In this paper, we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.
Citation: Mona Aaly Kologani, Rajab Ali Borzooei, Hee Sik Kim, Young Bae Jun, Sun Shin Ahn. Construction of some algebras of logics by using intuitionistic fuzzy filters on hoops[J]. AIMS Mathematics, 2021, 6(11): 11950-11973. doi: 10.3934/math.2021693
In this paper, we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.
[1] | P. Agliano, I. M. A. Ferreirim, F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Studia Logica, 87 (2007), 73–98. doi: 10.1007/s11225-007-9078-1 |
[2] | S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Fuzzy filters in pseudo hoops, J. Intel. Fuzzy Syst., 32 (2017), 1997–2007. doi: 10.3233/JIFS-161586 |
[3] | S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Filter theory of pseudo hoop algebras, Ital. J. Pure Appl. Math., 37 (2017), 619–632. |
[4] | K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautomation., 20 (2016), 1–6. |
[5] | B. Bosbach, Komplementäre halbgruppen, axiomatik und arithmetik, Fund. Math., 64 (1969), 257–287. doi: 10.4064/fm-64-3-257-287 |
[6] | B. Bosbach, Komplementäre halbgruppen, kongruenzen und quotienten, Fund. Math., 69 (1970), 1–14. doi: 10.4064/fm-69-1-1-14 |
[7] | R. A. Borzooei, M. A. Kologani, Filter theory of hoop-algebras, J. Adv. Res. Pure Math., 6 (2014), 1–15. |
[8] | R. A. Borzooei, M. A. Kologani, On fuzzy filters of hoop-algebras, J. Fuzzy. Math., 25 (2017), 177–195. |
[9] | R. A. Borzooei, M. A. Kologani, Results on hoops, J. Algebraic Hyperstructures Logical Algebras, 1 (2020), 61–77. |
[10] | G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, J. Mult. Valued Logic Soft Comput., 11 (2005), 153–184. |
[11] | P. Hájek, Metamathematics of fuzzy logic, 4 Eds., Springer, 1998. |
[12] | T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Set. Syst., 73 (1995), 349–358. doi: 10.1016/0165-0114(94)00321-W |
[13] | I. Jahan, The lattice of L-ideals of a ring is modular, Fuzzy Set. Syst., 199 (2012), 121–129. doi: 10.1016/j.fss.2011.12.012 |
[14] | M. Kondo, Some types of filters in hoops, 41st IEEE Int. Symp. Mult.-Valued Logic, 2011, 50–53. |
[15] | Z. M. Ma, The lattice of intuitionistic fuzzy filters in residuated lattices, J. Appl. Math., 2014 (2014), 1–6. |
[16] | N. Mordeson, D. S. Malik, Fuzzy commutative algebra, London, UK: World Scientific, 1998. |
[17] | A. Namdar, R. A. Borzooei, A. B. Saeid, M. A. Kologani, Some results in hoop algebras, J. Intell. Fuzzy Syst., 32 (2017), 1805–1813. doi: 10.3233/JIFS-152553 |
[18] | A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517. |
[19] | F. Xie, H. Liu, Ideals in pseudo-hoop algebras, J. Algebraic Hyperstructures Logical Algebras, 1 (2020), 39–53. doi: 10.52547/HATEF.JAHLA.1.4.3 |
[20] | Z. Xue, Y. Xiao, W. Liu, H. Cheng, Y. Li, Intuitionistic fuzzy filter theory of BL-algebras, Int. J. Mach. Learn. Cyb., 4 (2013), 659–669. doi: 10.1007/s13042-012-0130-8 |
[21] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. |