Citation: B. S. Alofi, S. A. Azoz. Stability of general pathogen dynamic models with two types of infectious transmission with immune impairment[J]. AIMS Mathematics, 2021, 6(1): 114-140. doi: 10.3934/math.2021009
[1] | M. A. Nowak and R. M. May, Virus dynamics: Mathematical Principles of Immunology and Virology, Oxford University, Oxford, 2000. |
[2] | P. K. Roy, A. N. Chatterjee, D. Greenhalgh, et al., Long term dynamics in a mathematical model of HIV-1 infection with delay in different variants of the basic drug therapy model, Nonlinear Anal-Real, 14 (2013), 1621-1633. |
[3] | J. Wang, J. Pang and T. Kuniya, A note on global stability for malaria infections model with latencies, MBE, 11 (2014), 995-1001. doi: 10.3934/mbe.2014.11.995 |
[4] | D. S. Callaway and A. S. Perelson, HIV-1 infection and low steady state viral loads, B. Math. Biol., 64 (2002), 29-64. doi: 10.1006/bulm.2001.0266 |
[5] | A. M. Elaiw and S. A. Azoz, Global properties of a class of HIV infection models with BeddingtonDeAngelis functional response, Math. Meth. Appl. Sci., 36 (2013), 383-394. doi: 10.1002/mma.2596 |
[6] | A. M. Elaiw, Global properties of a class of HIV models, Nonlinear Anal-Real, 11 (2010), 2253- 2263. doi: 10.1016/j.nonrwa.2009.07.001 |
[7] | M. Y. Li and L. Wang, Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral treatment, Nonlinear Anal-Real, 17 (2014), 147-160. doi: 10.1016/j.nonrwa.2013.11.002 |
[8] | K. Wang, A. Fan and A. Torres, Global properties of an improved hepatitis B virus model, Nonlinear Anal-Real, 11 (2010), 3131-3138. doi: 10.1016/j.nonrwa.2009.11.008 |
[9] | F. Zhang, J. Li, C. Zheng, et al., Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation, Commun. Nonlinear Sci., 42 (2017), 464-476. |
[10] | A. M. Elaiw, and N. A. Almuallem, Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocirculating target cells, Math. Meth. Appl. Sci., 39 (2016), 4-31. doi: 10.1002/mma.3453 |
[11] | A. M. Elaiw, R. M. Abukwaik and E. O. Alzahrani, Global properties of a cell mediated immunity in HIV infection model with two classes of target cells and distributed delays, Int. J. Biomath., 7 (2014), 1450055. doi: 10.1142/S1793524514500557 |
[12] | S. Zhang and X. Xu, Dynamic analysis and optimal control for a model of hepatitis C with treatment, Commun. Nonlinear Sci., 46 (2017), 14-25. doi: 10.1016/j.cnsns.2016.10.017 |
[13] | L. Wang, M. Y. Li and D. Kirschner, Mathematical analysis of the global dynamics of a model for HTLV-I infection and ATL progression, Math. Biosci., 179 (2002), 207-217. doi: 10.1016/S0025-5564(02)00103-7 |
[14] | A. M. Elaiw and E. K. Elnahary, Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays, Mathematics, 7 (2019), 157. doi: 10.3390/math7020157 |
[15] | A. M. Elaiw, S. F. Alshehaiween and A. D. Hobiny, Global properties of a delay-distributed HIV dynamics model including impairment of B-cell functions, Mathematics, 7 (2019), 837. doi: 10.3390/math7090837 |
[16] | A. M. Elaiw, E. K. Elnahary and A. A. Raezah, Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Differ. Equ-NY, 2018 (2018), 85. doi: 10.1186/s13662-018-1523-0 |
[17] | A. M. Elaiw, I. A. Hassanien, S. A. Azoz, Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 49 (2012), 779-794. doi: 10.4134/JKMS.2012.49.4.779 |
[18] | M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 74-79. doi: 10.1126/science.272.5258.74 |
[19] | E. Mondragon and L. Esteva, On CTL Response against Mycobacterium tuberculosis, SIAM J. Appl. Math., 8 (2014), 2383-2389. |
[20] | S. A. Azoz, and A. M. Ibrahim, Effect of cytotoxic T lymphocytes on HIV-1 dynamics, J. Comput. Anal. Appl., 25 (2018), 111-125. |
[21] | M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear Anal-Real, 13 (2012), 1080-1092. doi: 10.1016/j.nonrwa.2011.02.026 |
[22] | H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with infinitely distributed intracellular delays and CTL imune responses, SIAM J. Appl. Math., 73 (2013), 1280-1302. |
[23] | D. Huang, X. Zhang, Y. Guo, et al., Analysis of an HIV infection model with treatments and delayed immune response, Appl. Math. Model., 40 (2016), 3081-3089. |
[24] | J. Pang, J.-An Cui. and J. Hui, The importance of immune responses in a model of hepatitis B virus, Nonlinear Dynam., 67 (2012), 723-734. doi: 10.1007/s11071-011-0022-6 |
[25] | J. Pang and J-An Cui, Analysis of a hepatitis B viral infection model with immune response delay, Int. J. Biomath., 10 (2017), 1750020. |
[26] | Y. Zhao and Z. Xu, Global dynamics for a delyed hepatitis C virus, infection model, Electron. J. Differ. Eq., 2014 (2014), 1-18. |
[27] | J. Wang, C. Qin, Y. Chen, et al., Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays, MBE, 16 (2019), 2587-2612. |
[28] | K. Wang, W. Wang and X. Liu, Global Stability in a viral infection model with lytic and nonlytic immune response, Comput. Math. Appl., 51 (2006), 1593-1610. doi: 10.1016/j.camwa.2005.07.020 |
[29] | S. Wang, X. Song and Z. Ge, Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model., 35 (2011), 4877-4885. doi: 10.1016/j.apm.2011.03.043 |
[30] | Z. Hu, J. Zhang, H. Wang, et al., Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Appl. Math. Model., 38 (2014), 524-534. |
[31] | A. V. Eric, C. C. Noe, G. A. Gerardo, Analysis of a viral infection model with immune impairment, intracellular delay and general non-linear incidence rate, Chaos Solitons & Fractals, 69 (2014), 1- 9. |
[32] | R. V. Culshaw, S. Ruan and G. Webb, A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay, J. Math. Biol., 46 (2003), 425-444. doi: 10.1007/s00285-002-0191-5 |
[33] | J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal-Real, 34 (2017), 75-96. doi: 10.1016/j.nonrwa.2016.08.001 |
[34] | S. S. Chen, C.-Y. Cheng, Y. Takeuchi, Stability analysis in delayed within-host viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016), 642-672. doi: 10.1016/j.jmaa.2016.05.003 |
[35] | A. M. Elaiw and A. A. Raezah, Stability of general virus dynamics models with both cellular and viral infections and delays, Math. Meth. Appl. Sci., 40 (2017), 5863-5880. doi: 10.1002/mma.4436 |
[36] | X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563-584. doi: 10.1016/j.jmaa.2014.10.086 |
[37] | X. Lai and X. Zou, Modelling HIV-1 virus dynamics with both virus-to-cell infection and cell-tocell transmission, SIAM J. Appl. Math., 74 (2014), 898-917. doi: 10.1137/130930145 |
[38] | Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions, Math. Biosci., 270 (2015), 183-191. doi: 10.1016/j.mbs.2015.05.001 |
[39] | J. Wang, M. Guo, X. Liu, et al., Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291 (2016), 149-161. |
[40] | A. G. Cervantes-Perez and E. Avila-Vales, Dynamical analysis of multipathways and multidelays of general virus dynamics model, Int. J. Bifurcat. Chaos, 29 (2019), 1950031. |
[41] | A. M. Elaiw and N. H. AlShamrani, Stability of a general CTL-mediated immunity HIV infection model with silent infected cell-to-cell spread, Adv. Differ. Equ-NY, 2020 (2020), 355. doi: 10.1186/s13662-020-02818-3 |
[42] | A. M. Elaiw and N. H. AlShamrani, Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells and two routes of infection, Math. Meth. Appl. Sci., 43 (2020), 1145-1175. doi: 10.1002/mma.5923 |
[43] | A. M. Elaiw and N. H. AlShamrani, Global stability of a delayed adaptive immunity viral infection with two routes of infection and multi-stages of infected cells, Commun. Nonlinear Sci., 86 (2020), 105259. doi: 10.1016/j.cnsns.2020.105259 |
[44] | A. M. Elaiw, A. A. Raezah and B. S. Alofi, Stability of pathogen dynamics models with viral and cellular infections and immune impairment, J. Nonlinear Sci. Appl., 11 (2018), 456-468. doi: 10.22436/jnsa.011.04.02 |
[45] | B. Buonomo and C. Var-De-Le, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709-720. |
[46] | A. M. Elaiw, A. A. Raezah and S. A. Azoz, Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment, Adv. Differ. Equ-NY, 2018 (2018), 414. doi: 10.1186/s13662-018-1869-3 |
[47] | A. M. Elaiw, A. A. Raezah and B. S. Alofi, Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment, AIP Advances, 8 (2018), 025323. doi: 10.1063/1.5023752 |
[48] | A. M. Elaiw and B. S. Alofi, Stability analysis of immune impairment pathogen dynamics model with two routes of infection and Holling type-II function, Appl. Math. Sci., 12 (2018), 1419-1432. |
[49] | D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Does effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200-209. |
[50] | G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70 (2010), 2693-2708. doi: 10.1137/090780821 |
[51] | A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal-Real, 26 (2015), 161-190. doi: 10.1016/j.nonrwa.2015.05.007 |
[52] | L. Gibelli, A. Elaiw, M. A. Alghamdi, et al., Heterogeneous population dynamics of active particles: Progression, mutations, and selection dynamics, Mathematical Models and Methods in Applied Sciences, 27 (2017), 617-640. |
[53] | N. Bellomo and Y. Tao, Stabilization in a chemotaxis model for virus infection, Discrete and Continuous Dynamical Systems-Series S, 13 (2020), 105-117. doi: 10.3934/dcdss.2020006 |
[54] | N. Bellomo, K. J. Painter, Y. Tao, et al., Occurrence vs. Absence of taxis-driven instabilities in a May-Nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990-2010. |
[55] | A. M. Elaiw and A. D. AlAgha, Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math. Comput., 367 (2020), 124758. |
[56] | A. M. Elaiw and A. D. AlAgha, Analysis of a delayed and diffusive oncolytic M1 virotherapy model with immune response, Nonlinear Anal-Real, 55 (2020), 103116. doi: 10.1016/j.nonrwa.2020.103116 |
[57] | P. Tamilalagan, S. Karthiga and P. Manivannan, Dynamics of fractional order HIV infection model with antibody and cytotoxic T- lymphocyte immune responses, J. Comput. Appl. Math., 382 (2021), 113064 doi: 10.1016/j.cam.2020.113064 |
[58] | P. Balasubramaniam, M. Prakash and P. Tamilalagan, Stability and Hopf bifurcation analysis of immune response delayed HIV type 1 infection model with two target cells, Math. Meth. Appl. Sci., 38 (2015), 3653-3669. doi: 10.1002/mma.3306 |