 3.5, if we set p(07) = F—= ( 5 then we obtain the following new Ostrowski
type inequality for k-Riemann-Liouville fractional integrals:

[(" "“)Z + (”2 _%)%]7-‘(%)
X X

J“"(?'Og)( )+ L J“"(?'Og)( 2)”

+I' ((X + k)

w—a)E 1 @ @ @ g
= o S o 0. )
) *

a+k 1

— % 1=-1 q
07 (e, %) (0 (o, )7 G+ 0 (e, 5 )1 )
(ma2¢) © k k k
where
a _ a a m
Q ( s 7_) = 2 F (2,_ 1;_ 2;1__),
1\, % X VA o8] X + a + »
(04 _ a Vi
Qg(ﬂ'z,%,z) = 71'22 2F1 (2,1,E+2,1—ﬂ_—2)
a ﬁ( +2, 1) a a m
Oy (.2 2) = 2 p(2.242:.8 3;1__),
3(7T1 % k) %2 2 1( k " k " %
Q4(ﬂ.la%’%) = Ql (7[1,%’%)_93(7(19%3%)’
BlL,%+2
QS(”27%9g) = ¥2F1 (2 1 +3 1——)
k 7T2 k V()
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Q6 (ﬂ.Za%’ %) = QZ (7[2’%’ %)_QS (7[29%3 %)

Theorem 3.10. We assume that the conditions of Lemma 3.1 are valid. If |T/|q is harmonically convex
on [my, m,] for some q > 1, then the following inequality holds for the generalized fractional integrals:

1 1
(A1) + AT () - [ 1, (Fog) (—) + 11, (Fog) (—)”
x T % Q)
< mxe—m)©F (IT’ ()l a |7 (m)lq)" 1t (2 — ) O} (|¢' ()l a 7 (m)ﬂ)q |

where L +1 =1 and
P q

1 p
@, = f( A7) 2) dor,
0o \(om +(1 —0)x)

1 p
O = f ( Al) 2) do
0 \(omy+ (1 —0)x)

Proof. From Lemma 3.1 and applying well-known Holder’s inequality, we have

1 1
T V%)

l(A(l) + AT (%) - [ 1 L, (F o g)(—l) + 1 1, (F o g)( )”

1 A(o) 7_,,( i )
o (om +(=0)x)? om+(1—-o0)xn
: A(0) , 2% )
(s %)‘fo (o + (1 — o) »)? 4 (0'7T2 +(1-0)x

1 A(o) PN , X )
< mxlx ﬂl)(\[o ((0'7r1+(1—0')%)2) do-) (fo d (0'”1+(1_0-)%

1 A (0_) )P );; (fl
- d
o (2 = %) (fo ((0'7T2 +(1—o) %) 71 \Js d

Now from harmonically convexity of |F'|?, we have

do

IA

mn(x —my)

do

.\
dO')

.\
dO').

(i)
omy+ (1 —0)x

Y
dO')

g , VISV
B (ovrl + (1 —0')%)

U () ) ()
do
o \(om +(1-0) %)2 0

1 1 1 4
0] (IT’ (%)qu odo + |7’ (m)qu (l—a)dff)
0 0

IA

0! (I?' o + I (m>|")" .

(fl( A )”da)"’(flg,,( ot )
o \om+ (1 -0y o | \om+ (0 -—o)x
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q

A

1 1 1
< ®§O?"ooﬂwf odo + |F ()l (l—oﬁda)
0 0

®§ (IT’ Gl ZIT’ (ﬂz)l”’)" '

Thus, the proof is completed. O

Remark 3.11. In Theorem 3.10, if we set ¢ (00) = o, then we obtain the following Ostrowski type
inequality:

- (M1,
T — 71 u
’ q ’ %
"m{%wwumofmCTW+V”W)
T — T 2

+ (X: (7[2 x,U /l))% (71-2 _ %)2 (l]m/ (%)lq + |7_‘/ (ﬂz)lq)‘l]}

2
where
X5 (%, v, 0) = ﬁ(’u;l D 2F1(2vu+1 u+2 1—;),
Xa (o, 0, 0) = M;_DzFl(Zv,l;y+2;l—%).
T

This is proved by Iscan in [19, Theorem 2.6 for s = 1].

Corollary 3.12. In Theorem 3.5, if we set |F' (x)| < M, x € [m, 7], then we obtain the following
Ostrowski type inequality for generalized fractional integrals:

'(A(1)+A(1))T(%)—[ o (7:08)( )+ 1, (TOg)( )”

1 1
< M{mix e -m) 0] + mor —%)®§}.

Remark 3.13. In Theorem 3.10, if we set ¢ (07) = %, then we obtain the following Ostrowski type

inequalities for Riemann-Liouville fractional integrals:
i X
J“(”fog)( )+ 1 J“((f"og)( )”
Ugl

(¢ — )™ 1 |F" GO + |F ()l g
————— Q) (1, %, @, p)
(mr12)” 2

+I'(a@+1)

AIMS Mathematics Volume 7, Issue 3, 3939-3958.



3951

_ atl ’ q ’ q é
+(7T2 %)_1 oY (ﬂz’%,a,p)(lf COI" + 17 (7T2)|) ,
(1m220)" 2

where )

Q; (v, %,a,p) = 2F1(2p,ap+1;ap+2;1—§),

ap +1
This is proved by Iscan in [31].

a

Corollary 3.14. In Theorem 3.5, if we set p(0) = #ﬁa), then we obtain the following new Ostrowski
type inequality for k-Riemann-Liouville fractional integrals:

[(% _ m)‘i + (ﬂ2 — %)Z]?(%)
X X

o) J“*((fog)(l)”
z m T

P

+Fk (a + k)

atk
(c—m)* 3
EAL 0 (m

- a=k

(%) ©

2 ) 7 GOl + IF ()l
[ 2

(my - )% 1 @ \(IF GOl +|F (m)l\7
+———20 (ﬂz,%,;,p)( 5 ) )

ok %7
(7rp2¢) *

where

a ) kx?

3 ap+k ap+2k v
Cap+k

Fi(2p, ; ;1——].
21(P X X %

4. Some special cases

In this section, we discuss more special cases of the results proved in the last section.

Remark 4.1. In Corollary 3.7, if we set ¢ (07) = o, then we obtain the following Ostrowski type
inequality:

mry (T F (w)

'T(%)— > du'
Ty =7 Jny u
M7T17Z'2 l—é 2 1
< {X1 (11, 2) (¢ = 1) (oo (1, 2, 1, 1) + s (21,2, 1, 1)
Tty — 7T
1-1 1
T (02 20) (7 — 20 (s (a0 1, 1) + s (2, 1, 1)>é}. @.1)

This is proved by Iscan in [19, Corollary 2.3 for s = 1].

Remark 4.2. In Corollary 3.7, if we set (o) = % then we obtain the following Ostrowski type

inequality for Riemann-Liouville fractional integrals:

(=) () e
VISV VoY
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+I'(@+1)

1 Ja(Tog)( )+ 1 Ja(?'og)( 2)]
- M|:(% ﬂ_)(l+1 1

(%, @) (Q3 (2, @) + Ly (7, 22, Q))q
()™

NGl Ql‘l ] .

(]‘( %)(1/—1 ) ! (FZ,%’ Q) (Q5 (7T2a x, a) + Q6 (HZ’%’ a/))q
2

This is proved by Iscan in [31].

a@

Remark 4.3. In Corollary 3.7, if we set (o) = kfrk fa), then we obtain the following new Ostrowski type

inequality for k-Riemann-Liouville fractional integrals:

(%—71'1)(;_'_(71'2—%){;}?,(%)

VISV VY4

+Fk(a+k)[ J“"(?’og)( )+1J‘”‘(7"og)( )]
YY)

[ ) s ) )

a=k 1 k
AL 0 ) o e )+ s ) |

(my2e)
Remark 4.4. In Corollary 3.12, if we set ¢ (07) = o, then we obtain the following Ostrowski type
inequality:

mmn,  (TF (u)

m-m J,  u?

{cyz (0120, 0 0)F (= 7002+ (o (T2 2 0 ) (2 — ) }

'7’ (%) — 4.2)

M7T17T2

Ty —
This is proved by Iscan in [19, Corollary 2.5 for s = 1].

Remark 4.5. In Corollary 3.12, if we set (o) = r(y)’
inequality for Riemann-Liouville fractional integrals:

() e
X ToX

then we obtain the following Ostrowski type

+T'(@+1) J”(?—‘og)( )+ 1 J“(T-'og)( )H
Up)
a+l 1 a+1 1
< M[%Qé’ (1, %, @, p) + uﬂ” (7m0, %, @, p)]
(mi%)* (m22)""!

This is proved by Iscan in [31].
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a

Remark 4.6. In Corollary 3.12, if we set ¢(0) = #ﬁw then we obtain the following new Ostrowski
type inequality for k-Riemann-Liouville fractional integrals:

(% _m)k + (7T2 _%)k}?‘(%)
VISV TOX
1

+T (a + k) [ 1 JY(F o g) (_) + 1 J(F oy (_)]
; T

1
T V()

a+k
— )k 1
om0 2

< M Q? ﬂ-l,%’%’p

o —m)T (

a=k
3

(7r120) (r22¢) ®

Remark 4.7. If we set q¢ = 1 in Theorem 3.5 and Corollaries 3.7-3.14, then we obtain some new
Ostrowski type inequlities for the harmonically convexity of |¥'|. Moreover, for different choices of ¢
in the generalized fractional integrals, one can obtain several Ostrowski type inequalities via

Katugampola fractional integrals, conformable fractional integral, Hadamard fractional integrals,
etc.

5. Applications to special means

For arbitrary positive numbers m;, m, (7, # m,), we consider the means as follows:

(1) The arithmatic mean
m+ T

A=A(m, m) = —

(2) The geometric mean
G=G(m, m)= \mm.

(3) The harmonic means

2
H=H(m, m) = — i
m+ T
(4) The logarithmic mean
m- 7
L= L(m, m) = ——

Innm—Inm
(5) The generalize logarithmic mean
1

 pEeR\(~1,0}.

o — T
(m—m)(p+1)

-Lp:-Ep(ﬂl’ 7T2):|:

(6) The identric mean
e
I=1(n, nz):{ B itmE

Ty, if m; = my,

These means are often employed in numerical approximations and other fields. However, the
following straightforward relationship has been stated in the literature.

H<G<LLT<A
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Proposition 5.1. For nry, m, € (0, 00) with my < m,, then the following inequality holds:

Qz (71, m2)
L(my,m)
MG* (my,m0) (my — 77)
= 4
X {Xi_q (w1, Ay, m2) (2 (my, Ay, 1), 1, 1) + x3 (my, Ay, 1), 1, 1))é

‘ﬂ(ﬂl,ﬂz)—

1-1 1
e (T A1, 7)) (s (s A Gy 7)1, 1) + x5 G, Ay, 1) L, 1»5}.

Proof. The inequality (4.1) with » = ™32 for mapping ¥ : (0,00) — R, ¥ () = x leads to this
conclusion. O

Proposition 5.2. For nry, m, € (0, 00) with my < m,, then the following inequality holds:

gz (1, 72)
MG* (my, )
N Tt — 711

2 2 2
G (m,m) —m )
DA (71, 700) O (ry, H (y, ), 1, 1) + x3 (m, H (my,m2) , 1, 1))

5 — G (m, 7))

2A (my, m2)

X{Xi_fl' (7T1,(H(7T1,7T2))(

2
+)(i_a (712, 7'((7T1,7r2))( ) (s (o, H (1, m2) , 1, 1) + x5 (mp, H (71, 72) , 1, 1))3’} :

Proof. The inequality (4.1) with » = % for mapping ¥ : (0,00) — R, F (%) = x leads to this
conclusion. O

Proposition 5.3. For nry, m, € (0, 00) with my < my, then the following inequality holds:

(AP (1, 7) = G (1, ) LD (1, 1)
MQZ (71, m2) (7ry — 711)
- 4
x iy G A ) G (1, A ) 1, 1) 40 G, A G ) 1, 1)

1-1 1
+x, ! (m, A(ry, m2)) (x4 (2, Ay, m2) , 1, 1) + x5 (2, Ay, m2) 5 1, 1))"} .
Proof. The inequality (4.1) with % = ®3*2 for mapping ¥ : (0, ) — R, F (%) = #7**, p € (-1, c0) {0}
leads to this conclusion. O
Proposition 5.4. For nry, m, € (0, 00) with my < m,, then the following inequality holds:

[HP*? (1, m0) = G (1, m0) L8 (7, o))
MQZ (ﬂ.]’ﬂ-Z)

Tp — 7
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G (m,my) — 72

2A (mry, m2)

5 — G (m, )

2A (my, 2)

2
X{Xi_q (7T1,7'{(7T1,7T2))( ) Oz (o, H (my, m2) s 1, 1) + xs (o, H (o, m2) 5 1, 1))é

2
+)(i_a (72, 7’((7T1,7T2))( ) (a (o, H (1, m2) , 1, 1) + x5 (ma, H (1, 72) , 1, 1))'1’} :

Proof. The inequality (4.1) with x = % for mapping F : (0,00) = R, F (%) = #*2, p € (-1, ) {0}
leads to this conclusion. O

Proposition 5.5. For nry, m, € (0, 00) with my < my, then the following inequality holds:

A (71, m) In(A( 71, 1)) = G (711, m) In(T (71, 7))
MG? (1, m2) (2 — 711)
4

1-1 1
x{)(1 T, A (1, 70)) (s (10, A (1,725 1, 1) 4 s (1, A (1, 70) 1, 1)

1-1 1
T (T A7) (s (T A Gy 7)1, 1) + x5 G, Ay, 1) L, 1»5}.

Proof. The inequality (4.1) with » = %372 for mapping F : (0,0) — R, F (%) = %> Inx, leads to this
conclusion. m|

Proposition 5.6. For ny,m, € (0, 00) with my < m, then the following inequality holds:

|H? (71, 7o) In(H (71, 1)) = G (mi, m)In(T (71, 7))

MG (1, 72)
T — Iy

X{Xi_; (7T1,(H(7T1,7T2))(

G (m,my) — 72

2A (mry, m2)

5 — G (m,m)

2A(my, m2)

2
) (/\/2 (ﬂ],?‘[(ﬂ'],ﬂz), 17 1) +X3 (7(1’7‘[(”1,7(2)’ 1, 1))é

2
+)(i_a (712, 7’((7T1,7T2))( ) (s (o, H (1, m2) , 1, 1) + x5 (mp, H (71, 712) , 1, 1))3’} :

Proof. The inequality (4.1) with x = % for mapping ¥ : (0,00) — R, F (%) = %> Inx leads to this
conclusion. m|

Conclusions

In this paper, we have proved several new Ostrowski type inequalities for differentiable
harmonically convex functions via the generalized fractional integrals. Moreover, we have proved that
the established inequalities are the extensions of some existing inequalities in the literature. It is an
interesting and new problem that the upcoming researchers can offer similar inequalities for different
type of harmonically and co-ordinated harmonically convexity.
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