Research article

A generalized delay-induced SIRS epidemic model with relapse

  • Received: 17 October 2021 Revised: 23 December 2021 Accepted: 03 January 2022 Published: 21 January 2022
  • MSC : 37C75, 92B05, 92D25, 93D20

  • In this paper, a generalized delay-induced $ SIRS $ epidemic model with nonlinear incidence rate, latency and relapse is proposed. Our epidemic model is a generalized one, and the published epidemic models are the special cases of ours under some conditions. By using LaSalle's invariance principle and Lyapunovi's direct method, the dynamical behaviors are investigated and the results show that the disease free-equilibrium $ Q_0 $ is globally asymptotically stable if the basic reproduction number $ R_0 < 1 $ for any time delay. However, if the basic reproduction number $ R_0 > 1 $, there exists a unique endemic equilibrium $ Q_* $ which is locally asymptotically stable under some conditions. Moreover, the effects of latency and relapse on the transmission dynamics of the diseases are analyzed by some numerical experiments which conducted based on $ ODE45 $ in Matlab.

    Citation: Shufan Wang, Zhihui Ma, Xiaohua Li, Ting Qi. A generalized delay-induced SIRS epidemic model with relapse[J]. AIMS Mathematics, 2022, 7(4): 6600-6618. doi: 10.3934/math.2022368

    Related Papers:

  • In this paper, a generalized delay-induced $ SIRS $ epidemic model with nonlinear incidence rate, latency and relapse is proposed. Our epidemic model is a generalized one, and the published epidemic models are the special cases of ours under some conditions. By using LaSalle's invariance principle and Lyapunovi's direct method, the dynamical behaviors are investigated and the results show that the disease free-equilibrium $ Q_0 $ is globally asymptotically stable if the basic reproduction number $ R_0 < 1 $ for any time delay. However, if the basic reproduction number $ R_0 > 1 $, there exists a unique endemic equilibrium $ Q_* $ which is locally asymptotically stable under some conditions. Moreover, the effects of latency and relapse on the transmission dynamics of the diseases are analyzed by some numerical experiments which conducted based on $ ODE45 $ in Matlab.



    加载中


    [1] E. Beretta, Y. Takeuchi, Global stability of an $SIR$ epidemic model with time delays, J. Math. Biol., 33 (1995), 250–260. https://doi.org/10.1007/BF00169563 doi: 10.1007/BF00169563
    [2] I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Saltid, J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306 (2018), 160–169. https://doi.org/10.1016/j.mbs.2018.09.014 doi: 10.1016/j.mbs.2018.09.014
    [3] Z. H. Ma, S. F. Wang, X. H. Li, A generalized infectious model induced by the contacting distance (CTD), Nonlinear Anal.-Real., 54 (2020), 103113. https://doi.org/10.1016/j.nonrwa.2020.103113 doi: 10.1016/j.nonrwa.2020.103113
    [4] A. Lahrouz, H. El Mahjour, A. Settati, A. Bernoussi, Dynamics and optimal control of a non-linear epidemic model with relapse and cure, Physica A., 496 (2018), 299–317. https://doi.org/10.1016/j.physa.2018.01.007 doi: 10.1016/j.physa.2018.01.007
    [5] J. G. Yang, S. L. Yuan, Dynamics of a toxic producing phytoplankton-zooplankton modelwith three-dimensional patch, Appl. Math. Lett., 118 (2021), 107146. https://doi.org/10.1016/j.aml.2021.107146 doi: 10.1016/j.aml.2021.107146
    [6] L. H. Zhu, G. Guan, Y. M. Li, Nonlinear dynamical analysis and control strategies of a network-based $SIS$ epidemic model with time delay, Appl. Math. Model., 70 (2019), 512–531. https://doi.org/10.1016/j.apm.2019.01.037 doi: 10.1016/j.apm.2019.01.037
    [7] W. O. Kermack, A. G. Mckendrick, A contribution to the mathematical theory of epidemics, Proc. Roy. Soc. London Ser. A, 115 (1927), 700–721.
    [8] T. Li, F. Q. Zhang, H. W. Liu, Y. M. Chen, Threshold dynamics of an SIRS model with nonlinear incidence rate and transfer from infectious to susceptible, Appl. Math. Lett., 70 (2017), 52–57. https://doi.org/10.1016/j.aml.2017.03.005 doi: 10.1016/j.aml.2017.03.005
    [9] S. H. Liu, S. G. Ruan, X. N. Zhang, Nonlinear dynamics of avian influenza epidemic models, Math. Biosci., 283 (2017), 118–135. https://doi.org/10.1016/j.mbs.2016.11.014 doi: 10.1016/j.mbs.2016.11.014
    [10] L. J. Chen, J. T. Sun, Global stability and optimal control of an SIRS epidemic model on heterogeneous networks, Physica A, 410 (2014), 196–204. https://doi.org/10.1016/j.physa.2014.05.034 doi: 10.1016/j.physa.2014.05.034
    [11] Y. Muroya, H. X. Li, T. Kuniya, Complete global analysis of an $SIRS$ epidemic model with graded cure and incomplete recovery rates, J. Math. Anal. Appl., 410 (2014), 719–732. https://doi.org/10.1016/j.jmaa.2013.08.024 doi: 10.1016/j.jmaa.2013.08.024
    [12] L. J. Hao, G. R. Jiang, S. Y. Liu, L. Ling, Global dynamics of an SIRS epidemic model with saturation incidence, Biosystems, 114 (2013), 56–63. https://doi.org/10.1016/j.biosystems.2013.07.009 doi: 10.1016/j.biosystems.2013.07.009
    [13] L. X. Qi, J. A. Cui, The stability of an $SEIRS$ model with nonlinear incidence, vertical transmission and time delay, Appl. Math. Comput., 221 (2013), 360–366. https://doi.org/10.1016/j.amc.2013.06.023 doi: 10.1016/j.amc.2013.06.023
    [14] S. G. Ruan, W. D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [15] J. H. Li, Z. D. Teng, G. Q. Wang, L. Zhang, C. Hu, Stability and bifurcation analysis of an $SIR$ epidemic model with logistic growth and saturated treatment, Chaos Soliton. Fract., 99 (2017), 63–71. https://doi.org/10.1016/j.chaos.2017.03.047 doi: 10.1016/j.chaos.2017.03.047
    [16] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
    [17] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of $SIRS$ epidemiological models, J. Math. Biol., 23 (1986), 187–204. https://doi.org/10.1007/BF00276956 doi: 10.1007/BF00276956
    [18] W. M. Liu, H. W. Hethcote, S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates, J. Math. Biol., 25 (1987), 359–380. https://doi.org/10.1007/BF00277162 doi: 10.1007/BF00277162
    [19] H. W. Hethcote, M. A. Lewis, P. van den Driessche, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27 (1989), 49–64. https://doi.org/10.1007/BF00276080 doi: 10.1007/BF00276080
    [20] C. J. Briggs, H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Am. Nat., 145 (1995), 855–887. https://doi.org/10.1086/285774 doi: 10.1086/285774
    [21] S. G. Ruan, W. D. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differ. Equ., 188 (2003), 135–163. https://doi.org/10.1016/S0022-0396(02)00089-X doi: 10.1016/S0022-0396(02)00089-X
    [22] Z. T. Xu, Y. Q. Xu, Y. H. Huang, Stability and traveling waves of a vaccination model with nonlinear incidence, Comput. Math. Appl., 75 (2018), 561–581. https://doi.org/10.1016/j.camwa.2017.09.042 doi: 10.1016/j.camwa.2017.09.042
    [23] T. Feng, Z. P. Qiu, X. Z. Meng, Dynamics of a stochastic hepatitis C virus system with host immunity, DCDS-B, 24 (2019), 6367–6385. https://doi.org/10.3934/dcdsb.2019143 doi: 10.3934/dcdsb.2019143
    [24] B. Y. Wen, Z. D. Teng, Z. M. Li, The threshold of a periodic stochastic $SIVS$ epidemic model with nonlinear incidence, Physica A, 508 (2018), 532–549. https://doi.org/10.1016/j.physa.2018.05.056 doi: 10.1016/j.physa.2018.05.056
    [25] G. D. Liu, H. K. Qi, Z. B. Chang, X. Z. Meng, Asymptotic stability of a stochastic May mutualism system, Comput. Math. Appl., 79 (2020), 735–745. https://doi.org/10.1016/j.camwa.2019.07.022 doi: 10.1016/j.camwa.2019.07.022
    [26] C. Lu, Dynamical analysis and numerical simulations on a crowley-Martin predator-prey model in stochastic environment, Appl. Math. Comput., 413 (2022), 126641. https://doi.org/10.1016/j.amc.2021.126641 doi: 10.1016/j.amc.2021.126641
    [27] H. B. Guo, M. Y. Li, Z. S. Shuai, Global dynamics of a general class of multistage models for infectious diseases, SIAM J. Appl. Math., 72 (2012), 261–279. https://doi.org/10.1137/110827028 doi: 10.1137/110827028
    [28] M. Sekiguchi, E. Ishiwata, Global dynamics of a discretized $SIRS$ epidemic model with time delay, J. Math. Anal. Appl., 371 (2010), 195–202. https://doi.org/10.1016/j.jmaa.2010.05.007 doi: 10.1016/j.jmaa.2010.05.007
    [29] F. P. Zhang, Z. Z. Li, F. Zhang, Global stability of an $SIR$ epidemic model with constant infectious period, Appl. Math. Comput., 199 (2008), 285–291. https://doi.org/10.1016/j.amc.2007.09.053 doi: 10.1016/j.amc.2007.09.053
    [30] W. B. Ma, Y. Takeuchi, T. Hara, E. Beretta, Permanence of an $SIR$ epidemic model with distributed time delays, Tohoku Math. J., 54 (2002), 581–591. https://doi.org/10.2748/tmj/1113247650 doi: 10.2748/tmj/1113247650
    [31] P. Tajpara, M. Mildner, R. Schmidt, M. Vierhapper, J. Matiasek, T. Popow-Kraupp, A preclinical model for studying Herpes simplex virus infection, J. Invest. Dermatol., 139 (2019), 673–682. https://doi.org/10.1016/j.jid.2018.08.034 doi: 10.1016/j.jid.2018.08.034
    [32] H. Duan, X. Chen, Z. Li, Y. Pang, W. Jing, P. Liu, et al, Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: A randomized controlled trial, Clin. Microbiol. Infec., 25 (2019), 190–195. https://doi.org/10.1016/j.cmi.2018.07.012 doi: 10.1016/j.cmi.2018.07.012
    [33] P. Guo, X. S. Yang, Z. C. Yang, Dynamical behaviors of an $SIRI$ epidemic model with nonlinear incidence and latent period, Adv. Differ. Equ., 2014 (2014), 164. https://doi.org/10.1186/1687-1847-2014-164 doi: 10.1186/1687-1847-2014-164
    [34] N. Stollenwerk, J. Martins, A. Pinto, The phase transition lines in pair approximation for the basic reinfection model $SIRI$, Phys. Lett. A, 371 (2007), 379–388. https://doi.org/10.1016/j.physleta.2007.06.040 doi: 10.1016/j.physleta.2007.06.040
    [35] Y. K. Li, Z. D. Teng, C. Hu, Q. Ge, Global stability of an epidemic model with age-dependent vaccination, latent and relapse, Chaos Soliton. Fract., 105 (2017), 195–207. https://doi.org/10.1016/j.chaos.2017.10.027 doi: 10.1016/j.chaos.2017.10.027
    [36] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [37] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
    [38] M. Turkyilmazoglu, Explicit formulae for the peak time of an epidemic from the SIR model, Physica D, 422 (2021), 132902. https://doi.org/10.1016/j.physd.2021.132902 doi: 10.1016/j.physd.2021.132902
    [39] M. Krger, M. Turkyilmazoglu, R. Schlickeiser, Explicit formulae for the peak time of an epidemic from the SIR model. Which approximant to use? Physica D, 425 (2021), 132981. https://doi.org/10.1016/j.physd.2021.132981
    [40] Z. Ma, Y. Zhou, J. Wu, Modeling and dynamics of infectious diseases, Higher Education Press, 2009.
    [41] T. T. Yu, S. L. Yuan, T. H. Zhang, The effect of delay interval on the feedback control for a turbidostat model, J. Franklin I., 358 (2021), 7628–7649. https://doi.org/10.1016/j.jfranklin.2021.08.003 doi: 10.1016/j.jfranklin.2021.08.003
    [42] Z. J. Wang, M. Liu, Optimal impulsive harvesting strategy of a stochastic Gompertz model in periodic environments, Appl. Math. Lett., 125 (2022), 107733. https://doi.org/10.1016/j.aml.2021.107733 doi: 10.1016/j.aml.2021.107733
    [43] W. J. Zuo, J. P. Shi, Existence and stability of steady-state solutions of reaction-diffusion equations with nonlocal delay effect, Z. Angew. Math. Phys., 72 (2021), 43. https://doi.org/10.1007/s00033-021-01474-1 doi: 10.1007/s00033-021-01474-1
    [44] X. H. Zhang, Q. Yang, Threshold behavior in a stochastic SVIR model with general incidence rates, Appl. Math. Lett., 121 (2021), 107403. https://doi.org/10.1016/j.aml.2021.107403 doi: 10.1016/j.aml.2021.107403
    [45] F. Li, S. Q. Zhang, X. Z. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comput. Appl. Math., 38 (2019), 95. https://doi.org/10.1007/s40314-019-0857-x doi: 10.1007/s40314-019-0857-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1615) PDF downloads(91) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog