Citation: Agus Suryanto, Isnani Darti. On the nonstandard numerical discretization of SIR epidemic model with a saturated incidence rate and vaccination[J]. AIMS Mathematics, 2021, 6(1): 141-155. doi: 10.3934/math.2021010
[1] | F. Brauer, C. Castillo-Chavez, Mathematical Model in Population Biology and Epidemiology, 2nd edition, Springer-Verlag, New York, 2010. |
[2] | F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Modell., 2 (2017), 113-127. |
[3] | M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015. |
[4] | T. T. Yusuf, F. Benyah, Optimal control of vaccination and treatment for an SIR epidemiological model, World J. Modell. Simul., 8 (2012), 194-204. |
[5] | V. Capasso, G. Serio, A generalisation of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8 |
[6] | J. Zhang, J. Jia, X. Song, Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function, Sci. World J., 2014 (2014), Article ID 910421. |
[7] | R. Xu, Z. Ma, Z. Wang, Global stability of a delayed SIRS epidemic model with saturation incidence and temporary immunity, Comput. Math. Appl., 59 (2010), 3211-3221. doi: 10.1016/j.camwa.2010.03.009 |
[8] | S. Jana, S. K. Nandi, T. K. Kar, Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment, Acta Biotheoretica, 64 (2016), 65-84. doi: 10.1007/s10441-015-9273-9 |
[9] | K. S. Mathur, P. Narayan, Dynamics of an SVEIRS epidemic model with vaccination and saturated incidence rate, Int. J. Appl. Comput. Math., 4 (2018), Article number: 118. |
[10] | J. Liu, Bifurcation analysis for a delayed SEIR epidemic model with saturated incidence and saturated treatment function, J. Biol. Dyn., 13 (2019), 461-480. doi: 10.1080/17513758.2019.1631965 |
[11] | A. A. Lashari, Optimal control of an SIR epidemic model with a saturated treatment, Appl. Math. Inf. Sci., 10 (2016), 185-191. doi: 10.18576/amis/100117 |
[12] | J. K. Ghosh, U. Ghosh, M. H. A. Biswas, S. Sarkar, Qualitative analysis and optimal control strategy of an SIR Model with saturated incidence and treatment, Differential Equations and Dynamical Systems, Available from: https://doi.org/10.1007/s12591--019--00486--8. |
[13] | I. A. Baba, R. A. Abdulkadir, P. Esmaili, Analysis of tuberculosis model with saturated incidence rate and optimal control, Physica A: Stat. Mech. Appl., 540 (2020), Article number: 123237. |
[14] | S. P. Rajasekar, M. Pitchaimani, Q. Zhu, Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function, Physica A: Stat. Mech. Appl., 535 (2019), Article number: 122300. |
[15] | S. P. Rajasekar, M. Pitchaimani, Q. Zhu, Progressive dynamics of a stochastic epidemic model with logistic growth and saturated treatment, Physica A: Stat. Mech. Appl., 538 (2020), Article number: 122649. |
[16] | S. P. Rajasekar, M. Pitchaimani, Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence, Appl. Math. Comput., 377 (2020), Article number: 125143. |
[17] | T. Khan, Z. Ullah, N. Ali, G. Zaman, Modelling and control of the hepatitis B virus spreading using an epidemic model, Chaos. Solitons Fractals, 124 (2019), 1-9. doi: 10.1016/j.chaos.2019.04.033 |
[18] | M. T. Hoang, O. F. Egbelowo, On the global asymtotic stability of a hepatitis B epidemic model and its solutions by nonstandard numerical scheme, Boletin de la Sociedad Matemàtica Mexicana, 2020 (2020), Available from: https://doi.org/10.1007/s40590--020--00275--2. |
[19] | J. E. Macìas-Dìaz, N. Ahmed, M. Rafiq, Analysis and nonstandard numerical design of a discrete three-dimensional hepatitis B epidemic model, Mathematics, 2019 (2019), Article ID: 1157. |
[20] | A. Suryanto, A dynamically consistent nonstandard numerical scheme for epidemic model with saturated incidence rate, Int. J. Math. Comput., 13 (2011), 112-123. |
[21] | A. Suryanto, Stability and bifurcation of a discrete SIS epidemic model with delay, Proceedings of the 2nd International Conference on Basic Sciences, Malang, Indonesia, (2012), 1-6. |
[22] | Z. Hu, Z. Teng, H. Jiang, Stability analysis in a class of discrete SIRS epidemic models, Nonlinear Analysis: Real World Appl., 13 (2012), 2017-2033. doi: 10.1016/j.nonrwa.2011.12.024 |
[23] | R. Mickens, Non standard finite diffrence models of diffrential equations, World Scientific, Singapore, 1994. |
[24] | Q. Cui, J. Xu, Q. Zhang, K. Wang, An NSFD scheme for SIR epidemic models of childhood diseases with constant vaccination strategy, Advances Diffrence Equations, 2014 (2014), Article number: 172. |
[25] | Q. Cui, X. Yang, Q. Zhang, An NSFD scheme for a class of SIR epidemic models with vaccination and treatment, J. Diffrence Equations Appl., 20 (2014), 416-422. doi: 10.1080/10236198.2013.844802 |
[26] | Q. Cui, Q. Zhang, Global stability of a discrete SIR epidemic model with vaccination and treatment, J. Diffrence Equations Appl., 21 (2015), 111-117. doi: 10.1080/10236198.2014.990450 |
[27] | K. Hattaf, A. A. Lashari, B. E. Boukari, N. Yousfi, Effect of discretization on dynamical behavior in an epidemiological model, Diffrential Equations Dyn. Syst., 23 (2015), 403-413. doi: 10.1007/s12591-014-0221-y |
[28] | P. R. S. Rao, K. V. Ratnam, M. S. R. Murthy, Stability preserving non standard finite difference schemes for certain biological models, Int. J. Dyn. Control, 6 (2018), 1496-1504. doi: 10.1007/s40435-018-0410-6 |
[29] | I. Darti, A. Suryanto, M. Hartono, Global stability of a discrete SIR epidemic model with saturated incidence rate and death induced by the disease, Comm. Math. Biol. Neurosci., 2020 (2020), Article ID 33. |
[30] | I. Darti, A. Suryanto, Dynamics of a SIR epidemic model of childhood diseases with a saturated incidence rate: Continuous model and its nonstandard finite difference discretization, Mathematics, 8 (2020), 1459. doi: 10.3390/math8091459 |
[31] | I. Darti, A. Suryanto, Stability preserving non-standard finite difference scheme for a harvesting Leslie-Gower predator-prey model, J. Diffrence Equations Appl., 21 (2015), 528-534. doi: 10.1080/10236198.2015.1029922 |
[32] | I. Darti, A. Suryanto, Dynamics preserving nonstandard finite difference method for the modified Leslie-Gower predator-prey model with Holling-type II functional response, Far East J. Math. Sci., 99 (2016), 719-733. |
[33] | M. S. Shabbir, Q. Din, M. A. Khan, M. A. Khan, K. Ahmad, A dynamically consistent nonstandard finite difference scheme for a predator-prey model, Advances Diffrence Equations, 2019 (2019), Article number: 381. |
[34] | Q. A. Dang, M. T. Hoang, Complete global stability of a metapopulation model and its dynamically consistent discrete models, Qual. Theory Dyn. Syst., 18 (2019), 461-475. doi: 10.1007/s12346-018-0295-y |
[35] | S. Elaydi, An Introduction to Diffrence Equations, 3rd edition, Springer-Verlag, New York, 2005. |
[36] | Y. Enatsu, Y. Nakata, Y. Muroya, G. Izzo, A. Vecchio, Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates, J. Diffrence Equations Appl., 18 (2012), 1163-1181. doi: 10.1080/10236198.2011.555405 |