In this paper, we will introduce the idea of grand variable weighted Herz spaces $ {{\dot{K} ^{\alpha(\cdot), \epsilon), \theta}_{ q(\cdot)}(\tau)}} $ in which $ \alpha $ is also a variable. Our main purpose in this paper is to prove the boundedness of Hardy operators on grand variable weighted Herz spaces.
Citation: Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki. Boundedness of Hardy operators on grand variable weighted Herz spaces[J]. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
In this paper, we will introduce the idea of grand variable weighted Herz spaces $ {{\dot{K} ^{\alpha(\cdot), \epsilon), \theta}_{ q(\cdot)}(\tau)}} $ in which $ \alpha $ is also a variable. Our main purpose in this paper is to prove the boundedness of Hardy operators on grand variable weighted Herz spaces.
[1] | C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18 (1968), 283–323. |
[2] | S. Shi, Z. Fu, S. Lu, On the compactness of commutators of Hardy operators, Pac. J. Math., 1 (2020), 239–256. https://doi.org/10.2140/pjm.2020.307.239 doi: 10.2140/pjm.2020.307.239 |
[3] | Z. Fu, S. Lu, S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math., 33 (2021), 505–529. https://doi.org/10.1515/forum-2020-0243 doi: 10.1515/forum-2020-0243 |
[4] | S. Lu, Z. Fu, F. Zhao, S. Shi, Hardy operators on Euclidean spaces and ralated topics, Singapore: World Scientific Publishing, 2022. |
[5] | D. C. Uribe, A. Fiorenza, Variable Lebesgue space: Foundations and harmonic analysis, Basel: Birkhauser, 2013. https://doi.org/10.1007/978-3-0348-0548-3 |
[6] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Springer, 2 (2016). |
[7] | M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8 |
[8] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[9] | Y. Lu, Y. P. Zhu, Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents, ACTA Math. Sin., 30 (2014), 1180–1194. https://doi.org/10.1007/s10114-014-3410-2 doi: 10.1007/s10114-014-3410-2 |
[10] | M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 199 (2016), 1–15. https://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9 |
[11] | M. Izuki, T. Noi, An intrinsic square function on weighted Herz spaces with variable exponents, J. Math. Inequal., 11 (2017), 799–816. https://doi.org/10.48550/arXiv.1606.01019 doi: 10.48550/arXiv.1606.01019 |
[12] | A. Meskhi, Maximal functions, potentials and singular integrals in grand Morrey spaces, Complex Var. Elliptic, 2010, 1007–1186. https://doi.org/10.1080/17476933.2010.534793 doi: 10.1080/17476933.2010.534793 |
[13] | H. Nafis, H. Rafeiro, M. A. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1–13. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6 |
[14] | H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52 |
[15] | H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of multilinear Calderón-Zygmund operators on grand variable Herz spaces, J. Funct. Space., 2022 (2022). |
[16] | M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653 |
[17] | S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20231130 doi: 10.3934/math.20231130 |
[18] | L. Wang, Parametrized Littlewood-Paley operators on grand variable Herz spaces, Ann. Funct. Anal., 13 (2022). https://doi.org/10.1007/s43034-022-00218-0 doi: 10.1007/s43034-022-00218-0 |
[19] | B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. |
[20] | M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, AIMS Math., 8 (2023), 22338–22353. https://doi.org/10.3934/math.20231139 doi: 10.3934/math.20231139 |
[21] | B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036 |
[22] | B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660–670. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660 |
[23] | L. Diening, A. Peter, Muckenhoupt weights in variable exponent spaces, Mathematik, 2008. |
[24] | A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 10. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250 |
[25] | A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175 |
[26] | A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.48550/arXiv.1804.05309 doi: 10.48550/arXiv.1804.05309 |