Research article

Bipolar fuzzy INK-subalgebras of INK-algebras

  • Received: 12 December 2023 Revised: 21 May 2024 Accepted: 17 June 2024 Published: 24 September 2024
  • MSC : 03B52, 03E72, 08A72

  • This article presents a new idea for an extension of the fuzzy INK algebra called bipolar fuzzy INK subalgebra. The objective of this study is to define the features that distinguish bipolar fuzzy INK-subalgebras of INK-algebras. The algebraic operations on these sub-algebras are also studied. The thorough examination allows us to prove a number of theorems that shed light on the connections between the higher and lower-level sets related to these ideas. In addition, several related topics are thoroughly examined, and the idea of homomorphism for bipolar fuzzy INK sub-algebras is introduced.

    Citation: Remala Mounikalakshmi, Tamma Eswarlal, Chiranjibe Jana. Bipolar fuzzy INK-subalgebras of INK-algebras[J]. AIMS Mathematics, 2024, 9(10): 27593-27606. doi: 10.3934/math.20241340

    Related Papers:

  • This article presents a new idea for an extension of the fuzzy INK algebra called bipolar fuzzy INK subalgebra. The objective of this study is to define the features that distinguish bipolar fuzzy INK-subalgebras of INK-algebras. The algebraic operations on these sub-algebras are also studied. The thorough examination allows us to prove a number of theorems that shed light on the connections between the higher and lower-level sets related to these ideas. In addition, several related topics are thoroughly examined, and the idea of homomorphism for bipolar fuzzy INK sub-algebras is introduced.



    加载中


    [1] K. Iseki, An introduction to the theory of BCK-algebra, Mathematica Japonicae, 23 (1978), 1–26.
    [2] K. Iseki, On BCI-algebras, Math. Sem. Notes, 8 (1980), 125–130.
    [3] M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran, Fuzzy sub-algebras and fuzzy K-ideals in INK-algebras, International Journal of Pure and Applied Mathematics, 113 (2017), 47–55.
    [4] M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran, J. Kavikumar, Interval valued fuzzy subalgebra and fuzzy INK-ideal in INK-algebra, In: Advances in algebra and analysis, Cham: Birkhäuser, 2018, 19–25.https://dx.doi.org/10.1007/978-3-030-01120-8_3
    [5] M. Kaviyarasu, K. Indhira, Derivation in INK-algebras, AIP Conf. Proc. , 1952 (2018), 020049. http://dx.doi.org/10.1063/1.5032011 doi: 10.1063/1.5032011
    [6] M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran, Fuzzy p-ideal in INK-algebra, Journal of Xian University of Architecture and Technology, 12 (2020), 4746–4752.
    [7] M. Kaviyarasu, K. Indhira, V. M. Chandrasekaran, Neutrosophic set in INK-Algebra, Advances in Mathematics Scientific Journal, 9 (2020), 4345–4352. http://dx.doi.org/10.37418/amsj.9.7.4 doi: 10.37418/amsj.9.7.4
    [8] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [9] W. R. Zhang, (Yin) (Yang) bipolar fuzzy sets, 1998 IEEE World Congress on Computational Intelligence, Anchorage, USA, 1998,835–840. http://dx.doi.org/10.1109/FUZZY.1998.687599
    [10] W. R. Zhang, L. L. Zhang, YinYang bipolar logic and bipolar fuzzy logic, Inform. Sciences, 165, (2004), 265–287. https://dx.doi.org/10.1016/j.ins.2003.05.010 doi: 10.1016/j.ins.2003.05.010
    [11] W. R. Zhang, Bipolar fuzzy sets and relations, a computational frame work for cognitive modelling and multiagent decision analysis, The First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference, San Antonio, USA, 1994,305–309. http://dx.doi.org/10.1109/IJCF.1994.375115
    [12] A. M. Al-Masarwah, A. G. Ahmad, On some properties of doubt bipolar fuzzy H-ideals in BCK/BCI-algebras, Eur. J. Pure Appl. Math. , 11 (2018), 652–670. http://dx.doi.org/10.29020/nybg.ejpam.v11i3.3288 doi: 10.29020/nybg.ejpam.v11i3.3288
    [13] A. Al-Masarwah, A. G. Ahmad, Doubt bipolar fuzzy subalgebras and ideals in BCK/BCI-algebras, J. Math. Anal. , 9 (2018), 9–27.
    [14] G. Muhiuddin, Bipolar fuzzy KU-subalgebras/ideals of KU-algebras, Annals of Fuzzy Mathematics and Informatics, 8 (2014), 409–418.
    [15] B. L. Meng M. Akram, K. P. Shum, Bipolar-valued fuzzy ideals of BCK/BCI-algebras, Journal of Algebra and Applied Mathematics, 11 (2013), 13–27.
    [16] G. Muhiuddin, D. Al-Kadi, A. Mahboob, K. P. Shum, New types of bipolar fuzzy ideals of BCK-algebras, Int. J. Anal. Appl. , 18 (2020), 859–875. http://dx.doi.org/10.28924/2291-8639-18-2020-859 doi: 10.28924/2291-8639-18-2020-859
    [17] C. Jana, M. Pal, On (∈α, ∈α∨qβ)-fuzzy soft BCI-algebras, Missouri Journal of Mathematics, 29 (2017), 197–225.
    [18] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision making problem, International Journal of Fuzzy System and Applications, 7 (2018), 32–55. http://dx.doi.org/10.4018/IJFSA.2018070103 doi: 10.4018/IJFSA.2018070103
    [19] C. Jana, T. Senapati, K. P. Shum, M. Pal, Bipolar fuzzy soft sub-algebras and ideals of BCI/BCK algebras based on bipolar fuzzy points, J. Intell. Fuzzy Syst. , 37 (2019), 2785–2795. http://dx.doi.org/10.3233/JIFS-18877 doi: 10.3233/JIFS-18877
    [20] C. Jana, T. Senapati, M. Pal, Handbook of research on emerging applications of fuzzy algebraic structures, Hershey: IGI Global, 2020.https://dx.doi.org/10.4018/978-1-7998-0190-0
    [21] C. Jana, T. Senapati, M. Pal, Bipolar fuzzy soft BCK-algebras, J. Intell. Fuzzy Syst. , 37 (2015), 2785–2795. http://dx.doi.org/10.32233/JIFS-1877 doi: 10.32233/JIFS-1877
    [22] C. Jana, M. Pal, On (α, β)-US sets in BCK/BCI-algebras, Mathematics, 7 (2019), 252. http://dx.doi.org/10.3390/math7030252 doi: 10.3390/math7030252
    [23] M. R. Svd, V. L. Prasannam, Y. Bhargavi, Bipolar valued fuzzy d-algebra, Advances in Mathematics: Scientific Journal, 9 (2020), 6799–6808. http://dx.doi.org/10.37418/amsj.9.9.38 doi: 10.37418/amsj.9.9.38
    [24] M. R. Svd, V. L. Prasannam, Y. Bhargavi, Homomorphism on bipolar anti fuzzy d-Ideals of d-algebra, AIP Conf. Proc. , 2375 (2021), 020026. http://dx.doi.org/10.1063/5.0066706 doi: 10.1063/5.0066706
    [25] U. V. Kalyani, T. Eswarlal, Bipolar Vague cosets, Advances in Mathematics: Scientific Journal, 9 (2020), 6777–6787. http://dx.doi.org/10.37418/amsj.9.9.36 doi: 10.37418/amsj.9.9.36
    [26] U. V. Kalyani, T. Eswarlal, Homomorphism on bipolar Vague normal groups, Advances in Mathematics: Scientific Journal, 9 (2020), 3315–3324. https://dx.doi.org/10.37418/amsj.9.6.11 doi: 10.37418/amsj.9.6.11
    [27] U. V. Kalyani, T. Eswarlal, K. V. N. Rao, A. Iampan, Bipolar fuzzy magnified translations in groups, Int. J. Anal. Appl. , 20 (2022), 55. http://dx.doi.org/10.28924/2291-8639-20-2022-55 doi: 10.28924/2291-8639-20-2022-55
    [28] K. Kawila, C. Udomsetchai, A. Iampan, Bipolar fuzzy UP-algebras, Math. Comput. Appl. , 23 (2018), 69. https://dx.doi.org/10.3390/mca23040069 doi: 10.3390/mca23040069
    [29] M. Mursaleen, M. Balamurugan, K. Loganathan, K. S. Nisar, (∈, ∈∨˘q)-Bipolar fuzzy b-ideals of BCK/BCI-algebras, J. Funct. Space. , 2021 (2021), 6615288. https://dx.doi.org/10.1155/2021/6615288 doi: 10.1155/2021/6615288
    [30] S. M. Noori, A. G. Ahmad, S. M. Khalil, New class of doubt bipolar fuzzy sub measure algebra, CMES-Comp. Model. Eng. , 135 (2023), 293–300. http://dx.doi.org/10.32604/cmes.2022.021887 doi: 10.32604/cmes.2022.021887
    [31] J. Jan, J. Gwak, D. Pamucar, L. Martínez, Hybridintegrated decision-making model for operating system based on complexintuitionistic fuzzy and soft information, Inform. Sciences, 651 (2023), 119592. https://dx.doi.org/10.1016/j.ins.2023.119592 doi: 10.1016/j.ins.2023.119592
    [32] J. Gwak, H. Garg, N. Jan, Investigation of roboticstechnology based on bipolar complex intuitionistic fuzzy softrelation, Int. J. Fuzzy Syst. , 25 (2023), 1834–1852. https://dx.doi.org/10.1007/s40815-023-01487-0 doi: 10.1007/s40815-023-01487-0
    [33] J. Gwak, H. Garg, N. Jan, B. Akram, A new approach toinvestigate the effects of artificial neural networks based on bipolarcomplex spherical fuzzy information, Complex Intell. Syst. , 9 (2023), 4591–4614. https://dx.doi.org/10.1007/s40747-022-00959-4 doi: 10.1007/s40747-022-00959-4
    [34] G. Mani, A. J. Gnanaprakasam, N. Kausar, M. Munir, S. Khan, E. Ozbilge, Solving an integral equation via intuitionistic fuzzy bipolar metric spaces, Decision Making: Applications in Management and Engineering, 6 (2023), 536–556. https://dx.doi.org/10.31181/dmame622023624 doi: 10.31181/dmame622023624
    [35] R. Kausar, H. M. A. Farid, M. Riaz, A numerically validated approach to modeling water hammer phenomena using partial differential equations and switched differential-algebraic equations, J. Ind. Intell. , 1 (2023), 75–86. https://dx.doi.org/10.56578/jii010201 doi: 10.56578/jii010201
    [36] T. C. Wang, X. W. Wang, H. Li, Enhanced prediction accuracy in complex systems: An approach integrating fuzzy K-clustering and fuzzy neural network, Int J. Knowl. Innov. Stud. , 1 (2023), 30–43. https://dx.doi.org/10.56578/ijkis010103 doi: 10.56578/ijkis010103
    [37] Y. Du, J. L. Wang, J. G. Lu, Optimization of magnetically coupled resonant wireless power transfer based on improved whale optimization algorithm, J. Ind. Intell. , 1 (2023), 63–74. https://dx.doi.org/10.56578/jii010105 doi: 10.56578/jii010105
    [38] A. A. Khan, L. Wang, Generalized and group-generalized parameter based fermatean fuzzy aggregation operators with application to decision-making, Int J. Knowl. Innov. Stud. , 1 (2023), 10–29. https://dx.doi.org/10.56578/ijkis010102 doi: 10.56578/ijkis010102
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog