Research article

Stability of general pathogen dynamic models with two types of infectious transmission with immune impairment

  • Received: 09 June 2020 Accepted: 03 September 2020 Published: 30 September 2020
  • MSC : 34D20, 34D23, 37N25, 92B05

  • In this paper, we investigate the global properties of two general models of pathogen infection with immune deficiency. Both pathogen-to-cell and cell-to-cell transmissions are considered. Latently infected cells are included in the second model. We show that the solutions are nonnegative and bounded. Lyapunov functions are organized to prove the global asymptotic stability for uninfected and infected steady states of the models. Analytical expressions for the basic reproduction number $\mathcal{R}_{0}$ and the necessary condition under which the uninfected and infected steady states are globally asymptotically stable are established. We prove that if $\mathcal{R}_{0}$ < 1 then the uninfected steady state is globally asymptotically stable (GAS), and if $\mathcal{R}_{0}$ > 1 then the infected steady state is GAS. Numerical simulations are performed and used to support the analytical results.

    Citation: B. S. Alofi, S. A. Azoz. Stability of general pathogen dynamic models with two types of infectious transmission with immune impairment[J]. AIMS Mathematics, 2021, 6(1): 114-140. doi: 10.3934/math.2021009

    Related Papers:

  • In this paper, we investigate the global properties of two general models of pathogen infection with immune deficiency. Both pathogen-to-cell and cell-to-cell transmissions are considered. Latently infected cells are included in the second model. We show that the solutions are nonnegative and bounded. Lyapunov functions are organized to prove the global asymptotic stability for uninfected and infected steady states of the models. Analytical expressions for the basic reproduction number $\mathcal{R}_{0}$ and the necessary condition under which the uninfected and infected steady states are globally asymptotically stable are established. We prove that if $\mathcal{R}_{0}$ < 1 then the uninfected steady state is globally asymptotically stable (GAS), and if $\mathcal{R}_{0}$ > 1 then the infected steady state is GAS. Numerical simulations are performed and used to support the analytical results.


    加载中


    [1] M. A. Nowak and R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University, Oxford, 2000.
    [2] P. K. Roy, A. N. Chatterjee, D. Greenhalgh, et al., Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal-Real, 14 (2013), 1621-1633.
    [3] J. Wang, J. Pang and T. Kuniya, A note on global stability for malaria infections model with latencies, MBE, 11 (2014), 995-1001. doi: 10.3934/mbe.2014.11.995
    [4] D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, B. Math. Biol., 64 (2002), 29-64. doi: 10.1006/bulm.2001.0266
    [5] A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with BeddingtonDeAngelis functional response, Math. Meth. Appl. Sci., 36 (2013), 383-394. doi: 10.1002/mma.2596
    [6] A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal-Real, 11 (2010), 2253- 2263. doi: 10.1016/j.nonrwa.2009.07.001
    [7] M. Y. Li and L. Wang, Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonlinear Anal-Real, 17 (2014), 147-160. doi: 10.1016/j.nonrwa.2013.11.002
    [8] K. Wang, A. Fan and A. Torres, Global properties of an improved hepatitis B virus model, Nonlinear Anal-Real, 11 (2010), 3131-3138. doi: 10.1016/j.nonrwa.2009.11.008
    [9] F. Zhang, J. Li, C. Zheng, et al., Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, Commun. Nonlinear Sci., 42 (2017), 464-476.
    [10] A. M. Elaiw, and N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Math. Meth. Appl. Sci., 39 (2016), 4-31. doi: 10.1002/mma.3453
    [11] A. M. Elaiw, R. M. Abukwaik and E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., 7 (2014), 1450055. doi: 10.1142/S1793524514500557
    [12] S. Zhang and X. Xu, Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci., 46 (2017), 14-25. doi: 10.1016/j.cnsns.2016.10.017
    [13] L. Wang, M. Y. Li and D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207-217. doi: 10.1016/S0025-5564(02)00103-7
    [14] A. M. Elaiw and E. K. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), 157. doi: 10.3390/math7020157
    [15] A. M. Elaiw, S. F. Alshehaiween and A. D. Hobiny, Global properties of a delay-distributed HIV dynamics model including impairment of B-cell functions, Mathematics, 7 (2019), 837. doi: 10.3390/math7090837
    [16] A. M. Elaiw, E. K. Elnahary and A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Differ. Equ-NY, 2018 (2018), 85. doi: 10.1186/s13662-018-1523-0
    [17] A. M. Elaiw, I. A. Hassanien, S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779-794. doi: 10.4134/JKMS.2012.49.4.779
    [18] M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. doi: 10.1126/science.272.5258.74
    [19] E. Mondragon and L. Esteva, On CTL Response against Mycobacterium tuberculosis, SIAM J. Appl. Math., 8 (2014), 2383-2389.
    [20] S. A. Azoz, and A. M. Ibrahim, Effect of cytotoxic T lymphocytes on HIV-1 dynamics, J. Comput. Anal. Appl., 25 (2018), 111-125.
    [21] M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Anal-Real, 13 (2012), 1080-1092. doi: 10.1016/j.nonrwa.2011.02.026
    [22] H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302.
    [23] D. Huang, X. Zhang, Y. Guo, et al., Analysis of an HIV infection model with treatments and delayed immune response, Appl. Math. Model., 40 (2016), 3081-3089.
    [24] J. Pang, J.-An Cui. and J. Hui, The importance of immune responses in a model of hepatitis B virus, Nonlinear Dynam., 67 (2012), 723-734. doi: 10.1007/s11071-011-0022-6
    [25] J. Pang and J-An Cui, Analysis of a hepatitis B viral infection model with immune response delay, Int. J. Biomath., 10 (2017), 1750020.
    [26] Y. Zhao and Z. Xu, Global dynamics for a delyed hepatitis C virus, infection model, Electron. J. Differ. Eq., 2014 (2014), 1-18.
    [27] J. Wang, C. Qin, Y. Chen, et al., Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, MBE, 16 (2019), 2587-2612.
    [28] K. Wang, W. Wang and X. Liu, Global Stability in a viral infection model with lytic and nonlytic immune response, Comput. Math. Appl., 51 (2006), 1593-1610. doi: 10.1016/j.camwa.2005.07.020
    [29] S. Wang, X. Song and Z. Ge, Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model., 35 (2011), 4877-4885. doi: 10.1016/j.apm.2011.03.043
    [30] Z. Hu, J. Zhang, H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., 38 (2014), 524-534.
    [31] A. V. Eric, C. C. Noe, G. A. Gerardo, Analysis of a viral infection model with immune impairment, intracellular delay and general non-linear incidence rate, Chaos Solitons & Fractals, 69 (2014), 1- 9.
    [32] R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425-444. doi: 10.1007/s00285-002-0191-5
    [33] J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal-Real, 34 (2017), 75-96. doi: 10.1016/j.nonrwa.2016.08.001
    [34] S. S. Chen, C.-Y. Cheng, Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016), 642-672. doi: 10.1016/j.jmaa.2016.05.003
    [35] A. M. Elaiw and A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Meth. Appl. Sci., 40 (2017), 5863-5880. doi: 10.1002/mma.4436
    [36] X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563-584. doi: 10.1016/j.jmaa.2014.10.086
    [37] X. Lai and X. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-tocell transmission, SIAM J. Appl. Math., 74 (2014), 898-917. doi: 10.1137/130930145
    [38] Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183-191. doi: 10.1016/j.mbs.2015.05.001
    [39] J. Wang, M. Guo, X. Liu, et al., Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149-161.
    [40] A. G. Cervantes-Perez and E. Avila-Vales, Dynamical analysis of multipathways and multidelays of general virus dynamics model, Int. J. Bifurcat. Chaos, 29 (2019), 1950031.
    [41] A. M. Elaiw and N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ-NY, 2020 (2020), 355. doi: 10.1186/s13662-020-02818-3
    [42] A. M. Elaiw and N. H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection, Math. Meth. Appl. Sci., 43 (2020), 1145-1175. doi: 10.1002/mma.5923
    [43] A. M. Elaiw and N. H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells, Commun. Nonlinear Sci., 86 (2020), 105259. doi: 10.1016/j.cnsns.2020.105259
    [44] A. M. Elaiw, A. A. Raezah and B. S. Alofi, Stability of pathogen dynamics models with viral and cellular infections and immune impairment, J. Nonlinear Sci. Appl., 11 (2018), 456-468. doi: 10.22436/jnsa.011.04.02
    [45] B. Buonomo and C. Var-De-Le, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709-720.
    [46] A. M. Elaiw, A. A. Raezah and S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Differ. Equ-NY, 2018 (2018), 414. doi: 10.1186/s13662-018-1869-3
    [47] A. M. Elaiw, A. A. Raezah and B. S. Alofi, Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment, AIP Advances, 8 (2018), 025323. doi: 10.1063/1.5023752
    [48] A. M. Elaiw and B. S. Alofi, Stability analysis of immune impairment pathogen dynamics model with two routes of infection and Holling type-II function, Appl. Math. Sci., 12 (2018), 1419-1432.
    [49] D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Does effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200-209.
    [50] G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821
    [51] A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal-Real, 26 (2015), 161-190. doi: 10.1016/j.nonrwa.2015.05.007
    [52] L. Gibelli, A. Elaiw, M. A. Alghamdi, et al., Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Mathematical Models and Methods in Applied Sciences, 27 (2017), 617-640.
    [53] N. Bellomo and Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete and Continuous Dynamical Systems-Series S, 13 (2020), 105-117. doi: 10.3934/dcdss.2020006
    [54] N. Bellomo, K. J. Painter, Y. Tao, et al., Occurrence vs. Absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990-2010.
    [55] A. M. Elaiw and A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 124758.
    [56] A. M. Elaiw and A. D. AlAgha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal-Real, 55 (2020), 103116. doi: 10.1016/j.nonrwa.2020.103116
    [57] P. Tamilalagan, S. Karthiga and P. Manivannan, Dynamics of fractional order HIV infection model with antibody and cytotoxic T- lymphocyte immune responses, J. Comput. Appl. Math., 382 (2021), 113064 doi: 10.1016/j.cam.2020.113064
    [58] P. Balasubramaniam, M. Prakash and P. Tamilalagan, Stability and Hopf bifurcation analysis of immune response delayed HIV type 1 infection model with two target cells, Math. Meth. Appl. Sci., 38 (2015), 3653-3669. doi: 10.1002/mma.3306
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3241) PDF downloads(173) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog