Research article Special Issues

Cubic bipolar fuzzy VIKOR and ELECTRE-II algorithms for efficient freight transportation in Industry 4.0

  • Received: 19 April 2023 Revised: 07 July 2023 Accepted: 30 July 2023 Published: 18 August 2023
  • MSC : 03E72, 90B50, 94D05

  • The theory of cubic bipolar fuzzy sets (CBFSs) is a robust approach for dealing with vagueness and bipolarity in real-life circumstances. This theory provides a hybrid machine learning paradigm that can accurately describe two-sided contrasting features for medical diagnosis. The ELECTRE-II model, which is extensively used, is expanded in this article to include the cubic bipolar fuzzy (CBF) context. In order to produce a comprehensive preference ordering of actions, ELECTRE-II establishes two different forms of embedded outranking relations while taking into account the subjective human judgments. A huge number of applications have been created by its variations under various models, considering the CBF model's greater capacity to deal. For opinions in the adaptive CBF structure with unknown information, the CBF-ELECTRE-II group decision support method is described. With the use of proper CBF aggregation operations, the expert CBF views on each alternative and criterion are compiled in the first step. The approach then constructs weak and strong outranking relations and offers three distinct CBF outranking set kinds ("concordance", "indifferent" and "discordance" sets). Strong and weak outranking graphs serve as a visual depiction of the latter, which is finally studied by a rigorous iterative procedure that yields a preferred system. For these objectives, integrated CBF-VIKOR and CBF-ELECTRE-II techniques are developed for multi-criteria group decision making (MCDGM). Finally, suggested techniques are recommended to determine ranking index of efficient road freight transportation (FRT) in Industry 4.0. The ranking index and optimal decision are also computed with other techniques to demonstrate robustness of proposed MCDGM approach.

    Citation: Ashraf Al-Quran, Nimra Jamil, Syeda Tayyba Tehrim, Muhammad Riaz. Cubic bipolar fuzzy VIKOR and ELECTRE-II algorithms for efficient freight transportation in Industry 4.0[J]. AIMS Mathematics, 2023, 8(10): 24484-24514. doi: 10.3934/math.20231249

    Related Papers:

  • The theory of cubic bipolar fuzzy sets (CBFSs) is a robust approach for dealing with vagueness and bipolarity in real-life circumstances. This theory provides a hybrid machine learning paradigm that can accurately describe two-sided contrasting features for medical diagnosis. The ELECTRE-II model, which is extensively used, is expanded in this article to include the cubic bipolar fuzzy (CBF) context. In order to produce a comprehensive preference ordering of actions, ELECTRE-II establishes two different forms of embedded outranking relations while taking into account the subjective human judgments. A huge number of applications have been created by its variations under various models, considering the CBF model's greater capacity to deal. For opinions in the adaptive CBF structure with unknown information, the CBF-ELECTRE-II group decision support method is described. With the use of proper CBF aggregation operations, the expert CBF views on each alternative and criterion are compiled in the first step. The approach then constructs weak and strong outranking relations and offers three distinct CBF outranking set kinds ("concordance", "indifferent" and "discordance" sets). Strong and weak outranking graphs serve as a visual depiction of the latter, which is finally studied by a rigorous iterative procedure that yields a preferred system. For these objectives, integrated CBF-VIKOR and CBF-ELECTRE-II techniques are developed for multi-criteria group decision making (MCDGM). Finally, suggested techniques are recommended to determine ranking index of efficient road freight transportation (FRT) in Industry 4.0. The ranking index and optimal decision are also computed with other techniques to demonstrate robustness of proposed MCDGM approach.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning-I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [4] K. T. Atanassov, Intuitionistic fuzzy sets: Theory and applications, Berlin, Heidelberg: Springer, 1999. https://doi.org/10.1007/978-3-7908-1870-3
    [5] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [6] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [7] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1220–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [8] W. R. Zhang, Bipolar fuzzy sets and relations, A computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115
    [9] W. R. Zhang, (Yin) (Yang) bipolar fuzzy sets, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228), 1998,835–840. https://doi.org/10.1109/FUZZY.1998.687599
    [10] Y. B. Jun, C. S. Kim, K. O. Yang, Cubic Sets, Annal. Fuzzy Math. Inf., 4 (2012), 83–98.
    [11] M. Riaz, S. T. Tehrim, Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 2473–2494. https://doi.org/10.3233/JIFS-182751 doi: 10.3233/JIFS-182751
    [12] C. M. Tam, T. K. L. Tong, Y. W. Wong, Selection of concrete pump using the superiority and inferiority ranking method, J. Constr. Eng. M., 130 (2004), 827–834. https://doi.org/10.1061/(ASCE)0733-9364(2004)130:6(827) doi: 10.1061/(ASCE)0733-9364(2004)130:6(827)
    [13] J. J. Bernardo, J. M. Blin, A programming model of consumer choice among multi-attributed brands, J. Consum. Res., 4 (1977), 111–118. https://www.jstor.org/stable/2488717
    [14] T. L. Saaty, What is the analytic hierarchy process? In: Mathematical Models for Decision Support, Berlin, Heidelberg: Springer, 1988,109–121. https://doi.org/10.1007/978-3-642-83555-1_5
    [15] S. Opricovic, Multicriteria optimization of civil engineering systems, PhD Thesis, Faculty of civil engineering, Belgrade, 1998.
    [16] C. L. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple attribute decision making, Berlin, Heidelberg: Springer, 1981, 58–191. https://doi.org/10.1007/978-3-642-48318-9_3
    [17] J. R. Figueira, V. Mousseau, B. Roy, ELECTRE methods, In: Multiple criteria decision analysis, New York: Springer, 2016,155–185.
    [18] B. Roy, The outranking approach and the foundations of ELECTRE methods, Theor. Decis., 31 (1991), 49–73. https://doi.org/10.1007/BF00134132 doi: 10.1007/BF00134132
    [19] J. Figueira, S. Greco, M. Ehrgott, Multiple criteria decision analysis: State of the art surveys, New York: Springer, 2005. https://doi.org/10.1007/b100605
    [20] G. H. Tzeng, J. J. Huang, Multiple attribute decision making: Methods and applications, New York: Chapman and Hall/CRC, 2011. https://doi.org/10.1201/b11032
    [21] B. Vahdani, H. Hadipour, Extension of the ELECTRE method based on interval-valued fuzzy sets, Soft Comput., 15 (2011), 569–579. https://doi.org/10.1007/s00500-010-0563-5 doi: 10.1007/s00500-010-0563-5
    [22] M. Akram, W. A. Dudek, F. Ilyas, Group decision-making based on Pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. https://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [23] M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020), 147–164.
    [24] M. A. Hatami, M. Tavana, An extension of the ELECTRE I method for group decision-making under a fuzzy environment, Omega, 39 (2011), 373–386. https://doi.org/10.1016/j.omega.2010.09.001 doi: 10.1016/j.omega.2010.09.001
    [25] M. Akram, A. N. Al-Kenani, Multiple-attribute decision making ELECTRE II method under bipolar fuzzy model, Algorithms, 12 (2019), 226. https://doi.org/10.3390/a12110226 doi: 10.3390/a12110226
    [26] R. Benayoun, B. Roy, N. Sussman, Manual de reference du programme electre, Note de Synthese et Formation, Direction Scientifique SEMA, France, Paris, 1966, 79.
    [27] M. Sevkli, An application of the fuzzy ELECTRE method for supplier selection, Int. J. Prod. Res., 48 (2010), 3393–3405. https://doi.org/10.1080/00207540902814355 doi: 10.1080/00207540902814355
    [28] B. D. Rouyendegh, T. E. Erkan, An Application of the fuzzy ELECTRE method for academic staff selection, Hum. Factor. Ergon. Man., 23 (2013), 107–115. https://doi.org/10.1002/hfm.20301 doi: 10.1002/hfm.20301
    [29] N. Chen, Z. S. Xu, M. Xia, The ELECTRE-I multi-criteria decision-making method based on hesitant fuzzy sets, Int. J. Inf. Technol. Decis. Making, 14 (2015), 621–657. https://doi.org/10.1142/S0219622014500187 doi: 10.1142/S0219622014500187
    [30] B. D. Rouyendegh, The Intuitionistic fuzzy ELECTRE model, Int. J. Manag. Sci. Eng. Manag., 13 (2012), 139–145. https://doi.org/10.1080/17509653.2017.1349625 doi: 10.1080/17509653.2017.1349625
    [31] M. Akram, Shumaiza, M. Arshad, Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis, Comp. Appl. Math., 39 (2020), 7. https://doi.org/10.1007/s40314-019-0980-8 doi: 10.1007/s40314-019-0980-8
    [32] X. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega, 36 (2008), 45–63. https://doi.org/10.1016/j.omega.2005.12.003 doi: 10.1016/j.omega.2005.12.003
    [33] M. Akram, F. Ilyas, H. Garg, Multi-criteria group decision making based on ELECTRE I method in Pythagorean fuzzy information, Soft Comput., 24 (2020), 3425–3453. https://doi.org/10.1007/s00500-019-04105-0 doi: 10.1007/s00500-019-04105-0
    [34] L. Duckstein, M. Gershon, Multicriterion analysis of a vegetation management problem using ELECTRE II, Appl. Math. Modell., 7 (1983), 254–261. https://doi.org/10.1016/0307-904X(83)90078-1 doi: 10.1016/0307-904X(83)90078-1
    [35] H. Liao, L. Yang, Z. Xu, Two new approaches based on ELECTRE II to solve the multiple criteria decision making problems with hesitant fuzzy linguistic term sets, Appl. Soft Comput., 63 (2018), 223–234. https://doi.org/10.1016/j.asoc.2017.11.049 doi: 10.1016/j.asoc.2017.11.049
    [36] M. Lin, Z. Chen, H. Liao, Z. Xu, ELECTRE II method to deal with probabilistic linguistic term sets and its application to edge computing, Nonlinear Dyn., 96 (2019), 2125–2143. https://doi.org/10.1007/s11071-019-04910-0 doi: 10.1007/s11071-019-04910-0
    [37] Z. Wen, Yu, J. Yan, Best available techniques assessment for coal gasification to promote cleaner production based on the ELECTRE-II method, J. Clean. Prod., 129 (2016), 12–22. https://doi.org/10.1016/j.jclepro.2016.04.136 doi: 10.1016/j.jclepro.2016.04.136
    [38] K. Govindan, M. C. Grigore, D. Kannan, Ranking of third party logistics provider using fuzzy ELECTRE II, The 40th International Conference on Computers & Indutrial Engineering, 2010, 1–5. https://doi.org/10.1109/ICCIE.2010.5668366
    [39] A. V. Devadoss, M. Rekha, A new intuitionistic fuzzy ELECTRE II approach to study the Inequality of women in the society, Glob. J. Pure Appl. Math, 13 (2017), 6583–6594.
    [40] N. Jamil, M. Riaz, Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I, Int. J. Biomath., 15 (2022), 2250030. https://doi.org/10.1142/S1793524522500309 doi: 10.1142/S1793524522500309
    [41] M. Riaz, N. Jamil, Topological structures on cubic bipolar fuzzy sets with linear assignment model and SIR method for healthcare, J. Intell. Fuzzy Syst., 44 (2023), 1191–1212. https://doi.org/10.3233/JIFS-222224 doi: 10.3233/JIFS-222224
    [42] M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy set with application to multi-criteria group decision making using geometric aggregation operators, Soft Comput., 24 (2020), 16111–16133. https://doi.org/10.1007/s00500-020-04927-3 doi: 10.1007/s00500-020-04927-3
    [43] M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data, Comput. Appl. Math., 38 (2019), 87. https://doi.org/10.1007/s40314-019-0843-3 doi: 10.1007/s40314-019-0843-3
    [44] J. Zhan, B. Sun, X. Zhang, PF-TOPSIS method based on CPFRS models: An application to unconventional emergency events, Comput. Ind. Eng., 139 (2020), 106192. https://doi.org/10.1016/j.cie.2019.106192 doi: 10.1016/j.cie.2019.106192
    [45] J. Gwak, H. Garg, N. Jan, Hybrid integrated decision-making algorithm for clustering analysis based on a bipolar complex fuzzy and soft sets, Alexandria Eng. J., 67 (2023), 473–487. https://doi.org/10.1016/j.aej.2022.12.003 doi: 10.1016/j.aej.2022.12.003
    [46] H. M. A. Farid, M. Riaz, Z. A. Khan, T-spherical fuzzy aggregation operators for dynamic decision-making with its application, Alexandria Eng. J., 72 (2023), 97–115. https://doi.org/10.1016/j.aej.2023.03.053 doi: 10.1016/j.aej.2023.03.053
    [47] A. Sooklall, J. V. Fonou-Dombeu, A Multi-criteria decision-making approach to ontology ranking with ELECTRE II and IV, 2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems(icABCD), 2022, 1–9. https://doi.org/10.1109/icABCD54961.2022.9856133
    [48] T. Y. Lin, K. C. Hung, K. P. Lin, J. S. Hon, A. S. F. Chiu, Improved ELECTRE II sustainability assessment framework in power generation technological evaluation, J. Intell. Fuzzy Syst., 43 (2022), 6405–6418. https://doi.org/10.3233/JIFS-220441 doi: 10.3233/JIFS-220441
    [49] F. Chen, J. Pang, An Intelligent Evaluation Method of Design Scheme for Electromagnet Quality Based on ELECTRE II, 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE), 2021,359–362. https://doi.org/10.1109/ICAICE54393.2021.00076
    [50] M. Kirisci, I. Demir, N. Simsek, Fermatean fuzzy ELECTRE multi-criteria group decision-making and most suitable biomedical material selection, Artif. Intell. Med., 127 (2022), 102278. https://doi.org/10.1016/j.artmed.2022.102278 doi: 10.1016/j.artmed.2022.102278
    [51] I. G. I. Sudipa, I. M. D. P. Asana, I. K. A. G. Wiguna, I. N. T. A. Putra, Implementation of ELECTRE II algorithm to analyze student constraint factors in completing thesis, 2021 6th International Conference on New Media Studies (CONMEDIA), 2021, 22–27. https://doi.org/10.1109/CONMEDIA53104.2021.9617001
    [52] A. Alinezhad, J. Khalili, ELECTRE I–II–III Methods, New methods and applications in multiple attribute decision making (MADM), Cham: Springer, 2019,167–180. https://doi.org/10.1007/978-3-030-15009-9
    [53] I. Alshammari, M. Parimala, C. Ozel, M. Riaz, R. Kammoun, New MCDM algorithms with linear Diophantine fuzzy soft TOPSIS, VIKOR and aggregation operators, Mathematics, 10 (2022), 3080. https://doi.org/10.3390/math10173080 doi: 10.3390/math10173080
    [54] X. Chen, Z. Guo, H. Zhou, X. Qian, X. Zhang, Urban flood resilience assessment based on VIKOR-GRA: A case study in chongqing, China, KSCE J. Civ. Eng., 26 (2022), 4178–4194. https://doi.org/10.1007/s12205-022-2257-9 doi: 10.1007/s12205-022-2257-9
    [55] A. R. Topno, M. Job, D. K. Rusia, V. Kumar, B. Bharti, S. D. Singh, Prioritization and identification of vulnerable sub-watersheds using morphometric analysis and integrated AHP-VIKOR method, Water Supply, 22 (2022), 8050–8064. https://doi.org/10.2166/ws.2022.303 doi: 10.2166/ws.2022.303
    [56] V. K. Pathak, D. Garg, A. Agarwal, Analysing alternatives for last mile delivery performance: an application of VIKOR, Int. J. Adv. Oper. Manag., 14 (2022), 264–279. https://doi.org/10.1504/IJAOM.2022.125096 doi: 10.1504/IJAOM.2022.125096
    [57] W. Liu, L. Han, Y. Liang, Evaluation of operation effect for intelligent distribution terminal based on VIKOR model, In: Proceedings of 2021 International Top-Level Forum on Engineering Science and Technology Development Strategy, Singapore: Springer, 2022,313–321. https://doi.org/10.1007/978-981-16-7156-2_22
    [58] S. Samal, R. Dash, An empirical comparison of TOPSIS and VIKOR for ranking decision-making models, In: Intelligent and Cloud Computing, Singapore: Springer, 2022,429–437. https://doi.org/10.1007/978-981-16-9873-6_39
    [59] M. S. Ismail, A. Felix, Integrated fuzzy VIKOR and TOPSIS system for the sustainable development in Islam, AIP Conf. Proc., 2385 (2022), 130027. https://doi.org/10.1063/5.0070740 doi: 10.1063/5.0070740
    [60] Y. T. Ic, B. celik, S. Kavak, B. Baki, An integrated AHP-modified VIKOR model for financial performance modeling in retail and wholesale trade companies, Decis. Anal. J., 3 (2022), 100077. https://doi.org/10.1016/j.dajour.2022.100077 doi: 10.1016/j.dajour.2022.100077
    [61] F. Zhou, G. Wang, T. Chen, P. Ma, S. Pratap, Regional leading industry selection based on an extended fuzzy VIKOR approach, IJDSST, 14 (2022), 1–14. https://doi.org/10.4018/IJDSST.286687 doi: 10.4018/IJDSST.286687
    [62] Y. Yang, T. Gai, M. Cao, Z. Zhang, H. Zhang, H. J. Wu, Application of Group Decision Making in Shipping Industry 4.0: Bibliometric Analysis, Trends, and Future Directions, Systems, 11 (2023), 69. https://doi.org/10.3390/systems11020069 doi: 10.3390/systems11020069
    [63] M. Krstic, G. P. Agnusdei, P. P. Miglietta, S. Tadic, V. Roso, Applicability of Industry 4.0 technologies in the reverse logistics: A circular economy approach based on comprehensive distance based ranking (COBRA) method, Sustainability, 14 (2022), 5632. https://doi.org/10.3390/su14095632 doi: 10.3390/su14095632
    [64] M. Yavuz, B. Oztaysi, S. C. Onar, C. Kahraman, Multi-criteria evaluation of alternative-fuel vehicles via a hierarchical hesitant fuzzy linguistic model, Expert Syst. Appl., 42 (2015), 2835–2848. https://doi.org/10.1016/j.eswa.2014.11.010 doi: 10.1016/j.eswa.2014.11.010
    [65] H. M. A. Farid, M. Riaz, Innovative q-Rung Orthopair Fuzzy Prioritized Interactive Aggregation Operators to Evaluate Efficient Autonomous Vehicles for Freight Transportation, Scientia Iranica, 2022. https://doi.org/10.24200/SCI.2022.59601.6326
    [66] V. Gružauskas, S. Baskutis, V. Navickas, Minimizing the trade-off between sustainability and cost effective performance by using autonomous vehicles, J. Clean. Prod., 184 (2018), 709–717. https://doi.org/10.1016/j.jclepro.2018.02.302 doi: 10.1016/j.jclepro.2018.02.302
    [67] Z. Gerhátová, V. Zitrický, V. Klapita, Industry 4.0 implementation options in railway transport, Trans. Rese. Proc., 53 (2021), 23–30. https://doi.org/10.1016/j.trpro.2021.02.003 doi: 10.1016/j.trpro.2021.02.003
    [68] S. Qahtan, H. A. Alsattar, A. A. Zaidan, M. Deveci, D. Pamucar, D. Delen, Performance assessment of sustainable transportation in the shipping industry using a q-rung orthopair fuzzy rough sets-based decision making methodology, Expert Syst. Appl., 223 (2023), 119958. https://doi.org/10.1016/j.eswa.2023.119958 doi: 10.1016/j.eswa.2023.119958
    [69] L. Zhu, Q. Xiong, Key influencing factor and future scenario simulation of China's CO2 emissions from road freight transportation, Sustainable Prod. Consumption, 37 (2023), 11–25. https://doi.org/10.1016/j.spc.2023.02.008 doi: 10.1016/j.spc.2023.02.008
    [70] M. H. B. M. Callefi, G. M. D. Ganga, M. Godinho Filho, M. M. Queiroz, V. Reis, J. G. M. dos Reis, Technology-enabled capabilities in road freight transportation systems: A multi-method study, Expert Syst. Appl., 203 (2022), 117497. https://doi.org/10.1016/j.eswa.2022.117497 doi: 10.1016/j.eswa.2022.117497
    [71] I. Yilmaz, Evaluating Industry 4.0 barriers by Intuitionistic fuzzy VIKOR method, In: Multiple Criteria Decision Making with Fuzzy Sets, Cham: Springer, 2022,167–178. https://doi.org/10.1007/978-3-030-98872-2_11
    [72] J. J. Bravo, C. J. Vidal, Freight transportation function in supply chain optimization models: A critical review of recent trends, Expert Syst. Appl., 40 (2013), 6742–6757. https://doi.org/10.1016/j.eswa.2013.06.015 doi: 10.1016/j.eswa.2013.06.015
    [73] A. Al-Quran, T-Spherical Linear Diophantine Fuzzy Aggregation Operators for Multiple Attribute Decision-Making, AIMS Mathematics, 8 (2023), 12257–12286. https://doi.org/10.3934/math.2023618 doi: 10.3934/math.2023618
    [74] F. Al-Sharqi, A. Ahmad, A. Al-Quran, Fuzzy parameterized-interval complex neutrosophic soft sets and their applications under uncertainty, J. Intell. Fuzzy Syst., 44 (2023), 1453–1477. https://doi.org/10.3233/JIFS-221579 doi: 10.3233/JIFS-221579
    [75] A. Al-Quran, A New Multi Attribute Decision Making Method Based on the T-Spherical Hesitant Fuzzy Sets, IEEE Access, 9 (2021), 156200–156210. https://doi.org/10.1109/ACCESS.2021.3128953 doi: 10.1109/ACCESS.2021.3128953
    [76] M. Z. Hanif, N. Yaqoob, M. Riaz, M. Aslam, Linear Diophantine fuzzy graphs with new decision-making approach, AIMS Mathematics, 7 (2022), 14532–14556. https://doi.org/10.3934/math.2022801 doi: 10.3934/math.2022801
    [77] D. Pamucar, Normalized weighted geometric Dombi Bonferroni mean operator with interval grey numbers: Application in multicriteria decision making, Rep. Mech. Eng., 1 (2020), 44–52. https://doi.org/10.31181/rme200101044p doi: 10.31181/rme200101044p
    [78] M. Riaz, M. Riaz, N. Jamil, Z. Zararsiz, Distance and similarity measures for bipolar fuzzy soft sets with application to pharmaceutical logistics and supply chain management, J. Intell. Fuzzy Syst., 42 (2022), 3169–3188. https://doi.org/10.3233/JIFS-210873 doi: 10.3233/JIFS-210873
    [79] Z. Zararsiz, On the extensions of the almost convergence idea and core theorems, J. Nonlinear Sci. Appl., 9 (2016), 112–125. https://doi.org/10.22436/jnsa.009.01.11 doi: 10.22436/jnsa.009.01.11
    [80] A. Sezgin, A. O. Atagun, N. Cagman, H. Demir, On near-rings with soft union ideals and applications, New Math. Natural Comput., 18 (2022), 495–511. https://doi.org/10.1142/S1793005722500247 doi: 10.1142/S1793005722500247
    [81] A. O. Atagun, H. Kamaci, I. Tastekin, A. Sezgin, P-properties in Near-rings, J. Math. Fund. Sci., 51 (2019), 152–167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5
    [82] A. Habib, Z. A. Khan, M. Riaz, D. Marinkovic, Performance Evaluation of Healthcare Supply Chain in Industry 4.0 with Linear Diophantine Fuzzy Sine-Trigonometric Aggregation Operations, Mathematics, 11 (2023), 2611. https://doi.org/10.3390/math11122611 doi: 10.3390/math11122611
    [83] D. Bozanic, D. Pamucar, I. Badi, D. Tesic, A decision support tool for oil spill response strategy selection: application of LBWA and Z MABAC methods, Opsearch, 60 (2023), 24–58. https://doi.org/10.1007/s12597-022-00605-0 doi: 10.1007/s12597-022-00605-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1627) PDF downloads(102) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog