Complex fuzzy logic (CFL) is an emerging topic of research in fuzzy logic. Due to the circle structured codomain of the complex membership function, algebraic structure (including MV-algebra) in traditional fuzzy logic cannot be easily transplanted to CFL. Quasi-MV algebras are almost identical to MV algebras, except $ \alpha\oplus\textbf{0} = \alpha $ does not always hold. In this paper, our goal is to derive some algebraic structures for CFL. We first construct a quasi-MV algebra in complex fuzzy logic by introducing negation and truncated sum in the unit disc of the complex plane $ \textbf{S} $. Next we construct a $ \sqrt{\neg} $ quasi-MV algebra over $ \textbf{S} $ by adding an operation of square root of the negation. Moreover, implication connective and some derived connectives on $ \textbf{S} $ are introduced. Furthermore, we construct a quasi-Wajsberg algebra over $ \textbf{S} $ in which implication is a primitive connective. These algebraic structures are suitable for CFL.
Citation: Songsong Dai. Quasi-MV algebras for complex fuzzy logic[J]. AIMS Mathematics, 2022, 7(1): 1416-1428. doi: 10.3934/math.2022083
Complex fuzzy logic (CFL) is an emerging topic of research in fuzzy logic. Due to the circle structured codomain of the complex membership function, algebraic structure (including MV-algebra) in traditional fuzzy logic cannot be easily transplanted to CFL. Quasi-MV algebras are almost identical to MV algebras, except $ \alpha\oplus\textbf{0} = \alpha $ does not always hold. In this paper, our goal is to derive some algebraic structures for CFL. We first construct a quasi-MV algebra in complex fuzzy logic by introducing negation and truncated sum in the unit disc of the complex plane $ \textbf{S} $. Next we construct a $ \sqrt{\neg} $ quasi-MV algebra over $ \textbf{S} $ by adding an operation of square root of the negation. Moreover, implication connective and some derived connectives on $ \textbf{S} $ are introduced. Furthermore, we construct a quasi-Wajsberg algebra over $ \textbf{S} $ in which implication is a primitive connective. These algebraic structures are suitable for CFL.
[1] | D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. doi: 10.1109/91.995119. doi: 10.1109/91.995119 |
[2] | D. Ramot, M. Friedman, G. Langholz, A. Kandel, Complex fuzzy logic, IEEE T. Fuzzy Syst., 11 (2003), 450–461. doi: 10.1109/TFUZZ.2003.814832. doi: 10.1109/TFUZZ.2003.814832 |
[3] | S. Dick, Towards complex fuzzy logic, IEEE T. Fuzzy Syst., 13 (2005), 405–414. doi: 10.1109/TFUZZ.2004.839669. doi: 10.1109/TFUZZ.2004.839669 |
[4] | S. Dai, A generalization of rotational invariance for complex fuzzy operations, IEEE T. Fuzzy Syst., 29 (2021), 1152–1159. doi: 10.1109/TFUZZ.2020.2969874. doi: 10.1109/TFUZZ.2020.2969874 |
[5] | S. Dai, On partial orders in complex fuzzy logic, IEEE T. Fuzzy Syst., 29 (2021), 698–701. doi: 10.1109/TFUZZ.2019.2961342. doi: 10.1109/TFUZZ.2019.2961342 |
[6] | S. Dick, R. Yager, O. Yazdanbahksh, On pythagorean and complex fuzzy set operations, IEEE T. Fuzzy Syst., 24 (2016), 1009–1021. doi: 10.1109/TFUZZ.2015.2500273. doi: 10.1109/TFUZZ.2015.2500273 |
[7] | L. Liu, X. Zhang, Comment on Pythagorean and complex fuzzy set operations, IEEE T. Fuzzy Syst., 26 (2018), 3902–3904. doi: 10.1109/TFUZZ.2018.2853749. doi: 10.1109/TFUZZ.2018.2853749 |
[8] | S. Dick, On complex fuzzy s-implications, IEEE T. Emerg. Top. Comput. Intell., 2020. doi: 10.1109/TETCI.2020.3038160 doi: 10.1109/TETCI.2020.3038160 |
[9] | C. C. Chang, Algebraic analysis of many valued logics, T. Am. Math. Soc., 88 (1958), 467–490. doi: 10.2307/1993227. doi: 10.2307/1993227 |
[10] | A. Ledda, M. Konig, F. Paoli, R.Giuntini, MV algebras and quantum computation, Stud. Logica, 82 (2006), 245–270. doi: 10.1007/s11225-006-7202-2. doi: 10.1007/s11225-006-7202-2 |
[11] | R. Giuntini, A. Ledda, F. Paoli, Expanding quasi-MV algebras by a quantum operator, Stud. Logica, 87 (2007), 99–128. doi: 10.1007/s11225-007-9079-0. doi: 10.1007/s11225-007-9079-0 |
[12] | F. Paoli, A. Ledda, H. Freytes, On some properties of quasi-MV algebras and square root quasi-MV algebras, Rep. Math. Logic, 44 (2009), 31–63. |
[13] | F. Bou, F. Paoli, A. Ledda, H. Freytes, On some properties of quasi-MV algebras and square root quasi-MV algebras. Part Ⅱ, Soft Comput., 12 (2008), 341–352. doi: 10.1007/s00500-007-0185-8. doi: 10.1007/s00500-007-0185-8 |
[14] | T. Kowalski, F. Paoli, On some properties of quasi-MV algebras and square root quasi-MV algebras. Part Ⅲ, Rep. Math. Logic, 45 (2010), 161–199. |
[15] | F. Bou, F. Paoli, A. Ledda, M. Spinks, R. Giuntini, The logic of quasi-MV algebras, J. Logic Comput., 20 (2010), 619–643. doi: 10.1093/logcom/exp080. doi: 10.1093/logcom/exp080 |
[16] | F. Paoli, A. Ledda, M. Spinks, H. Freytes, R. Giuntini, Logics from $\sqrt {^{\prime}}$ quasi-MV algebras, Int. J. Theor. Phys., 50 (2011), 3882–3902. doi: 10.1007/s10773-011-0865-0. doi: 10.1007/s10773-011-0865-0 |
[17] | G. Zhang, T. S. Dillon, K. Y. Cai, J. Ma, J. Lu, Operation properties and delta-equalities of complex fuzzy sets, Int. J. Approx. Reason., 50 (2009), 1227–1249. doi: 10.1016/j.ijar.2009.05.010. doi: 10.1016/j.ijar.2009.05.010 |
[18] | J. M. Font, A. J. Rodriguez, A. Torrens, Wajsberg algebras, Stochastica, 8 (1984), 5–31. |
[19] | V. Kreinovich, L. Kohout, E. Kim, Square root of 'not': A major difference between fuzzy and quantum logics, Int. J. Gen. Syst., 40 (2011), 111–127. doi: 10.1080/03081079.2010.510728. doi: 10.1080/03081079.2010.510728 |
[20] | G. Cattaneo, M. L. Dalla Chiara, R. Giuntini, R. Leporini, Quantum computational structures, Math. Slovaca, 54 (2004), 87–108. |