Research article

Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative

  • Received: 17 July 2024 Revised: 04 September 2024 Accepted: 11 September 2024 Published: 24 September 2024
  • MSC : Primary 30C45, 33C50, Secondary 30C80

  • In this article, using the Sǎlǎgean operator, we introduced three new subclasses of bi-univalent functions associated with bounded boundary rotation in open unit disk $ \mathbb{E}. $ For these new classes, we first obtain initial Taylor-Maclaurin's coefficient bounds. Furthermore, the famous Fekete-Szegö inequality was also derived for these new subclass functions. Some improved results, when compared with those available in the literature, are also stated.

    Citation: Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian. Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative[J]. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339

    Related Papers:

  • In this article, using the Sǎlǎgean operator, we introduced three new subclasses of bi-univalent functions associated with bounded boundary rotation in open unit disk $ \mathbb{E}. $ For these new classes, we first obtain initial Taylor-Maclaurin's coefficient bounds. Furthermore, the famous Fekete-Szegö inequality was also derived for these new subclass functions. Some improved results, when compared with those available in the literature, are also stated.



    加载中


    [1] T. Al-Hawary, Sufficient conditions for analytic functions defined by Frasin differential operator, Stud. Univ. Babeş-Bolyai Math., 66 (2021), 353–359. https://doi.org/10.24193/subbmath.2021.2.11 doi: 10.24193/subbmath.2021.2.11
    [2] B. S. Alkahtani, P. Goswami, T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions, Miskolc Math., 17 (2016), 739–748. https://doi.org/10.18514/MMN.2017.1565 doi: 10.18514/MMN.2017.1565
    [3] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, London: Academic Press, 1980.
    [4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1985, 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7
    [5] P. L. Duren, Univalent functions, New York: Springer, 259 (1983).
    [6] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048
    [7] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.2307/2035225 doi: 10.2307/2035225
    [8] Y. M. Li, K. Vijaya, G. Murugusundaramoorthy, H. Tang, On new subclasses of bi-starlike functions with bounded boundary rotation, AIMS Math., 5 (2020), 3346–3356. https://doi.org/10.3934/math.2020215 doi: 10.3934/math.2020215
    [9] U. H. Naik, A. B. Patil, On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc., 25 (2017), 291–293. https://doi.org/10.1016/j.joems.2017.04.001 doi: 10.1016/j.joems.2017.04.001
    [10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [11] J. W. Noonan, Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc., 164 (1972), 397–410. https://doi.org/10.2307/1995984 doi: 10.2307/1995984
    [12] S. O. Olatunji, P. T. Ajai, On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean operator, Int. J. Pure. Appl. Math., 92 (2014), 645–656. http://dx.doi.org/10.12732/ijpam.v92i5.2 doi: 10.12732/ijpam.v92i5.2
    [13] V. Paatero, \"{U}ber Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A., 37 (1933), 1–20.
    [14] K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Pol. Math., 31 (1975), 311–323. https://doi.org/10.4064/ap-31-3-311-323 doi: 10.4064/ap-31-3-311-323
    [15] B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6–16. https://doi.org/10.1007/BF02771515 doi: 10.1007/BF02771515
    [16] G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, 1981, 362–372. https://doi.org/10.1007/BFb0066543
    [17] T. G. Shaba, Certain new subclasses of analytic and bi-univalent functions using salagean operator, Asia Pac. J. Math., 7 (2020), 29. https://doi.org/10.28924/APJM/7-29 doi: 10.28924/APJM/7-29
    [18] T. G. Shaba, On some new subclass of bi-univalent functions associated with Opoola differential operator, Open J. Math. Anal., 4 (2020), 74–79. https://doi.org/10.30538/psrp-oma2020.0064 doi: 10.30538/psrp-oma2020.0064
    [19] P. Sharma, S. Sivasubramanian, N. E. Cho, Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation, AIMS Math., 8 (2023), 29535–29554. https://doi.org/10.3934/math.20231512 doi: 10.3934/math.20231512
    [20] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(373) PDF downloads(52) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog