Research article

Certain new applications of Faber polynomial expansion for some new subclasses of $ \upsilon $-fold symmetric bi-univalent functions associated with $ q $-calculus

  • Received: 09 January 2023 Revised: 06 February 2023 Accepted: 13 February 2023 Published: 28 February 2023
  • MSC : Primary 05A30, 30C45; Secondary 11B65, 47B38

  • In this article, we define the $ q $-difference operator and Salagean $ q $-differential operator for $ \upsilon $-fold symmetric functions in open unit disk $ \mathcal{U} $ by first applying the concepts of $ q $-calculus operator theory. Then, we considered these operators in order to construct new subclasses for $ \upsilon $-fold symmetric bi-univalent functions. We establish the general coefficient bounds $ |a_{\upsilon k+1}| $ for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function $ h $ that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.

    Citation: Mohammad Faisal Khan. Certain new applications of Faber polynomial expansion for some new subclasses of $ \upsilon $-fold symmetric bi-univalent functions associated with $ q $-calculus[J]. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521

    Related Papers:

  • In this article, we define the $ q $-difference operator and Salagean $ q $-differential operator for $ \upsilon $-fold symmetric functions in open unit disk $ \mathcal{U} $ by first applying the concepts of $ q $-calculus operator theory. Then, we considered these operators in order to construct new subclasses for $ \upsilon $-fold symmetric bi-univalent functions. We establish the general coefficient bounds $ |a_{\upsilon k+1}| $ for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function $ h $ that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.



    加载中


    [1] S. Agrawa, S. K. Sahoo, A generalization of starlike functions of order $\alpha$, Hokkaido Math. J., 46 (2017), 15–27. https://doi.org/10.14492/hokmj/1498788094 doi: 10.14492/hokmj/1498788094
    [2] H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Groups and symmetries: from Neolithic Scots to John McKay, American Mathematical Society, 2009. https://doi.org/10.1090/CRMP/047/02
    [3] H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3 (2008), 449–456.
    [4] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. https://doi.org/10.1016/j.bulsci.2005.10.002 doi: 10.1016/j.bulsci.2005.10.002
    [5] H. Aldweby, M. Darus, Some subordination results on q-analogue of ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
    [6] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075–1080. https://doi.org/10.1016/j.crma.2015.09.003 doi: 10.1016/j.crma.2015.09.003
    [7] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe s-Bolyai Math., 61 (2016), 37–44.
    [8] R. P. Boas, Aspects of contemporary complex analysis, Society for Industrial and Applied Mathematics, 24 (1982), 369. https://doi.org/10.1137/1024093 doi: 10.1137/1024093
    [9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent function, Mathematical Analysis and its Applications, 31 (1986), 70–77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
    [10] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of $m$-fold symmetric analytic bi-univalent functions, Journal of Fractional Calculus and Applications, 8 (2017), 108–117.
    [11] S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math., 352 (2014), 479–484. https://doi.org/10.1016/j.crma.2014.04.004 doi: 10.1016/j.crma.2014.04.004
    [12] S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math., 353 (2015), 113–116. https://doi.org/10.1016/j.crma.2014.10.019 doi: 10.1016/j.crma.2014.10.019
    [13] P. L. Duren, Univalent Functions, In: Grundlehren der mathematischen Wissenschaften, Springer New York, 2001.
    [14] S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of Bi-Univalent functions connected with the q-Derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418 doi: 10.3390/math8030418
    [15] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. https://doi.org/10.1007/BF01444293 doi: 10.1007/BF01444293
    [16] S. Gong, The Bieberbach conjecture, American Mathematical Society, 1999. https://doi.org/10.1090/amsip/012
    [17] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
    [18] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013 (2013), 498159. http://doi.org/10.1155/2013/498159 doi: 10.1155/2013/498159
    [19] S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Int. J. Math., 25 (2014), 1450064. https://doi.org/10.1142/S0129167X14500645 doi: 10.1142/S0129167X14500645
    [20] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. https://doi.org/10.1016/j.crma.2016.01.013 doi: 10.1016/j.crma.2016.01.013
    [21] S. G. Hamidi, J. M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. https://doi.org/10.1016/j.crma.2013.11.005 doi: 10.1016/j.crma.2013.11.005
    [22] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, B. Iran. Math. Soc., 41 (2015), 1103–1119.
    [23] T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan. Amer. Math. J., 22 (2012), 15–26.
    [24] S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, Journal of Complex Analysis, 2017 (2017), 2826514. https://doi.org/10.1155/2017/2826514 doi: 10.1155/2017/2826514
    [25] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [26] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [27] F. H. Jackson, q-Difference equations, American Journal of Mathematics, 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [28] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [29] S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some classes of bi-univalent functions associated with Srivastava-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44.
    [30] E. Lindelöf, Mémoire sur certaines inégalitis dans la théorie des functions monogénses etsur quelques propriétés nouvelles de ces fonctions dans levoisinage, dun point singulier essentiel, Ann. Soc. Sci. Fenn., 35 (1909), 1–35.
    [31] J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481–519. https://doi.org/10.1112/plms/s2-23.1.481 doi: 10.1112/plms/s2-23.1.481
    [32] M. Lewin, On a coefficient problem for bi-univalent functions, P. Am. Math. Soc., 18 (1967), 63–68.
    [33] S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
    [34] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1967), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [35] W. Rogosinski, On subordination functions, Math. Proc. Cambridge, 35 (1939), 1–26. https://doi.org/10.1017/S0305004100020703 doi: 10.1017/S0305004100020703
    [36] W. Rogosinski, On the coefficients of subordinations, Proc. Lond. Math. Soc., 48 (1943), 48–82.
    [37] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, New York: John Wiley and Sons, 1989,329–354.
    [38] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S
    [39] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. https://doi.org/10.3934/math.2020454 doi: 10.3934/math.2020454
    [40] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [41] H. M. Srivastava, A. K. Mishra, P. Gochayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. 10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, G. Murugusundaramoorthy, S. M. EL-Deeb, Faber Polynomial Coefficient estimates of bi-close-to-convex functions connected with the borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07 doi: 10.23952/jnva.5.2021.1.07
    [43] H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of $m$-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), 1–10. https://doi.org/10.2478/tmj-2014-0011 doi: 10.2478/tmj-2014-0011
    [44] Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1076) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog