Research article Special Issues

Construction of some algebras of logics by using intuitionistic fuzzy filters on hoops

  • Received: 10 April 2021 Accepted: 11 August 2021 Published: 17 August 2021
  • MSC : 03G10, 06B99, 06B75

  • In this paper, we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.

    Citation: Mona Aaly Kologani, Rajab Ali Borzooei, Hee Sik Kim, Young Bae Jun, Sun Shin Ahn. Construction of some algebras of logics by using intuitionistic fuzzy filters on hoops[J]. AIMS Mathematics, 2021, 6(11): 11950-11973. doi: 10.3934/math.2021693

    Related Papers:

  • In this paper, we define the notions of intuitionistic fuzzy filters and intuitionistic fuzzy implicative (positive implicative, fantastic) filters on hoops. Then we show that all intuitionistic fuzzy filters make a bounded distributive lattice. Also, by using intuitionistic fuzzy filters we introduce a relation on hoops and show that it is a congruence relation, then we prove that the algebraic structure made by it is a hoop. Finally, we investigate the conditions that quotient structure will be different algebras of logics such as Brouwerian semilattice, Heyting algebra and Wajesberg hoop.



    加载中


    [1] P. Agliano, I. M. A. Ferreirim, F. Montagna, Basic hoops: An algebraic study of continuous t-norms, Studia Logica, 87 (2007), 73–98. doi: 10.1007/s11225-007-9078-1
    [2] S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Fuzzy filters in pseudo hoops, J. Intel. Fuzzy Syst., 32 (2017), 1997–2007. doi: 10.3233/JIFS-161586
    [3] S. Z. Alavi, R. A. Borzooei, M. A. Kologani, Filter theory of pseudo hoop algebras, Ital. J. Pure Appl. Math., 37 (2017), 619–632.
    [4] K. T. Atanassov, Intuitionistic fuzzy sets, Int. J. Bioautomation., 20 (2016), 1–6.
    [5] B. Bosbach, Komplementäre halbgruppen, axiomatik und arithmetik, Fund. Math., 64 (1969), 257–287. doi: 10.4064/fm-64-3-257-287
    [6] B. Bosbach, Komplementäre halbgruppen, kongruenzen und quotienten, Fund. Math., 69 (1970), 1–14. doi: 10.4064/fm-69-1-1-14
    [7] R. A. Borzooei, M. A. Kologani, Filter theory of hoop-algebras, J. Adv. Res. Pure Math., 6 (2014), 1–15.
    [8] R. A. Borzooei, M. A. Kologani, On fuzzy filters of hoop-algebras, J. Fuzzy. Math., 25 (2017), 177–195.
    [9] R. A. Borzooei, M. A. Kologani, Results on hoops, J. Algebraic Hyperstructures Logical Algebras, 1 (2020), 61–77.
    [10] G. Georgescu, L. Leustean, V. Preoteasa, Pseudo-hoops, J. Mult. Valued Logic Soft Comput., 11 (2005), 153–184.
    [11] P. Hájek, Metamathematics of fuzzy logic, 4 Eds., Springer, 1998.
    [12] T. Head, A metatheorem for deriving fuzzy theorems from crisp versions, Fuzzy Set. Syst., 73 (1995), 349–358. doi: 10.1016/0165-0114(94)00321-W
    [13] I. Jahan, The lattice of L-ideals of a ring is modular, Fuzzy Set. Syst., 199 (2012), 121–129. doi: 10.1016/j.fss.2011.12.012
    [14] M. Kondo, Some types of filters in hoops, 41st IEEE Int. Symp. Mult.-Valued Logic, 2011, 50–53.
    [15] Z. M. Ma, The lattice of intuitionistic fuzzy filters in residuated lattices, J. Appl. Math., 2014 (2014), 1–6.
    [16] N. Mordeson, D. S. Malik, Fuzzy commutative algebra, London, UK: World Scientific, 1998.
    [17] A. Namdar, R. A. Borzooei, A. B. Saeid, M. A. Kologani, Some results in hoop algebras, J. Intell. Fuzzy Syst., 32 (2017), 1805–1813. doi: 10.3233/JIFS-152553
    [18] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971), 512–517.
    [19] F. Xie, H. Liu, Ideals in pseudo-hoop algebras, J. Algebraic Hyperstructures Logical Algebras, 1 (2020), 39–53. doi: 10.52547/HATEF.JAHLA.1.4.3
    [20] Z. Xue, Y. Xiao, W. Liu, H. Cheng, Y. Li, Intuitionistic fuzzy filter theory of BL-algebras, Int. J. Mach. Learn. Cyb., 4 (2013), 659–669. doi: 10.1007/s13042-012-0130-8
    [21] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2096) PDF downloads(73) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog