Research article

Certain new applications of Faber polynomial expansion for some new subclasses of v-fold symmetric bi-univalent functions associated with q-calculus

Mohammad Faisal Khan*
Department of Basic Sciences, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh 11673, Saudi Arabia

* Correspondence: Email: f.khan@ seu.edu.sa.

Abstract

In this article, we define the q-difference operator and Salagean q-differential operator for v-fold symmetric functions in open unit disk \mathcal{U} by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for v-fold symmetric bi-univalent functions. We establish the general coefficient bounds $\left|a_{v k+1}\right|$ for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.

Keywords: quantum (or q-) calculus; analytic functions; q-derivative operator; v-fold symmetric bi-univalent functions; Faber polynomials expansions
Mathematics Subject Classification: Primary 05A30, 30C45; Secondary 11B65, 47B38

1. Introduction and definitions

Assume that \mathfrak{A} denotes the set of all analytic functions $\mathfrak{h}(z)$ in the open symmetric unit disk

$$
\mathcal{U}=\{z:|z|<1\},
$$

which are normalized by

$$
\mathfrak{h}(0)=0 \text { and } \mathfrak{h}^{\prime}(0)=1 .
$$

Thus, every function $\mathfrak{h} \in \mathfrak{A}$ can be expressed in the form given in (1.1)

$$
\begin{equation*}
\mathfrak{h}(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} . \tag{1.1}
\end{equation*}
$$

Let an analytic function \mathfrak{b} is said to be univalent if it satisfy the following condition:

$$
\mathfrak{h}\left(z_{1}\right) \neq \mathfrak{h}\left(z_{2}\right) \Rightarrow z_{1} \neq z_{2}, \forall z_{1}, z_{2} \in \mathcal{U} .
$$

Furthermore, \mathcal{S} is the subclass of \mathfrak{A} whose members are univalent in \mathcal{U}. The idea of subordination was initiated by Lindelof [30] and Little-wood and Rogosinski have further improved this idea, see [31, 35, 36]. For $\mathfrak{h}, y \in \mathfrak{A}$, and \mathfrak{h} subordinate to y in \mathcal{U}, denoted by

$$
\mathfrak{h}(z)<y(z), \quad z \in \mathcal{U},
$$

if we have a function u, such that

$$
u \in \mathcal{B}=\{u: u \in \mathfrak{H},|u(z)|<1, \text { and } u(0)=0, z \in \mathcal{U}\}
$$

and

$$
\mathfrak{h}(z)=y(u(z)), \quad z \in \mathcal{U} .
$$

According to the Koebe one-quarter theorem (see [13]), the image of \mathcal{U} under $\mathfrak{h} \in \mathcal{S}$ contains a disk of radius one-quarter centered at origin. Thus, every function $\mathfrak{b} \in \mathcal{S}$ has an inverse $\mathfrak{h}^{-1}=g$, defined as:

$$
g(\mathfrak{h}(z))=z, \quad z \in \mathcal{U}
$$

and

$$
\mathfrak{h}(g(w))=w, \quad|w|<r_{0}(\mathfrak{h}), \quad r_{0}(\mathfrak{h}) \geq \frac{1}{4} .
$$

The power series for the inverse function $g(w)$ is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-Q(a) w^{4}+\cdots, \tag{1.2}
\end{equation*}
$$

Where

$$
Q(a)=\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
$$

An analytic function \mathfrak{h} is called bi-univalent in \mathcal{U} if \mathfrak{h} and \mathfrak{h}^{-1} are univalent in \mathcal{U} and class of all biunivalent functions are denoted by Σ. In 1967, for $\mathfrak{h} \in \Sigma$, Levin [32] showed that $\left|a_{2}\right|<1.51$ and after twelve years Branan and Clunie [8] gave the improvement of $\left|a_{2}\right|$ and proved that $\left|a_{2}\right| \leq \sqrt{2}$. Furthermore, for $\mathfrak{h} \in \Sigma$, Netanyahu [34] proved that $\max \left|a_{2}\right|=\frac{4}{3}$ and an intriguing subclass of analytic and bi-univalent functions was proposed and studied by Branan and Taha [9], who also discovered estimates for the coefficients of the functions in this subclass. Recently, the investigation of numerous subclasses of the analytic and bi-univalent function class Σ was basically revitalized by the pioneering work of Srivastava et al. [41]. In 2012, Xu et al. [44] defined a general subclass of class Σ and investigated coefficient estimates for the functions belonging to the new subclass of class Σ. Recently, several different subclasses of class Σ were introduced and investigated by a number of authors (see for details ([23, 29, 38]). In these recent papers only non-sharp estimates on the initial coefficients were obtained.

Faber polynomials was introduced by Faber [15] and first time he used it to determine the general coefficient bounds $\left|a_{k}\right|$ for $k \geq 4$. Gong [16] interpreted significance of Faber polynomials in
mathematical sciences, particularly in Geometric Function Theory. In 1913, Hamidi et al. [18] first time used the Faber polynomials expansion technique on meromorphic bi-starlike functions and determined the coefficient estimates. The Faber polynomials expansion method for analytic bi-close-to-convex functions was examined by Hamidi and Jahangiri [21, 22], who also discovered some new coefficient bounds for new subclasses of close-to-convex functions. Furthermore, many authors $[3,4,7,11,12,14,20]$ used the same technique and determined some interesting and useful properties for analytic bi-univalent functions. For $\mathfrak{h} \in \Sigma$, by using the Faber polynomial expansions methods, only a few works have been done so far and we recognized very little over the bounds of Maclaurin's series coefficient $\left|a_{k}\right|$ for $k \geq 4$ in the literature. Recently only a few authors, used the Faber polynomials expansion technique and determined the general coefficient bounds $\left|a_{k}\right|$ for $k \geq 4$, (see for detail [6, 11, 24, 39, 40, 42]).

A domain \mathcal{U} is said to be the v-fold symmetric if

$$
\mathfrak{h}_{v}\left(e^{k\left(\frac{2 \pi}{v}\right)}(z)\right)=e^{k\left(\frac{2 \pi}{v}\right)} \mathfrak{h}_{v}(z), \quad z \in \mathcal{U}, v \in \mathbb{Z}^{+}, \mathfrak{h} \in \mathfrak{A}
$$

and every \mathfrak{h}_{v} has the series of the form

$$
\begin{equation*}
\mathfrak{h}_{v}=z+\sum_{k=1}^{\infty} a_{v k+1} z^{v k+1} . \tag{1.3}
\end{equation*}
$$

The class \mathcal{S}^{v} represents the set of all v-fold symmetric univalent functions. For $v=1$, then \mathcal{S}^{v} reduce to the class \mathcal{S} of univalent functions. If the inverse g_{v} of univalent \mathfrak{h} is univalent then \mathfrak{h} is called v-fold symmetric bi-univalent functions in \mathcal{U} and denoted by Σ_{v}. The series expansion of inverse function g_{v} investigated by Srivastava et al. in [43]:

$$
\begin{align*}
g_{v}(w)=w & -a_{v+1} w^{v+1}+\left((v+1) a_{v+1}^{2}-a_{2 v+1}\right) w^{2 v+1}-\left\{\frac{1}{2}(v+1)(3 v+2) a_{v+1}^{3}\right. \\
& \left.-\frac{1}{2}(v+1)(v+2) a_{v+1}^{3}-\left((3 v+2) a_{v+1} a_{2 v+1}+a_{3 v+1}\right)\right\} w^{3 v+1} \tag{1.4}
\end{align*}
$$

For $v=1$, the series in (1.4) reduces to the (1.2) of the class Σ. In [43] Srivastava et al. defined a subclass of v-fold symmetric bi-univalent functions and investigated coeffiients problem for v fold symmetric bi-univalent functions. Hamidi and Jahangiri [19] defined v-fold symmetric bistarlike functions and discussed the unpredictability of the coefficients of v-fold symmetric bi-starlike functions.

Many researchers have used the q-calculus and fractional q-calculus in the field of Geometric Function Theory (GFT) and they defined and studied several new subclasses of analytic, univalent and bi-univalent functions. In 1909, Jackson ([26, 27]), gave the idea of q-calculus operator and defined the q-difference operator $\left(D_{q}\right)$ while in [25], Ismail et al. was the first who used D_{q} in order to define a class of q-starlike functions in open unit disk \mathcal{U}. The most signifcant usages of q-calculus in the perspective of GFT was basically furnished and the basic (or $q-$) hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [37]). For more study about q-calculus operator theory in GFT, see the following articles [5, 28, 33].

Now we recall, some basic definitions and concepts of the q-calculus which will be used to define some new subclasses of the this paper.

For a non-negative integer t, the q-number $[t, q],(0<q<1)$, is defined by

$$
[t, q]=\frac{1-q^{t}}{1-q}, \text { and }[0, q]=0
$$

and the q-number shift factorial is given by

$$
\begin{gathered}
{[t, q]!=[1, q][2, q][3, q] \cdots[t, q],} \\
{[0, q]!=1 .}
\end{gathered}
$$

For $q \rightarrow 1-$, then $[t, q]$! reduces to $t!$.
The q -generalized Pochhammer symbol is defined by

$$
[t, q]_{k}=\frac{\Gamma_{q}(t+k)}{\Gamma_{q}(t)}, k \in \mathbb{N}, t \in \mathbb{C} .
$$

Remark 1.1. For $q \rightarrow 1-$, then $[t, q]_{k}$ reduces to $(t)_{k}=\frac{\Gamma(t+k)}{\Gamma(t)}$.
Definition 1.2. Jackson [27] defined the q-integral of function $\mathfrak{h}(z)$ as follows:

$$
\int \mathfrak{h}(z) d_{q}(z)=\sum_{k=0}^{\infty} z(1-q) \mathfrak{h}\left(q^{k}(z)\right) q^{k} .
$$

Jackson [26] introduced the q-difference operator for analytic functions as follows:

$$
D_{q} \mathfrak{h}(z)=\frac{\mathfrak{h}(q z)-\mathfrak{h}(z)}{z(q-1)}, \quad z \in \mathcal{U}
$$

Note that, for $k \in \mathbb{N}$ and $z \in \mathcal{U}$ and

$$
D_{q}\left(z^{k}\right)=[k, q] z^{k-1}, \quad D_{q}\left(\sum_{k=1}^{\infty} a_{k} z^{k}\right)=\sum_{k=1}^{\infty}[k, q] a_{k} z^{k-1} .
$$

Here, we introduce the q-difference operator for v-fold symmetric functions related to the q-calculus as follows:

Definition 1.4. Let $\mathfrak{h}_{v} \in \Sigma_{v}$, of the form (1.3). Then q-difference operator will be defined as

$$
\begin{align*}
D_{q} \mathfrak{h}_{v}(z) & =\frac{\mathfrak{h}_{v}(q z)-\mathfrak{h}_{v}(z)}{(q-1) z}, \quad z \in \mathcal{U}, \tag{1.5}\\
= & 1+\sum_{k=1}^{\infty}[v k+1, q] a_{v k+1} z^{v k}
\end{align*}
$$

and

$$
\begin{aligned}
D_{q}\left(\sum_{k=1}^{\infty} a_{v k+1} z^{v k+1}\right) & =\sum_{k=1}^{\infty}[v k+1, q] a_{v k+1} z^{v k} \\
D_{q}(z)^{v k+1} & =[v k+1, q] z^{u k} .
\end{aligned}
$$

Now we define Salagean q-differential operator for v-fold symmetric functions as follows:
Definition 1.5. For $m \in \mathbb{N}$, the Salagean q-differential operator for $\mathfrak{h}_{v} \in \Sigma_{v}$ is defined by

$$
\begin{gather*}
\nabla_{q}^{0} \mathfrak{h}_{v}(z)=\mathfrak{h}_{v}(z), \quad \nabla_{q}^{1} \mathfrak{h}_{v}(z)=z D_{q} \mathfrak{h}_{v}(z)=\frac{\mathfrak{h}_{v}(q z)-\mathfrak{h}_{v}(z)}{(q-1)}, \cdots, \\
\nabla_{q}^{m} \mathfrak{h}_{v}(z)=z D_{q}\left(\nabla_{q}^{m-1} \mathfrak{h}_{v}(z)\right)=\left(z+\sum_{k=1}^{\infty}([v k+1, q])^{m} z^{v k+1}\right), \\
\nabla_{q}^{m} \mathfrak{h}_{v}(z)=z+\sum_{k=1}^{\infty}([v k+1, q])^{m} a_{v k+1} z^{v k+1} . \tag{1.6}
\end{gather*}
$$

Remark 1.6. For $v=1$, we have Salagean q-differential operator for analytic functions proved in [17].

Motivated by the following articles $[1,10,25]$ and using the q-analysis in order to define new subclasses of class Σ_{v}, we apply Faber polynomial expansions technique in order to determine the estimates for the general coefficient bounds $\left|a_{v k+1}\right|$. We also derive initial coefficients $\left|a_{v+1}\right|$ and $\left|a_{2 v+1}\right|$ and obtain Feketo-Sezego coefficient bounds for the functions belonging to the new subclasses of Σ_{v}.

Definition 1.7. A function $\mathfrak{h}_{v} \in \Sigma_{v}$ is in the class $\mathcal{R}_{b, q}^{v, \gamma}(\varphi)$ if and only if

$$
1+\frac{1}{b}\left\{\left(D_{q} \mathfrak{h}_{v}(z)+\gamma z D_{q}^{2} \mathfrak{b}_{v}(z)\right)-1\right\}<\varphi(z)
$$

and

$$
1+\frac{1}{b}\left\{\left(D_{q} g_{v}(w)+\gamma w D_{q}^{2} g_{v}(w)\right)-1\right\}<\varphi(w),
$$

where, $\varphi \in \mathcal{P}, \gamma \geq 0, b \in \mathbb{C} \backslash\{0\}, z, w \in \mathcal{U}$, and $g_{v}(w)$ is defined by (1.4).
Remark 1.8. For $q \rightarrow 1-, v=1$, and $\gamma=0$, then $\mathcal{R}_{b, q}^{v, \gamma}(\varphi)=\mathcal{R}_{b}(\varphi)$ introduced in [22].
Definition 1.9. A function $\mathfrak{h}_{v} \in \Sigma_{v}$, is in the class $\mathcal{R}_{b}^{v}(b, \alpha, \gamma)$ if and only if

$$
\left|\left(1+\frac{1}{b}\left\{\left(D_{q} \mathfrak{b}_{v}(z)+\gamma z D_{q}^{2} \mathfrak{b}_{v}(z)\right)-1\right\}\right)-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}
$$

and

$$
\left|\left(1+\frac{1}{b}\left\{\left(D_{q} g_{v}(w)+\gamma z D_{q}^{2} g_{v}(w)\right)-1\right\}\right)-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q} .
$$

Or equivalently by using subordination, we can write the above conditions as:

$$
1+\frac{1}{b}\left\{\left(D_{q} \mathfrak{h}_{v}(z)+\gamma z D_{q}^{2} \mathfrak{h}_{v}(z)\right)-1\right\}<\frac{1+[1-\alpha(1+q)] z}{1-q z}
$$

and

$$
1+\frac{1}{b}\left\{\left(D_{q} g_{v}(w)+\gamma w D_{q}^{2} g_{v}(w)\right)-1\right\}<\frac{1+[1-\alpha(1+q)] w}{1-q w},
$$

where $, 0 \leq \alpha<1, \gamma \geq 0, b \in \mathbb{C} \backslash\{0\}, z, w \in \mathcal{U}, g_{v}(w)$ is defined by (1.4).

Remark 1.10. For $q \rightarrow 1-, v=1, \alpha=0$ and $\gamma=0$, then $\mathcal{R}_{b}^{v}(b, \alpha, \gamma)=\mathcal{R}_{b}(\varphi)$ introduced in [22].
Definition 1.11. A function $\mathfrak{h}_{v} \in \Sigma_{v}$, is in the class $\mathcal{R}_{b, q}^{v, \gamma, m}(\varphi)$ if and only if

$$
1+\frac{1}{b}\left\{\left(\frac{\nabla_{q}^{m} \mathfrak{b}_{v}(z)}{z}+\gamma z D_{q}\left(\frac{\nabla_{q}^{m} \mathfrak{b}_{v}(z)}{z}\right)\right)-1\right\}<\varphi(z)
$$

and

$$
1+\frac{1}{b}\left\{\left(\frac{\nabla_{q}^{m} g_{v}(w)}{w}+\gamma w D_{q}\left(\frac{\nabla_{q}^{m} g_{v}(w)}{w}\right)\right)-1\right\}<\varphi(w),
$$

where, $\varphi \in \mathcal{P}, \gamma \geq 0, m \in \mathbb{N}, b \in \mathbb{C} \backslash\{0\}, z, w \in \mathcal{U}, g_{v}(w)$ is defined by (1.4).

2. The faber polynomial expansion method and application

Using the Faber polynomial technique for the analytic function \mathfrak{b}, then the coefficient of its inverse map g can be written as follows (see [2, 4]):

$$
\left.g_{v} w\right)=w+\sum_{k=2}^{\infty} \frac{1}{k} \mathfrak{R}_{k-1}^{k}\left(a_{2}, a_{3}, \ldots\right) w^{k},
$$

where

$$
\begin{aligned}
\mathfrak{R}_{k-1}^{-k}= & \frac{(-k)!}{(-2 k+1)!(k-1)!} a_{2}^{k-1}+\frac{(-k)!}{[2(-k+1)]!(k-3)!} a_{2}^{k-3} a_{3} \\
& +\frac{(-k)!}{(-2 k+3)!(k-4)!} a_{2}^{k-4} a_{4} \\
& +\frac{(-k)!}{[2(-k+2)!!(k-5)!} a_{2}^{k-5}\left[a_{5}+(-k+2) a_{3}^{2}\right] \\
& +\frac{(-k)!}{(-2 k+5)!(k-6)!} a_{2}^{k-6}\left[a_{6}+(-2 k+5) a_{3} a_{4}\right] \\
& +\sum_{i \geq 7} a_{2}^{k-i} Q_{i},
\end{aligned}
$$

and Q_{i} is a homogeneous polynomial in the variables $a_{2}, a_{3}, \ldots a_{k}$, for $7 \leq i \leq k$. Particularly, the first three term of \mathfrak{R}_{k-1}^{-k} are

$$
\begin{gathered}
\frac{1}{2} \mathfrak{R}_{1}^{-2}=-a_{2}, \frac{1}{3} \mathfrak{R}_{2}^{-3}=2 a_{2}^{2}-a_{3} \\
\frac{1}{4} \mathfrak{R}_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) .
\end{gathered}
$$

In general, for $r \in N$ and $k \geq 2$, an expansion of \mathfrak{R}_{k}^{r} of the form:

$$
\mathfrak{R}_{k}^{r}=r a_{k}+\frac{r(r-1)}{2} E_{k}^{2}+\frac{r!}{(r-3)!3!} E_{k}^{3}+\ldots+\frac{r!}{(r-k)!k!} E_{k}^{k},
$$

where,

$$
E_{k}^{r}=E_{k}^{r}\left(a_{2}, a_{3}, \ldots\right)
$$

and by [2], we have

$$
E_{k}^{v}\left(a_{2}, a_{3}, \ldots a_{k}\right)=\sum_{k=1}^{\infty} \frac{v!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{k}\right)^{\mu_{k}}}{\mu_{1!}, \ldots, \mu_{k!}}, \text { for } a_{1}=1 \text { and } v \leq k
$$

The sum is taken over all non negative integer μ_{1}, \ldots, μ_{k} which is satisfying

$$
\begin{array}{r}
\mu_{1}+\mu_{2}+\ldots+\mu_{k}=v, \\
\mu_{1}+2 \mu_{2}+\ldots+(k) \mu_{k}=k .
\end{array}
$$

Clearly,

$$
E_{k}^{k}\left(a_{1}, \ldots, a_{k}\right)=E_{1}^{k}
$$

and

$$
E_{k}^{k}=a_{1}^{k} \text { and } E_{k}^{1}=a_{k}
$$

are first and last polynomials.
Now, using the Faber polynomial expansion for \mathfrak{h}_{v} of the form (1.3) we have

$$
\mathfrak{h}_{v}(z)=z+\sum_{k=1}^{\infty} a_{v k+1} z^{v k+1} .
$$

The coefficient of inverse map g_{v} can be expressed of the form:

$$
g_{v}(z)=w+\sum_{k=1}^{\infty} \frac{1}{(v k+1)} \mathfrak{R}_{k}^{-(v k+1)}\left(a_{v+1}, a_{2 v+1}, \ldots a_{v k+1}\right) w^{v k+1}
$$

Theorem 2.1. For $b \in \mathbb{C} \backslash\{0\}$. Let $\mathfrak{h}_{v} \in \mathcal{R}_{b, q}^{v, \gamma}(\varphi)$ by given by (1.3). If $a_{v i+1}=0, \quad 1 \leq i \leq k-1$, then

$$
\left|a_{v k+1}\right| \leq \frac{2|b|}{(1+\gamma[v k, q])[v k+1, q]}, \text { for } k \geq 2 .
$$

Proof. For $\mathfrak{h}_{v} \in \mathcal{R}_{b, q}^{v, \gamma}(\varphi)$ we have

$$
\begin{align*}
& 1+\frac{1}{b}\left\{\left(D_{q} \mathrm{~b}_{v}(z)+\gamma z D_{q}^{2} \mathrm{~h}_{v}(z)\right)-1\right\} \\
= & 1+\sum_{k=1}^{\infty} \frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1} z^{v k} \tag{2.1}
\end{align*}
$$

and

$$
1+\frac{1}{b}\left\{\left(D_{q} g_{v}(w)+\gamma w D_{q}^{2} g_{v}(w)\right)-1\right\}
$$

$$
\begin{equation*}
=1+\sum_{k=1}^{\infty} \frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1} w^{v k}, \tag{2.2}
\end{equation*}
$$

where,

$$
A_{v k+1}=\frac{1}{(v k+1)} \mathfrak{R}_{k}^{-(v k+1)}\left(a_{v+1}, a_{2 v+1}, \ldots a_{v k+1}\right), \text { for } k \geq 1
$$

Since $\mathfrak{h}_{v} \in \mathcal{R}_{b, q}^{v, \gamma}(\varphi)$ and $g_{v} \in \mathcal{R}_{b, q}^{\nu, \gamma}(\varphi)$ by definition, we have

$$
\begin{equation*}
p(z)=\sum_{k=1}^{\infty} c_{k} z^{v k} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
r(w)=\sum_{k=1}^{\infty} d_{k} w^{v k} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{align*}
& \varphi(p(z))=1+\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \varphi_{l} \mathfrak{R}_{k}^{l}\left(c_{1}, c_{2}, \ldots, c_{k}\right) z^{v k} \tag{2.5}\\
& \varphi(r(w))=1+\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \varphi_{l} \mathfrak{R}_{k}^{l}\left(d_{1}, d_{2}, \ldots, d_{k}\right) w^{v k} . \tag{2.6}
\end{align*}
$$

Equating the coefficient of (2.1) and (2.5) we obtain

$$
\begin{equation*}
\left(\frac{(1+\gamma[v k, q])[v k+1, q]}{b}\right) a_{v k+1}=\sum_{l=1}^{k-1} \varphi_{l} \mathfrak{R}_{k}^{l}\left(c_{1}, c_{2}, \ldots, c_{k}\right) . \tag{2.7}
\end{equation*}
$$

Similarly, corresponding coefficient of (2.2) and (2.6), we have

$$
\begin{equation*}
\left(\frac{(1+\gamma[v k, q])[v k+1, q]}{b}\right) A_{v k+1}=\sum_{l=1}^{k-1} \boldsymbol{\varphi}_{l} \mathfrak{R}_{k}^{l}\left(d_{1}, d_{2} \ldots, d_{k}\right) . \tag{2.8}
\end{equation*}
$$

Since, $1 \leq i \leq k-1$, and $a_{v i+1}=0$; we have

$$
A_{v k+1}=-a_{v k+1}
$$

and

$$
\begin{align*}
& \frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1}=\varphi_{1} c_{k} \tag{2.9}\\
& \frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1}=\varphi_{1} d_{k} . \tag{2.10}
\end{align*}
$$

Taking the modulus on both sides of (2.9) and (2.10), we have

$$
\begin{aligned}
& \left|\frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1}\right|=\left|\varphi_{1} c_{k}\right|, \\
& \left|\frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1}\right|=\left|\varphi_{1} d_{k}\right| .
\end{aligned}
$$

Now using the fact $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$, and $\left|d_{k}\right| \leq 1$, we have

$$
\begin{gathered}
\left|a_{v k+1}\right| \leq \frac{|b|}{(1+\gamma[v k, q])[v k+1, q]}\left|\varphi_{1} c_{k}\right| \\
\left.=\frac{|b|}{(1+\gamma[v k, q])[v k+1, q]}\right)\left|\varphi_{1} d_{k}\right|, \\
\left|a_{v k+1}\right| \leq \frac{2|b|}{(1+\gamma[v k, q])[v k+1, q]} .
\end{gathered}
$$

Hence, Theorem 2.1 is completed.
For $v=0, \gamma=0, q \rightarrow 1-, k=n-1$, in Theorem 2.1, we obtain known corollary proved in [22].
Corollary 2.2. For $b \in \mathbb{C} \backslash\{0\}$, Let $\mathfrak{h}_{v} \in \mathcal{R}_{b}(\varphi)$, If $a_{v i+1}=0,1 \leq i \leq n$. Then

$$
\left|a_{n}\right| \leq \frac{2|b|}{n}, \text { for } n \geq 3
$$

Theorem 2.3. For $b \in \mathbb{C} \backslash\{0\}$. Let $\mathfrak{h}_{v} \in \mathcal{R}_{b, q}^{\nu, \gamma}(\varphi)$ be given by (1.3). Then

$$
\begin{gathered}
\left|a_{v+1}\right| \leq\left\{\begin{aligned}
\frac{2|b|}{(1+\gamma[v k, q] \mid[v+1, q]}, & \text { if }|b|<\psi_{1}(v, q), \\
\sqrt{|b| \psi_{1}(v, q)}, & \text { if }|b| \geq \psi_{1}(v, q),
\end{aligned}\right. \\
\left|a_{2 v+1}\right| \leq\left\{\begin{array}{r}
|b| \psi_{2}(v, q)+\frac{2|b|^{2}}{(1+\gamma[v, \mid] \mid v+1, q]}, \text { if }|b|<\psi_{2}(v, q), \\
2|b| \psi_{2}(v, q), \text { if }|b| \geq \psi_{2}(v, q),
\end{array}\right. \\
\left|a_{2 v+1}-(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}\right| \leq 2|b| \psi_{2}(v, q),
\end{gathered}, \begin{aligned}
& \left|a_{2 v+1}-\frac{1}{\psi_{2}(v, q)} a_{v+1}^{2}\right| \leq|b| \psi_{2}(v, q),
\end{aligned}
$$

where,

$$
\begin{gathered}
\psi_{1}(v, q)=\frac{8}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}, \\
\psi_{2}(v, q)=\frac{2}{((1+\gamma[2 v, q])[2 v+1, q]} .
\end{gathered}
$$

Proof. Taking $k=1$ and $k=2$ in (2.7) and (2.8), then, we have

$$
\begin{align*}
\frac{(1+\gamma[v, q])[v+1, q]}{b} a_{v+1} & =\varphi_{1} c_{1}, \tag{2.11}\\
\frac{(1+\gamma[2 v, q])[2 v+1, q]}{b} a_{2 v+1} & =\varphi_{1} c_{2}+\varphi_{2} c_{1}^{2}, \tag{2.12}\\
-\frac{(1+\gamma[v, q])[v+1, q]}{b} a_{v+1} & =\varphi_{1} d_{1}, \tag{2.13}\\
\left\{(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}-a_{2 v+1}\right\} & =\frac{b\left(\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2}\right)}{(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.14}
\end{align*}
$$

From (2.11) and (2.13) and using the fact $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\begin{align*}
\left|a_{v+1}\right| & \leq \frac{|b|}{(1+\gamma[v, q])[v+1, q]}\left|\varphi_{1} c_{1}\right|=\frac{|b|}{(1+\gamma[v, q])[v+1, q]}\left|\varphi_{1} d_{1}\right| \\
& \leq \frac{2|b|}{1+\gamma[v, q])[v+1, q]} . \tag{2.15}
\end{align*}
$$

Adding (2.12) and (2.14) we have

$$
\begin{equation*}
a_{v+1}^{2}=\frac{b\left\{\varphi_{1}\left(c_{2}+d_{2}\right)+\varphi_{2}\left(c_{1}^{2}+d_{1}^{2}\right)\right\}}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])} . \tag{2.16}
\end{equation*}
$$

Taking absolute value of (2.16), we have

$$
\left|a_{v+1}\right| \leq \sqrt{\frac{8|b|}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}} .
$$

Now the bounds given for $\left|a_{v+1}\right|$ can be justified since

$$
|b|<\sqrt{\frac{8}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}}
$$

for

$$
|b|<\frac{8}{((1+\gamma[2 v, q])[2 v+q])((1+\gamma[v, q])[v+1, q])} .
$$

From (2.12), we get

$$
\begin{equation*}
\left|a_{2 v+1}\right|=\frac{|b|\left|\varphi_{1} c_{2}+\varphi_{2} c_{1}^{2}\right|}{(1+\gamma[2 v, q])[2 v+1, q]} \leq \frac{4|b|}{(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.17}
\end{equation*}
$$

Subtract (2.14) from (2.12), we have

$$
\begin{align*}
& \frac{2(1+\gamma[2 v, q])[2 v+1, q]}{b}\left\{a_{2 v+1}-\frac{(1+\gamma[v, q])[v+1, q]}{2} a_{v+1}^{2}\right\} \\
& =\varphi_{1}\left(c_{2}-d_{2}\right)+\varphi_{2}\left(c_{1}^{2}-d_{1}^{2}\right)=\varphi_{1}\left(c_{2}-d_{2}\right), \tag{2.18}
\end{align*}
$$

or

$$
\begin{equation*}
a_{2 v+1}=\frac{(1+\gamma[v, q])[v+1, q]}{2} a_{v+1}^{2}+\frac{\varphi_{1} b\left(c_{2}-d_{2}\right)}{2(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.19}
\end{equation*}
$$

Taking the absolute, we have

$$
\begin{equation*}
\left|a_{2 v+1}\right| \leq \frac{\left|\varphi_{1}\|b\| c_{2}-d_{2}\right|}{2(1+\gamma[2 v, q])[2 v+1, q]}+\frac{(1+\gamma[v, q])[v+1, q]}{2}\left|a_{v+1}^{2}\right| . \tag{2.20}
\end{equation*}
$$

Using the assertion (2.15) on (2.20), we have

$$
\begin{equation*}
\left|a_{2 v+1}\right| \leq \frac{2|b|}{(1+\gamma[2 v, q])[2 v+1, q]}+\frac{2|b|^{2}}{(1+\gamma[v, q])[v+1, q]} . \tag{2.21}
\end{equation*}
$$

Follows from (2.17) and (2.21) upon nothing that

$$
\begin{aligned}
& \frac{2|b|}{(1+\gamma[2 v, q])[2 v+1, q]}+\frac{2|b|^{2}}{(1+\gamma[v, q])[v+1, q]} \\
& \leq \frac{2|b|}{(1+\gamma[2 v, q])[2 v+1, q]} \text { if }|b|<\frac{2}{(1+\gamma[2 v, q])[2 v+1, q]} .
\end{aligned}
$$

Now, rewrite (2.14) as follows:

$$
(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}-a_{2 v+1}=\frac{b\left(\varphi_{1} d_{2}+\varphi_{2} d_{1}^{2}\right)}{(1+\gamma[2 v, q])[2 v+1, q]} .
$$

Using the fact $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\left|a_{2 v+1}-(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}\right| \leq \frac{4|b|}{(1+\gamma[2 v, q])[2 v+1, q]}
$$

From (2.18), we have

$$
\frac{2(1+\gamma[2 v, q])[2 v+1, q]}{b}\left\{a_{2 v+1}-\frac{(1+\gamma[2 v, q])[2 v+1, q]}{2} a_{v+1}^{2}\right\}=\varphi_{1}\left(c_{2}-d_{2}\right) .
$$

Again using the fact $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\left|a_{2 v+1}-\frac{(1+\gamma[2 v, q])[2 v+1, q]}{2} a_{v+1}^{2}\right| \leq \frac{2|b|}{(1+\gamma[2 v, q])[2 v+1, q]} .
$$

Take $q \rightarrow 1-, \gamma=0, v=1$, and $k=n-1$ in the Theorem 2.3, we get known corollary.
Corollary 2.4. [22]. For $b \in \mathbb{C} \backslash\{0\}$, let $\mathfrak{h} \in \mathcal{R}_{b}(\varphi)$ be given by (1.1), then

$$
\left|a_{2}\right| \leq\left\{\begin{array}{l}
|b|, \text { if }|b|<\frac{4}{3}, \\
\sqrt{\frac{4 b \mid}{3}}, \text { if }|b| \geq \frac{4}{3}
\end{array}\right.
$$

$$
\begin{gathered}
\left|a_{3}\right| \leq\left\{\begin{array}{c}
\frac{2|b|}{3}+|b|^{2}, \text { if }|b|<\frac{2}{3}, \\
\frac{4|b|}{3}, \text { if }|b| \geq \frac{2}{3}
\end{array}\right. \\
\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4|b|}{3}, \\
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2|b|}{3}
\end{gathered}
$$

Theorem 2.5. For $b \in \mathbb{C} \backslash\{0\}$. Let $\mathfrak{h}_{v} \in \mathcal{R}_{q}^{v}(b, \alpha, \gamma)$ by given by (1.3). If $a_{v i+1}=0,1 \leq i \leq k-1$. Then

$$
\left|a_{v k+1}\right| \leq \frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)|b|}{(1+\gamma[v k, q])[v k+1, q]}, \quad \text { for } k \geq 2
$$

where, $\mathfrak{B}_{0}=1-\alpha(1+q)$ and $\mathfrak{B}_{1}=-q$.
Proof. Let $\mathfrak{h}_{v} \in \mathcal{R}_{q}^{v}(b, \alpha, \gamma)$. Then

$$
\begin{align*}
& 1+\frac{1}{b}\left\{\left(D_{q} \mathfrak{h}_{v}(z)+\gamma z D_{q}^{2} \mathfrak{b}_{v}(z)\right)-1\right\} \\
= & 1+\sum_{k=1}^{\infty} \frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1} z^{v k} \tag{2.22}
\end{align*}
$$

and

$$
\begin{align*}
& 1+\frac{1}{b}\left\{\left(D_{q} g_{v}(w)+\gamma w D_{q}^{2} g_{v}(w)\right)-1\right\} \\
= & 1+\sum_{k=1}^{\infty} \frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1} w^{v k} . \tag{2.23}
\end{align*}
$$

where,

$$
A_{v k+1}=\frac{1}{(v k+1)} \mathfrak{R}^{-(v k+1)}\left(a_{v+1}, a_{2 v+1}, \ldots, a_{v k+1}\right), k \geq 1 .
$$

Since $h_{v} \in \mathcal{R}_{q}^{v}(b, \alpha, \gamma)$ and $g_{v} \in \mathcal{R}_{q}^{v}(b, \alpha, \gamma)$ by definition, there exist two positive real functions $p(z)$ and $r(w)$ given in (2.3) and (2.4), then we have

$$
\begin{align*}
& =\frac{1+\mathfrak{B}_{0}(p(z))}{1+\mathfrak{B}_{1}(p(z))}=1-\sum_{k=1}^{\infty} \sum_{l=1}^{k}\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) \mathfrak{R}_{k}^{-1}\left(c_{1}, c_{2}, \ldots, c_{k}, \mathfrak{B}_{1}\right) z^{v k} \tag{2.24}\\
& =\frac{1+\mathfrak{B}_{0}(r(w))}{1+\mathfrak{B}_{1}(r(w))}=1-\sum_{k=1}^{\infty} \sum_{l=1}^{k}\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) \mathfrak{R}_{k}^{-1}\left(d_{1}, d_{2}, \ldots, d_{k}, \mathfrak{B}_{1}\right) w^{v k} . \tag{2.25}
\end{align*}
$$

Equating the corresponding coefficients of (2.22) and (2.24), we have

$$
\begin{equation*}
\frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) \mathfrak{R}_{k}^{-1}\left(c_{1}, c_{2}, \ldots, c_{k}, \mathfrak{B}_{1}\right) z^{v k} \tag{2.26}
\end{equation*}
$$

Similarly, corresponding coefficient of (2.23)and (2.25), we have

$$
\begin{equation*}
\frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) \mathfrak{R}_{k}^{-1}\left(d_{1}, d_{2}, \ldots, d_{k}, \mathfrak{B}_{1}\right) w^{v k} \tag{2.27}
\end{equation*}
$$

For $a_{v i+1}=0 ; 1 \leq i \leq k-1$, we get

$$
A_{v k+1}=-a_{v k+1}
$$

and we have

$$
\begin{equation*}
\frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) c_{k}, \tag{2.28}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) d_{k} . \tag{2.29}
\end{equation*}
$$

Taking modulus on (2.28) and (2.29), we have

$$
\left\{\begin{array}{l}
\frac{(1+\gamma[v k, q])[v k+1, q]}{b} a_{v k+1}\left|=\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) c_{k}\right|,\right. \\
\left|-\frac{(1+\gamma[v k, q])[v k+1, q]}{b} A_{v k+1}\right|=\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) d_{k}\right| .
\end{array}\right.
$$

Since

$$
\left|c_{k}\right| \leqq 1 \quad \text { and } \quad\left|d_{k}\right| \leqq 1(\text { see }[14]),
$$

we have

$$
\begin{aligned}
\left|a_{v k+1}\right| & \leq \frac{|b|}{(1+\gamma[v k, q])[v k+1, q]}\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) c_{k}\right| \\
& =\frac{|b|}{(1+\gamma[v k, q])[v k+1, q]}\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) d_{k},\right| \\
\left|a_{v k+1}\right| & \leq \frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)|b|}{(1+\gamma[v k, q])[v k+1, q]},
\end{aligned}
$$

which complete the proof of Theorem.
For $b=1, k=1, v=n-1, q \rightarrow 1-$, and $\gamma \geqq 0$ in the above Theorem 2.5, we obtain the following result given in [40].

Corollary 2.6. Let $\mathfrak{h}_{v} \in \mathcal{R}(n, \alpha, \gamma)$ be given by (1.3). If $a_{n-1}=0$, and $1 \leq i \leq k-1$, then

$$
\left|a_{n}\right| \leqq \frac{2(1-\alpha)}{n(1+\gamma(n-1))}, \quad n \in \mathbb{N} \backslash\{1,2\} .
$$

Theorem 2.7. For $b \in \mathbb{C} \backslash\{0\}$, let $\mathfrak{h}_{v} \in \mathcal{R}_{q}^{v}(b, \alpha, \gamma)$ be given by (1.3), then

$$
\begin{gathered}
\left|a_{v+1}\right| \leq \begin{cases}\frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)|b|}{(1+\gamma[v, q])[v+1, q]}, & \text { if }|b|<\psi_{3}(v, q), \\
\sqrt{2|b| \psi_{3}(v, q)} & \text { if }|b| \geq \psi_{3}(v, q),\end{cases} \\
\left|a_{2 v+1}\right| \leq \begin{cases}|b| \psi_{4}(v, q)+\psi_{4}(v, q)\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right||b|^{2}, & \text { if }|b|<\psi_{4}(v, q), \\
|b|\left(\left|\mathfrak{B}_{1}\right|+1\right) \psi_{4}(v, q) & \text { if }|b| \geq \psi_{4}(v, q),\end{cases} \\
\left|a_{2 v+1}-(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}\right| \leq|b|\left(\left|\mathfrak{B}_{1}\right|+1 \mid\right) \psi_{4}(v, q)
\end{gathered}
$$

and

$$
\left|a_{2 v+1}-\frac{(1+\gamma[2 v, q])[2 v+1, q]}{2} a_{v+1}^{2}\right| \leq|b| \psi_{4}(v, q),
$$

where

$$
\begin{aligned}
\psi_{3}(v, q) & =\frac{\left|\mathfrak{B}_{0}-\mathfrak{B}_{1}\right|\left\{\left|\mathfrak{B}_{1}\right|+1\right\}}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])} \\
\psi_{4}(v, q) & =\frac{\left|\mathfrak{B}_{0}-\mathfrak{B}_{1}\right|}{(1+\gamma[2 v, q])[2 v+1, q]} .
\end{aligned}
$$

Proof. Take $k=1$ and $k=2$ in (2.26) and (2.27). Then we have

$$
\begin{align*}
& \frac{(1+\gamma[v, q])[v+1, q]}{b} a_{v+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) c_{1}, \tag{2.30}\\
& \frac{(1+\gamma[2 v, q])[2 v+1, q]}{b} a_{2 v+1}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(-\mathfrak{B}_{1} c_{1}^{2}+c_{2}\right), \tag{2.31}\\
& -\frac{(1+\gamma[v, q])[v+1, q]}{b} a_{v+1}=-\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) d_{1}, \tag{2.32}\\
& (1+\gamma[v, q])[v+1, q] a_{v+1}^{2}-a_{2 v+1}=\frac{b\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(-\mathfrak{B}_{1} d_{1}^{2}+d_{2}\right)}{(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.33}
\end{align*}
$$

From (2.30) and (2.32) and using the fact $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\begin{align*}
\left|a_{v+1}\right| & \leq \frac{|b|}{(1+\gamma[v, q])[v+1, q]}\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) c_{1}\right| \\
& =\frac{|b|}{(1+\gamma[v, q])[v+1, q]}\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) d_{1}\right| \\
& \leq \frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)|b|}{(1+\gamma[v, q])[v+1, q]} . \tag{2.34}
\end{align*}
$$

Adding (2.31) and (2.33) we have

$$
a_{v+1}^{2}=\frac{b\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left\{\left(c_{2}+d_{2}\right)+\mathfrak{B}_{1}\left(c_{1}^{2}+d_{1}^{2}\right)\right\}}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}
$$

and

$$
\begin{equation*}
\left|a_{v+1}\right|^{2} \leq \frac{2|b|\left|\mathfrak{B}_{0}-\mathfrak{B}_{1}\right|\left\{\left|\mathfrak{B}_{1}\right|+1\right\}}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])} . \tag{2.35}
\end{equation*}
$$

Taking the square-root of (2.35), we have

$$
\left|a_{v+1}\right| \leq \sqrt{\frac{2|b| \mathfrak{B}_{0}-\mathfrak{B}_{1} \mid\left\{\left|\mathfrak{B}_{1}\right|+1\right\}}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}} .
$$

Now the bounds given for $\left|a_{v+1}\right|$ can be justified since

$$
\begin{aligned}
& |b| \\
\text { for } \quad|b| & <\frac{2|b| \mathfrak{B}_{0}-\mathfrak{B}_{1} \mid\left\{\left|\mathfrak{B}_{1}\right|+1\right\}}{\frac{(1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}{((1+\gamma[2 v, q])[2 v+1, q])((1+\gamma[v, q])[v+1, q])}} .
\end{aligned}
$$

From (2.31), we have

$$
\begin{align*}
\left|a_{2 v+1}\right| & =\frac{|b|\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(\mathfrak{B}_{1} c_{1}^{2}+c_{2}\right)\right|}{(1+\gamma[2 v, q])[2 v+1, q]} \\
& \leq \frac{|b|\left|\mathfrak{B}_{0}-\mathfrak{B}_{1}\right|\left(\left|\mathfrak{B}_{1}\right|+1\right)}{(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.36}
\end{align*}
$$

Next we subtract (2.33) from (2.31), we get

$$
\begin{align*}
& \frac{2(1+\gamma[2 v, q])[2 v+1, q]}{b}\left\{a_{2 v+1}-\frac{(1+\gamma[v, q])[v+1, q]}{2} a_{v+1}^{2}\right\} \\
& =\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left\{\mathfrak{B}_{1}\left(d_{1}^{2}-c_{1}^{2}\right)-\left(c_{2}-d_{2}\right)\right\}=\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(c_{2}-d_{2}\right), \tag{2.37}
\end{align*}
$$

or

$$
\begin{equation*}
a_{2 v+1}=\frac{(1+\gamma[v, q])[v+1, q]}{2} a_{v+1}^{2}+\frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right) b\left(c_{2}-d_{2}\right)}{2(1+\gamma[2 v, q])[2 v+1, q]} . \tag{2.38}
\end{equation*}
$$

Taking the absolute values yield

$$
\begin{equation*}
\left|a_{2 v+1}\right| \leq \frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right||b|\left|c_{2}-d_{2}\right|}{2(1+\gamma[2 v, q])[2 v+1, q]}+\frac{(1+\gamma[v, q])[v+1, q]}{2}\left|a_{v+1}^{2}\right| . \tag{2.39}
\end{equation*}
$$

Using the assertion (2.34) on (2.39), we have

$$
\begin{equation*}
\left|a_{2 v+1}\right| \leq \frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right||b|}{(1+\gamma[2 v, q])[2 v+1, q]}+\frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right|^{2}|b|^{2}}{2(1+\gamma[v, q])[v+1, q]} \tag{2.40}
\end{equation*}
$$

It follows from (2.36) and (2.40) upon noting that

$$
\begin{aligned}
& \frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right||b|}{(1+\gamma[2 v, q])[2 v+1, q]}+\frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right|^{2}|b|^{2}}{2(1+\gamma[v, q])[v+1, q]} . \\
& \leq \frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right||b|}{(1+\gamma[2 v, q])[2 v+1, q]} \text { if }|b|<\frac{\left|\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\right|}{(1+\gamma[2 v, q])[2 v+1, q]} .
\end{aligned}
$$

Now, we rewrite (2.33) as follows:

$$
\left\{(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}-a_{2 v+1}\right\}=\frac{b\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(-\mathfrak{B}_{1} d_{1}^{2}+d_{2}\right)}{(1+\gamma[2 v, q])[2 v+1, q]}
$$

Taking the modulus and using $\left|\varphi_{1}\right| \leq 2,\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\left|a_{2 v+1}-(1+\gamma[v, q])[v+1, q] a_{v+1}^{2}\right| \leq \frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(\left|\mathfrak{B}_{1}\right|+1\right)|b|}{(1+\gamma[2 v, q])[2 v+1, q]} .
$$

Finally, from (2.37), we have

$$
\left\{a_{2 v+1}-\frac{(1+\gamma[2 v, q])[2 v+1, q]}{2} a_{v+1}^{2}\right\}=\frac{b\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)\left(c_{2}-d_{2}\right)}{2(1+\gamma[2 v, q])[2 v+1, q]} .
$$

Taking the modulus and using $\left|c_{k}\right| \leq 1$ and $\left|d_{k}\right| \leq 1$, we have

$$
\left|a_{2 v+1}-\frac{(1+\gamma[2 v, q])[2 v+1, q]}{2} a_{v+1}^{2}\right| \leq \frac{\left(\mathfrak{B}_{0}-\mathfrak{B}_{1}\right)|b|}{(1+\gamma[2 v, q])[2 v+1, q]} .
$$

For $v=1, \gamma=0, q \rightarrow 1-, k=n-1$ in Theorem 2.7, then we obtain result proved in [22].
Corollary 2.8. [22]. For $b \in \mathbb{C} \backslash\{0\}$, let $\mathfrak{h}_{v} \in \mathcal{R}_{b}(\varphi)$ be given by (1.1), then

$$
\begin{gathered}
\left|a_{2}\right| \leq\left\{\begin{array}{c}
|b|, \text { if }|b|<\frac{4}{3}, \\
\sqrt{\frac{4|b|}{3}}, \text { if }|b| \geq \frac{4}{3},
\end{array}\right. \\
\left|a_{3}\right| \leq\left\{\begin{array}{c}
\frac{2|b|}{3}+|b|^{2}, \text { if }|b|<\frac{2}{3}, \\
\frac{4|b|}{3}, \text { if }|b| \geq \frac{2}{3},
\end{array}\right. \\
\left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4|b|}{3}, \\
\left|a_{3}-a_{2}^{2}\right| \leq \frac{2|b|}{3} .
\end{gathered}
$$

2.1. Applications of our main results

Here, in this section, we consider the newly defined Salagean q-differential operator for subclass of $R_{b, q}^{v, \gamma, m}(\varphi)$ of class of \sum_{v} and investigate some new application in the form of results
Theorem 2.9. For $b \in \mathbb{C} \backslash\{0\}$. Let $\mathfrak{h}_{v} \in R_{b, q}^{v, \gamma, m}(\varphi)$ by given by (1.3). If $a_{v i+1}=0$, and $1 \leq i \leq k-1$, then

$$
\left|a_{v k+1}\right| \leq \frac{2|b|}{(1+\gamma[v k, q])(v k+1, q)^{m}}, \text { for } k \geq 2
$$

Proof. We can prove Theorem 2.9 by using the similar method of Theorem 2.1.
Theorem 2.10. For $b \in \mathbb{C} \backslash\{0\}$. Let $\mathfrak{h}_{v} \in R_{b, q}^{v, \gamma, m}(\varphi)$ by given by (1.3). Then

$$
\begin{gathered}
\left|a_{v+1}\right| \leq\left\{\begin{aligned}
\frac{2|b|}{(1+\gamma[v, q])(v+1, q)^{m}}, & \text { if }|b|<\psi_{3}(v, q), \\
\sqrt{|b| \psi_{1}(v, q)}, & \text { if }|b| \geq \psi_{3}(v, q),
\end{aligned}\right. \\
\left|a_{2 v+1}\right| \leq\left\{\begin{array}{r}
|b| \psi_{2}(v, q)+\frac{2|b|^{2}}{\left(1+\gamma[v, q]\left[(v+,,]^{m}\right.\right.}, \text { if }|b|<\psi_{4}(v, q), \\
2|b| \psi_{2}(v, q) \text { if }|b| \geq \psi_{4}(v, q),
\end{array}\right. \\
\left|a_{2 v+1}-(1+\gamma[v, q])[v+1, q]^{m} a_{v+1}^{2}\right| \leq 2|b| \psi_{4}(v, q),
\end{gathered}, \begin{aligned}
& \left|a_{2 v+1}-\frac{1}{\psi_{2}(v, q)} a_{v+1}^{2}\right| \leq|b| \psi_{4}(v, q),
\end{aligned}
$$

where

$$
\begin{gathered}
\psi_{3}(v, q)=\frac{8}{\left((1+\gamma[2 v, q])[2 v+1, q]^{m}\right)\left((1+\gamma[v, q])[v+1, q]^{m}\right)} \\
\psi_{4}(v, q)=\frac{2}{(1+\gamma[2 v, q])[2 v+1, q]^{m}} .
\end{gathered}
$$

Proof. We can prove Theorem 2.10 by using the similar method of Theorem 2.3.

3. Conclusions

In this article, first of all, we used the q -difference operator for v-fold symmetric functions in order to define some new subclasses of the v-fold symmetric bi-univalent functions in the open symmetric unit disk \mathcal{U}. We also used the basic concepts of q -calculus and defined the Salagean q -differential operator for v-fold symmetric functions. We considered this operator and investigated a new subclass of v-fold symmetric bi-univalent functions. Faber Polynomial expansion method and q-analysis are used in order to determined general coefficient bounds $\left|a_{v+1}\right|$ for functions in each of these newly defined v-fold symmetric bi-univalent functions classes. Feketo-Sezego problems and initial coefficient bounds $\left|a_{v+1}\right|$ and $\left|a_{2 v+1}\right|$ for the function belonging to the subclasses of v-fold symmetric bi-univalent functions in open symmetric unit disk \mathcal{U} are also investigated.

Acknowledgments

I would like to thank to the editor and referees for their valuable comments and suggestions.

Conflict of interest

The author declares no conflict of interest.

References

1. S. Agrawa, S. K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J., 46 (2017), 15-27. https://doi.org/10.14492/hokmj/1498788094
2. H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Groups and symmetries: from Neolithic Scots to John McKay, American Mathematical Society, 2009. https://doi.org/10.1090/CRMP/047/02
3. H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3 (2008), 449-456.
4. H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179-222. https://doi.org/10.1016/j.bulsci.2005.10.002
5. H. Aldweby, M. Darus, Some subordination results on q-analogue of ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563
6. S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075-1080. https://doi.org/10.1016/j.crma.2015.09.003
7. S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe s-Bolyai Math., 61 (2016), 37-44.
8. R. P. Boas, Aspects of contemporary complex analysis, Society for Industrial and Applied Mathematics, 24 (1982), 369. https://doi.org/10.1137/1024093
9. D. A. Brannan, T. S. Taha, On some classes of bi-univalent function, Mathematical Analysis and its Applications, 31 (1986), 70-77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7
10. S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions, Journal of Fractional Calculus and Applications, 8 (2017), 108117.
11. S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic biunivalent functions, C. R. Math., 352 (2014), 479-484. https://doi.org/10.1016/j.crma.2014.04.004
12. S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math., 353 (2015), 113-116. https://doi.org/10.1016/j.crma.2014.10.019
13. P. L. Duren, Univalent Functions, In: Grundlehren der mathematischen Wissenschaften, Springer New York, 2001.
14. S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of Bi-Univalent functions connected with the q-Derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418
15. G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389-408. https://doi.org/10.1007/BF01444293
16. S. Gong, The Bieberbach conjecture, American Mathematical Society, 1999. https://doi.org/10.1090/amsip/012
17. M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475-487. https://doi.org/10.1007/s10476-017-02065
18. S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013 (2013), 498159. http://doi.org/10.1155/2013/498159
19. S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Int. J. Math., 25 (2014), 1450064. https://doi.org/10.1142/S0129167X14500645
20. S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math., 354 (2016), 365-370. https://doi.org/10.1016/j.crma.2016.01.013
21. S. G. Hamidi, J. M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-toconvex functions, C. R. Math., 352 (2014), 17-20. https://doi.org/10.1016/j.crma.2013.11.005
22. S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, B. Iran. Math. Soc., 41 (2015), 1103-1119.
23. T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan. Amer. Math. J., 22 (2012), 15-26.
24. S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, Journal of Complex Analysis, 2017 (2017), 2826514. https://doi.org/10.1155/2017/2826514
25. M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77-84. https://doi.org/10.1080/17476939008814407
26. F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253-281. https://doi.org/10.1017/S0080456800002751
27. F. H. Jackson, q-Difference equations, American Journal of Mathematics, 32 (1910), 305-314. https://doi.org/10.2307/2370183
28. S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196. https://doi.org/10.2478/s12175-014-0268-9
29. S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some classes of bi-univalent functions associated with Srivastava-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37-44.
30. E. Lindelöf, Mémoire sur certaines inégalitis dans la théorie des functions monogénses etsur quelques propriétés nouvelles de ces fonctions dans levoisinage, dun point singulier essentiel, Ann. Soc. Sci. Fenn., 35 (1909), 1-35.
31. J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481519. https://doi.org/10.1112/plms/s2-23.1.481
32. M. Lewin, On a coefficient problem for bi-univalent functions, P. Am. Math. Soc., 18 (1967), 6368.
33. S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. https://doi.org/10.1007/s00025-016-0592-1
34. E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in IzI < 1, Arch. Rational Mech. Anal., 32 (1967), 100-112. https://doi.org/10.1007/BF00247676
35. W. Rogosinski, On subordination functions, Math. Proc. Cambridge, 35 (1939), 1-26. https://doi.org/10.1017/S0305004100020703
36. W. Rogosinski, On the coefficients of subordinations, Proc. Lond. Math. Soc., 48 (1943), 48-82.
37. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, New York: John Wiley and Sons, 1989, 329-354.
38. H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831-842. https://doi.org/10.2298/FIL1305831S
39. H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the TaylorMaclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087-7106. https://doi.org/10.3934/math. 2020454
40. H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
41. H. M. Srivastava, A. K. Mishra, P. Gochayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188-1192. 10.2298/FIL1508839S
42. H. M. Srivastava, G. Murugusundaramoorthy, S. M. EL-Deeb, Faber Polynomial Coefficient estimates of bi-close-to-convex functions connected with the borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103-118. https://doi.org/10.23952/jnva.5.2021.1.07
43. H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), 1-10. https://doi.org/10.2478/tmj-2014-0011
44. Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 1146111465. https://doi.org/10.1016/j.amc.2012.05.034

AIMS Press
(C) 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

