Research article Special Issues

New Ostrowski type inequalities for generalized $ s $-convex functions with applications to some special means of real numbers and to midpoint formula

  • Received: 22 April 2021 Accepted: 20 August 2021 Published: 26 October 2021
  • MSC : 26D07, 26D10, 26D15, 26B15, 26B25

  • In this paper we establish new Ostrowski type inequalities related to the notion s-$ \varphi $-convex functions (see [37]), were $ f\in C^n([a, b]) $ with $ f^{(n)}\in L([a, b]) $ and we give some applications to some special means, the midpoint formula and some examples for the case $ n = 2 $.

    Citation: Praveen Agarwal, Miguel Vivas-Cortez, Yenny Rangel-Oliveros, Muhammad Aamir Ali. New Ostrowski type inequalities for generalized $ s $-convex functions with applications to some special means of real numbers and to midpoint formula[J]. AIMS Mathematics, 2022, 7(1): 1429-1444. doi: 10.3934/math.2022084

    Related Papers:

  • In this paper we establish new Ostrowski type inequalities related to the notion s-$ \varphi $-convex functions (see [37]), were $ f\in C^n([a, b]) $ with $ f^{(n)}\in L([a, b]) $ and we give some applications to some special means, the midpoint formula and some examples for the case $ n = 2 $.



    加载中


    [1] R. Agarwal, M. Luo, R. K. Raina, On Ostrowski Type inequalities, Fasciculli Mathematici, 56 (2016), 5–27. doi: 10.1515/fascmath-2016-0001. doi: 10.1515/fascmath-2016-0001
    [2] P. Agarwal, M. Kadakal, İ. İşcan, Y. M. Chu, Better approaches for n-times differentiable convex functions, Mathematics, 8 (2020), 950. doi:10.3390/math8060950. doi: 10.3390/math8060950
    [3] M. Alomari, M. Darus, Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll, 3 (2010), 1–9.
    [4] M. Alomari, M. Darus, S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi:10.1016/j.aml.2010.04.038. doi: 10.1016/j.aml.2010.04.038
    [5] K. Arrow, A. Enthoven, Quasi-Concave Programming, Econometrica, 29 (1961), 779–800. doi:0012-9682(196110)29:4<779:QP>2.0.CO;2-R.
    [6] M. Badreddine, New Ostrowski's inequalties, Revista Colombiana de Matemáticas, 51 (2017), 57–69. doi:10.15446/recolma.v51n1.66835. doi: 10.15446/recolma.v51n1.66835
    [7] R. Bai, F. Qi, B. Xi, Hermite-Hadamard type inequalities for the m- and $(\alpha, m)$-logarithmically convex functions, Filomat, 27 (2013), 1–7. doi:10.2298/FIL1301001B. doi: 10.2298/FIL1301001B
    [8] C. Bector, C. Singh, B-vex functions, J. Optimiz. Theory. App., 71 (1991), 237–254. doi: 10.1007/BF00939919. doi: 10.1007/BF00939919
    [9] M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly $(s, m)$-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016), 2045–2053. doi:10.18576/amis/100606. doi: 10.18576/amis/100606
    [10] W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen R aumen, Pub. Inst. Math., 23 (1978), 13–20.
    [11] P. Cerone, S. Dragomir, J. Roumeliotis, Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math, 32 (1999), 697–712. doi:org/10.1515/dema-1999-0404. doi: 10.1515/dema-1999-0404
    [12] M. Gordji, M. Delavar, M. De La Sen, On $\varphi$-convex functions, J. Math. Inequal., 10 (2016), 173–183. doi:10.7153/jmi-10-15. doi: 10.7153/jmi-10-15
    [13] S. Dragomir, Ostrowski-Type inequality for Lebesgue integral: A survey of recent results, Aust. J. Math. Anal. Appl., 14 (2017), 1–287.
    [14] S. Dragomir, An Ostrowski Type inequality for convex functions, Univ. Beograd. Publ. Elektrotehn, 16 (2005), 12–25. doi:10.2298/PETF0516012D. doi: 10.2298/PETF0516012D
    [15] S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 1 (2002), 55–65. doi:10.5556/j.tkjm.33.2002.304. doi: 10.5556/j.tkjm.33.2002.304
    [16] M. Grinalatt, J. Linnainmaa, Jensen's Inequality, parameter uncertainty and multiperiod investment, Rev. Asset Pricing St., 1 (2011), 1–34. doi:10.1093/rapstu/raq001. doi: 10.1093/rapstu/raq001
    [17] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi:10.1016/0022-247X(81)90123-2. doi: 10.1016/0022-247X(81)90123-2
    [18] H. Hudzik, L. Maligranda, Some remarks on $s-$convex functions, Aequationes Math., 48 (1994), 100–111. doi:10.1007/BF01837981. doi: 10.1007/BF01837981
    [19] S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2019), 63. doi: 10.3390/math7020163. doi: 10.3390/math7020163
    [20] X. Li, J. Dong, Q. Liu, Lipschitz B-vex functions and nonsmooth programming, J. Optimiz. Theory. App., 3 (1997), 557–573. doi:10.1023/A:1022643129733. doi: 10.1023/A:1022643129733
    [21] W. Liu, W. Wen, J. Park, Hermite-Hadamard type Inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766–777. doi:10.22436/jnsa.009.03.05. doi: 10.22436/jnsa.009.03.05
    [22] O. Mangasarian, Pseudo-Convex Functions, SIAM. J. Control, 3 (1965), 281–290. doi:10.1137/0303020. doi: 10.1137/0303020
    [23] B. Meftah, New Ostrowski's inequalties, Revista Colombiana de Matemáticas, 51 (2017), 57–69. doi:10.15446/recolma.v51n1.66835. doi: 10.15446/recolma.v51n1.66835
    [24] K. Mehrez, P. Agarwal, New Hermite–Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285. doi:10.1016/j.cam.2018.10.022. doi: 10.1016/j.cam.2018.10.022
    [25] S. Mohan, S. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi:10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
    [26] A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel., 10 (1938), 226–227.
    [27] M. Özdemir, C. Yildiz, A. Akdemir, E. Set, On some inequalities for s-convex functions and applications, J. Inequal. Appl., 48 (2013), 1–11. doi:10.1186/1029-242X-2013-333. doi: 10.1186/1029-242X-2013-333
    [28] J. Pecaric, F. Proschan, Y. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, Academic Press, Inc., Boston, 187, 1992. doi: 10.1016/s0076-5392(08)x6162-4.
    [29] J. Ruel, M. Ayres, Jensen's inequality predicts effects of environmental variations, Trends Ecol. Evol., 9 (1999), 361–366. doi:10.1016/s0169-5347(99)01664-x. doi: 10.1016/s0169-5347(99)01664-x
    [30] M. Sarikaya, H. Filiz, M. Kiris, On some generalized integral inequalities for Riemann Lioville Fractional Integral, Filomat, (2015), 1307–1314. doi:10.2298/FIL1506307S. doi: 10.2298/FIL1506307S
    [31] E. Set, New inequalities of Ostrowski type for mapping whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147–1154. doi:10.1016/j.camwa.2011.12.023. doi: 10.1016/j.camwa.2011.12.023
    [32] M. Tunç, Ostrowski type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 326 (2013), 1–10. doi:10.1186/1029-242X-2013-326. doi: 10.1186/1029-242X-2013-326
    [33] S. Varo$\hat{s}$anec, On $h$-convexity, J. Math. Anal. Appl., 1 (2007), 303–311. doi:10.1016/j.jmaa.2006.02.086. doi: 10.1016/j.jmaa.2006.02.086
    [34] M. Vivas-Cortez, M. A. Ali, H Budak, H. Kalsoom, P. Agarwal, Some New Hermite–Hadamard and Related Inequalities for Convex Functions via $(p, q)$-Integral, Entropy, 23 (2021), 828. doi:10.3390/e23070828. doi: 10.3390/e23070828
    [35] M. Vivas, C. García, Ostrowski Type inequalities for functions whose derivatives are $(m, h_1, h_2)$-convex, Appl. Math. Inf. Sci., 1 (2017), 79–86. doi:10.18576/amis/110110. doi: 10.18576/amis/110110
    [36] M. Vivas, Féjer Type inequalities for $(s, m)$-convex functions in the second sense, Appl. Math. Inf. Sci., 5 (2016), 1689–1696. doi:10.18576/amis/100507. doi: 10.18576/amis/100507
    [37] Y. C. Rangel-Oliveros, M. J. Vivas-Cortez, Ostrowski type inequalities for functions whose second derivative are convex generalized, Appl. Math. Inform. Sci., 6 (2018), 1117–1126. doi:10.18576/amis/120606. doi: 10.18576/amis/120606
    [38] E. Youness, E-convex sets, E-convex functions and E-convex programming, J. Optimiz. Theory. App., 102 (1999), 439–450. doi:10.1023/A:1021792726715. doi: 10.1023/A:1021792726715
    [39] X. X. You, M. A. Ali, H. Budak, P. Agarwal, Y. M. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal. Appl., 102 (2021). doi:10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2049) PDF downloads(85) Cited by(5)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog