In this article, using the Sǎlǎgean operator, we introduced three new subclasses of bi-univalent functions associated with bounded boundary rotation in open unit disk $ \mathbb{E}. $ For these new classes, we first obtain initial Taylor-Maclaurin's coefficient bounds. Furthermore, the famous Fekete-Szegö inequality was also derived for these new subclass functions. Some improved results, when compared with those available in the literature, are also stated.
Citation: Anandan Murugan, Sheza M. El-Deeb, Mariam Redn Almutiri, Jong-Suk-Ro, Prathviraj Sharma, Srikandan Sivasubramanian. Certain new subclasses of bi-univalent function associated with bounded boundary rotation involving sǎlǎgean derivative[J]. AIMS Mathematics, 2024, 9(10): 27577-27592. doi: 10.3934/math.20241339
In this article, using the Sǎlǎgean operator, we introduced three new subclasses of bi-univalent functions associated with bounded boundary rotation in open unit disk $ \mathbb{E}. $ For these new classes, we first obtain initial Taylor-Maclaurin's coefficient bounds. Furthermore, the famous Fekete-Szegö inequality was also derived for these new subclass functions. Some improved results, when compared with those available in the literature, are also stated.
[1] | T. Al-Hawary, Sufficient conditions for analytic functions defined by Frasin differential operator, Stud. Univ. Babeş-Bolyai Math., 66 (2021), 353–359. https://doi.org/10.24193/subbmath.2021.2.11 doi: 10.24193/subbmath.2021.2.11 |
[2] | B. S. Alkahtani, P. Goswami, T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions, Miskolc Math., 17 (2016), 739–748. https://doi.org/10.18514/MMN.2017.1565 doi: 10.18514/MMN.2017.1565 |
[3] | D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, London: Academic Press, 1980. |
[4] | D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1985, 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 |
[5] | P. L. Duren, Univalent functions, New York: Springer, 259 (1983). |
[6] | B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (2011), 1569–1573. https://doi.org/10.1016/j.aml.2011.03.048 doi: 10.1016/j.aml.2011.03.048 |
[7] | M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.2307/2035225 doi: 10.2307/2035225 |
[8] | Y. M. Li, K. Vijaya, G. Murugusundaramoorthy, H. Tang, On new subclasses of bi-starlike functions with bounded boundary rotation, AIMS Math., 5 (2020), 3346–3356. https://doi.org/10.3934/math.2020215 doi: 10.3934/math.2020215 |
[9] | U. H. Naik, A. B. Patil, On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc., 25 (2017), 291–293. https://doi.org/10.1016/j.joems.2017.04.001 doi: 10.1016/j.joems.2017.04.001 |
[10] | E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676 |
[11] | J. W. Noonan, Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc., 164 (1972), 397–410. https://doi.org/10.2307/1995984 doi: 10.2307/1995984 |
[12] | S. O. Olatunji, P. T. Ajai, On subclasses of bi-univalent functions of Bazilevic type involving linear and Salagean operator, Int. J. Pure. Appl. Math., 92 (2014), 645–656. http://dx.doi.org/10.12732/ijpam.v92i5.2 doi: 10.12732/ijpam.v92i5.2 |
[13] | V. Paatero, \"{U}ber Gebiete von beschrankter Randdrehung, Ann. Acad. Sci. Fenn. Ser. A., 37 (1933), 1–20. |
[14] | K. S. Padmanabhan, R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Pol. Math., 31 (1975), 311–323. https://doi.org/10.4064/ap-31-3-311-323 doi: 10.4064/ap-31-3-311-323 |
[15] | B. Pinchuk, Functions of bounded boundary rotation, Israel J. Math., 10 (1971), 6–16. https://doi.org/10.1007/BF02771515 doi: 10.1007/BF02771515 |
[16] | G. S. Sălăgean, Subclasses of univalent functions, Complex Analysis-Fifth Romanian-Finnish Seminar, 1981, 362–372. https://doi.org/10.1007/BFb0066543 |
[17] | T. G. Shaba, Certain new subclasses of analytic and bi-univalent functions using salagean operator, Asia Pac. J. Math., 7 (2020), 29. https://doi.org/10.28924/APJM/7-29 doi: 10.28924/APJM/7-29 |
[18] | T. G. Shaba, On some new subclass of bi-univalent functions associated with Opoola differential operator, Open J. Math. Anal., 4 (2020), 74–79. https://doi.org/10.30538/psrp-oma2020.0064 doi: 10.30538/psrp-oma2020.0064 |
[19] | P. Sharma, S. Sivasubramanian, N. E. Cho, Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation, AIMS Math., 8 (2023), 29535–29554. https://doi.org/10.3934/math.20231512 doi: 10.3934/math.20231512 |
[20] | H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009 |