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1. Introduction and definitions
Assume that A denotes the set of all analytic functions h(z) in the open symmetric unit disk

U=1{z:z <1},

which are normalized by
h(0) =0 and H'(0) = 1.

Thus, every function f) € A can be expressed in the form given in (1.1)

b2 =2+ ) @ (1.1)
k=2
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Let an analytic function } is said to be univalent if it satisfy the following condition:
b(z1) # D(z2) = 21 # 22, Y 21,20 € U.

Furthermore, S is the subclass of A whose members are univalent in Y. The idea of subordination
was initiated by Lindelof [30] and Little-wood and Rogosinski have further improved this idea, see
[31, 35, 36]. For b, y € A, and b subordinate to y in U, denoted by

hx) <y@), zeU,
if we have a function u, such that
ueB=A{u:ueW u®) <1, and u(0) =0, z € U}
and

b(2) = y(u(z)), z€U.

According to the Koebe one-quarter theorem (see [13]), the image of U under Iy € S contains a disk of
radius one-quarter centered at origin. Thus, every function ) € S has an inverse h~! = g, defined as:

gh(2) =z, ze€U

and |
hgw)) = w, w| <ro(h), ro(h) = T

The power series for the inverse function g(w) is given by
gw) = w—ayw” + 2a; — az)w’ — Qaw'+, - -+, (1.2)

Where
Q(a) = (5a3 — Saraz + ay).

An analytic function b is called bi-univalent in U if h and h~' are univalent in U/ and class of all bi-
univalent functions are denoted by X. In 1967, for h € X, Levin [32] showed that |a,| < 1.51 and
after twelve years Branan and Clunie [8] gave the improvement of |a,| and proved that |a,| < V2.
Furthermore, for f) € Z, Netanyahu [34] proved that max |a,| = % and an intriguing subclass of analytic
and bi-univalent functions was proposed and studied by Branan and Taha [9], who also discovered
estimates for the coefficients of the functions in this subclass. Recently, the investigation of numerous
subclasses of the analytic and bi-univalent function class ¥ was basically revitalized by the pioneering
work of Srivastava et al. [41]. In 2012, Xu et al. [44] defined a general subclass of class X and
investigated coefficient estimates for the functions belonging to the new subclass of class X. Recently,
several different subclasses of class £ were introduced and investigated by a number of authors (see for
details ([23, 29, 38]). In these recent papers only non-sharp estimates on the initial coefficients were
obtained.

Faber polynomials was introduced by Faber [15] and first time he used it to determine the general
coefficient bounds |a;| for k > 4. Gong [16] interpreted significance of Faber polynomials in
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mathematical sciences, particularly in Geometric Function Theory. In 1913, Hamidi et al. [18]
first time used the Faber polynomials expansion technique on meromorphic bi-starlike functions and
determined the coefficient estimates. The Faber polynomials expansion method for analytic bi-close-
to-convex functions was examined by Hamidi and Jahangiri [21, 22], who also discovered some
new coefficient bounds for new subclasses of close-to-convex functions. Furthermore, many authors
[3,4,7, 11, 12, 14, 20] used the same technique and determined some interesting and useful properties
for analytic bi-univalent functions. For f) € X, by using the Faber polynomial expansions methods, only
a few works have been done so far and we recognized very little over the bounds of Maclaurin’s series
coefficient |a;| for k > 4 in the literature. Recently only a few authors, used the Faber polynomials
expansion technique and determined the general coefficient bounds |a;| for k > 4, (see for detail
[6, 11, 24, 39, 40, 42]).
A domain U is said to be the v-fold symmetric if

(@) = 0,0, zeUvez pen

and every b, has the series of the form
by =2+ ) @™, (1.3)
k=1

The class SY represents the set of all v-fold symmetric univalent functions. For v = 1, then 8" reduce
to the class S of univalent functions. If the inverse g, of univalent I is univalent then § is called v-fold
symmetric bi-univalent functions in U and denoted by X,. The series expansion of inverse function g,
investigated by Srivastava et al. in [43]:

1
goW) = w —ay W+ (v + Dd2,| — az )W - {E(v + 1)(3v +2)a,

1
- 3@+ D+ 2)ad, — (Gu+ Dy @z + a3U+1>}w3"“. (1.4)

For v = 1, the series in (1.4) reduces to the (1.2) of the class X. In [43] Srivastava et al. defined
a subclass of v-fold symmetric bi-univalent functions and investigated coeffiients problem for v-
fold symmetric bi-univalent functions. Hamidi and Jahangiri [19] defined v-fold symmetric bi-
starlike functions and discussed the unpredictability of the coefficients of v-fold symmetric bi-starlike
functions.

Many researchers have used the g-calculus and fractional g-calculus in the field of Geometric
Function Theory (GFT) and they defined and studied several new subclasses of analytic, univalent and
bi-univalent functions. In 1909, Jackson ([26, 27]), gave the idea of g-calculus operator and defined
the g-difference operator (D,) while in [25], Ismail et al. was the first who used D, in order to define
a class of g-starlike functions in open unit disk Z. The most signifcant usages of g-calculus in the
perspective of GFT was basically furnished and the basic (or g—) hypergeometric functions were first
used in GFT in a book chapter by Srivastava (see, for details, [37]). For more study about g-calculus
operator theory in GFT, see the following articles [5, 28, 33].

Now we recall, some basic definitions and concepts of the g-calculus which will be used to define
some new subclasses of the this paper.
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For a non-negative integer #, the g-number [z, g], (0 < g < 1), is defined by

t

— 9 and [0,9] = 0
l-¢g

[t,q] =
and the g-number shift factorial is given by

(7, 41! = [1,41(2,41[3,4]--- [, 4],

[0,g9]! = 1.
For ¢ — 1—, then [, ¢]! reduces to #!.
The g-generalized Pochhammer symbol is defined by
I,(t+k)
[t.ql = —
qlk L, (1)

,keN, teC.

T(t+k)
L@

Definition 1.2. Jackson [27] defined the g-integral of function YH(z) as follows:

Remark 1.1. For g — 1—, then [t, q]i reduces to (t), =

o0

[ 0@ = Y201 - pwgteng

k=0
Jackson [26] introduced the g-difference operator for analytic functions as follows:

Definition 1.3. [26]. For Yy € A, the g-difference operator is defined as:

b(g2) = Hz)

, U.
2g-1) ‘e

D,b(z) =

Note that, for k € N and z € U and

[Se]

Dq(zk) = [k, q1Z", Dq( Z akzk) = i[k, q]akzk_l.
k=1

k=1

Here, we introduce the g-difference operator for v-fold symmetric functions related to the g-calculus

as follows:
Definition 1.4. Let b, € Z,, of the form (1.3). Then g-difference operator will be defined as

f)u(CIZ) - bu(z)

-1z z€U,

D,b,(z) =

= 1+ ) [vk+ 1, glay
k=1

and

[ee)

Dq( Z avk+1z“"+1) = Z[vk + 1, glagi1 2%,
k=1

k=1
Dq(Z)Uk+1 — [Uk+ l,q]ZUk'

(1.5)
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Now we define Salagean g-differential operator for v-fold symmetric functions as follows:

Definition 1.5. For m € N, the Salagean g-differential operator for by, € X, is defined by

ngv(z) = b(2), V}]bu(z) = ZquU(Z) = W, ER

Vybu(@) = 2Dy(Vy™'0,(2)) = (z + D (wk+ 1, q])mzvkﬂ),

o)
k=1

V(@) = 2+ ) ([wk + 1,g])" a2,
k=1

(1.6)

Remark 1.6. For v = 1, we have Salagean q-differential operator for analytic functions proved in

[17].

Motivated by the following articles [1, 10, 25] and using the g-analysis in order to define new
subclasses of class Z,, we apply Faber polynomial expansions technique in order to determine the
estimates for the general coefficient bounds |a,..1|. We also derive initial coefficients |a,.1| and |az,+1]
and obtain Feketo-Sezego coefficient bounds for the functions belonging to the new subclasses of %,,.

Definition 1.7. A function by, € X, is in the class RZ:Z(cp) if and only if

1
L D@ + 72D30u() - 1] < (2

and .
1+ E{(Dqgv(m + ywD2g,(w)) — 1} < o(w),

where, o € P,y 20, b e C\ {0}, z we U, and g,(w) is defined by (1.4).

Remark 1.8. Forqg —» 1—,v =1, andy = 0, then ﬂlb’:;(go) = Ry () introduced in [22].

Definition 1.9. A function by, € Z,, is in the class R}(b, a,y) if and only if

1 l-aq| 1-«a
j(l + 3D + 7DD - 1}) - <=
and i 1 1
1 5 _ _ - a’q -
(14 3{Dugun + v2Dig, o0 ~ 1) - 1= - ‘ <

Or equivalently by using subordination, we can write the above conditions as:

1+[1—-a(l+9)]z
1-gz

1
L+ 3 {(Dybu(2) + 72D - 1] <

and
1 2 I1+[1—-all+qlw
1+ E{(Dqgv(w) + waqu(w)) - 1} < —ow

where 0 <a<1,y>0,beC\ {0}, z, we U, g,(w) is defined by (1.4).
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Remark 1.10. Forg — 1—,v =1, a = 0andy =0, then R)(b, a,y) = Ry(¢) introduced in [22].
Definition 1.11. A function b, € X,, is in the class ﬂZ:Z’m(go) if and only if

(T ()

<

and

T () ) <ot

where, p e P,y >0,meN, be C\ {0}, zz we U, g,(w) is defined by (1.4).
2. The faber polynomial expansion method and application

Using the Faber polynomial technique for the analytic function b, then the coefficient of its inverse
map g can be written as follows (see [2, 4]):

1
guW) = w+ Z %‘Ri_l(az,a% Owk,
=2

where
N =R (k! -
Re T2k DIG-DI? TRk D=3 B
(—=k)! k-a
T kA )k — Ay
(=k)!

k=5 _ 2
+ [2(—k+2)]!(k—5)!a2 [as + (=k + 2)a5]

L (b
(=2k + 5)!(k - 6)!

+ Z aé_in‘,

i>7

a§_6[a6 + (=2k + 5)azay]

and @; is a homogeneous polynomial in the variables a,, as, ...a, for 7 < i < k. Particularly, the first
three term of R *, are

| |

E‘Rlz = —a,, g‘Rf = 2a§ - as,
1
1%54 = —(5a§ - 5612613 + 614).

In general, for r € N and k > 2, an expansion of "R,’( of the form:

r(r—1)
2

! !
r! r! k

2 3
Bt oy Bt T om B

Ry = rag +

where,

E,z = E,i(az, as, )
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and by [2], we have

(o)

| M1 M
El(ay, a3, ...a;) = Z V@) (@) , for a;=1 and v <k
o M s M

The sum is taken over all non negative integer y, ..., i Which is satisfying

M1+ U+ U =,
Uy + 2 + o+ (D = k.

Clearly,
E,’i(al, v Q) = E'f
and
E{ =d} and E| = a;

are first and last polynomials.
Now,using the Faber polynomial expansion for b, of the form (1.3) we have

[s6]

1

bv(z) =z+ Z avk+1ZUk+ .
k=1

The coefficient of inverse map g, can be expressed of the form:

N 1 —(vk+1 k+1
gu(z) =w+ Z (Uk + 1)%]((1} ’ )(av+1»a2v+l, ---auk+1)WU T
k=1

Theorem 2.1. For b € C\ {0}. Let b, € RZZ((,D) by given by (1.3). If a,is1 =0, 1 <i<k—1, then

2\b|
(1 + ylvk, gDlvk + 1,41

ayis1| < for k> 2.

Proof. For b, € R, (p) we have

1
L 2 {(Dghu(@) + y2D3hu() - 1

= (1 + y[vk, k+1,
14 Z( ylv q;)[v A, 2.1
k=1

and
1
Lt - {(Dygow) + ywDig,(w) — 1
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(1 + y[vk, k+1,
14 Z( ylvk, gDlv AP
b
k=1
where,
_ ! “OH D g0, a Ayks1), for k=1
vk+1 (Uk*+ 1) k v+ls U2u+15 -+ -Uuk+1)s = 1.

Since b, € R, (¢) and g, € R, (¢) by definition, we have

0

p(2) = Z CkZUk

k=1
and
r(w) = Z dwt
k=1
where

[oe)

e(p@) =1+ ) > @Ricr, 2, 02,

k=1 I=

—

prw) =1+ > " oRi(dy, do, .., W™,

1 =1

Me

>~
Il

Equating the coefficient of (2.1) and (2.5) we obtain

1+ y[vk, gD[vk + 1, k-1
(! q;)[ gl )av,ﬁ1 =3 Rleren o)
=1

Similarly, corresponding coefficient of (2.2) and (2.6), we have

((1 +y[vk, gDlvk + 1,4]

k-1
p JAuer = ) @iRi(dy, ds.... dy).

=1

Since, 1 <i<k-1, and a,, = 0; we have

Apir1 = —Ayis

and

(1 + ylvk, gD[vk + 1,4] 3
b Auk+1 = P1Cks

(I + ylvk,gD[vk + 1, 4]
b

Ak = prdy.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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Taking the modulus on both sides of (2.9) and (2.10), we have
(1 + ylvk, gDlvk + 1, 4]

b Ayier1| = l@rcil,
(1 + yluk, gDlvk + 1, g]
T R
Now using the fact |¢;| < 2,|c | < 1, and |d| < 1, we have
|b|
ayis1] < |1kl

(1 +ylvk, gDlvk + 1, 4]

B 14
(1 + yluk, gDlvk + 1,49]

Ne1dil,

2|b
|avk+l| < | | .
(I +y[vk, gDlvk + 1,4]

Hence, Theorem 2.1 is completed. O

Forv=0,y=0,g - 11—,k =n—1, in Theorem 2.1, we obtain known corollary proved in [22].

Corollary 2.2. For b € C\ {0}, Let by, € Ry(¢), If ayiz1 = 0,1 <i < n. Then

2|b|

la,| < —, for n>3.
n
Theorem 2.3. For b € C\ {0}. Let b, € RZ:Z((,D) be given by (1.3). Then

2|b| .

Vbl (. ), if bl = Yn(v, q),

|av+l| <

2 .
] bl (v, @) + g i 16l < ¥, g),
Ao+l <
216l (v, @), if 1Bl = Ya(v, q),

a1 — (1 + ylv, qDlv + 1,qla’,,| < 2lbly(v, q),

2
a2v+1 - aU+1 S |b|l//2(va Q)’

L
'/’2(71, Q)

where,

8
(1 +y[2v,gD2v + 1, g)((A + y[v,gDlv + 1, ¢])°

2
Uo(v,q) = (1 +y[2u,gD[2v + 1,q]

(v, q) =

AIMS Mathematics Volume 8, Issue 5, 10283-10302.
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Proof. Taking k = 1 and k = 2 in (2.7) and (2.8), then, we have

(I +vy[v,gDlv + 1,4]

b y+1 = Q1€C1,
(1 +y[2v,qD)[2v + 1, 4] 3 )
b Aoyl = Y162 + oCy,
(1 +vylv,gDlv+1,9] = oud
- b ayy1 = P141,

L B b(p1d, + Sozd%)
{(1 + 7[U’ Cl])[U + 1’ q:lau+l a2U+1} - (1 + ’)/[21}, q])[zv + 1’ q] )

From (2.11) and (2.13) and using the fact |¢;| < 2,|ci| < 1 and |di| < 1, we have

lay1] < 1 lpici| = i l1d; |
(I +vylv,gDlv+1,q] (I +vylv,gDlv+1,q]
2|b|

T L+ylv,gDlv+ 1,q1
Adding (2.12) and (2.14) we have

a2 _ b{(p] (C2 + dz) + (pz(C% + d%)}
U+ yR2u, gDR2v + 1, gD + yIv, gDlv + 1,g])

Taking absolute value of (2.16), we have

8|b|
ol = \/((1 +y[2v,gD2v + 1,gD)((1 + ylv, qDlv + 1, gD

Now the bounds given for |a,,| can be justified since

8
b
< \/((1 +7y[2v,4D[2v + 1,gD((1 + y[v, gDlv + 1,4])

for
8

< (1 +y[2u, gD[2v + gD)(( + y[v, gDlv + 1,q])

bl
From (2.12), we get

bligica + @acil § 41b|
(1 +y[2v,qD2v+ 1,91 = (A +y[2v,qD2v + 1,q9]
Subtract (2.14) from (2.12), we have
2(1 +y[2u,gD[2v + 1, 4] (I'+ylv,qDlv+1,q] ,
b Ao+l — 3 A,
= @i(c2 — o) + palc] — d}) = pi(ca — db),

|a2v+1| =

2.11)
(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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or
(I +vylv,gDlv+ 1,41 , p1b(cy — d)
Aoyl = av+l + .
2 2(1+y[2v,gD[2v + 1,4]
Taking the absolute, we have

loi 1Dl ca—da | (I +vylv,gDlv+ 1,491 ,

| azypi1] < + | a1
2(1 +y[2u,gD[2v + 1, 4] 2

Using the assertion (2.15) on (2.20), we have

| daysr IS 215 + 21bF
T A+ yRu,gDR2u+ 1,91 (1 + v, gDlv + 1,q]

Follows from (2.17) and (2.21) upon nothing that

21b| .\ 21bP
(I +y[2vu,gD[2v+1,q] (1 +y[v,gD[v+1,4]
21b| 2

L if 1bl<

< .
(A +y[2v,gqD[2v + 1,4 (I +y[2v,qD[2v + 1,4]

Now, rewrite (2.14) as follows:

b(gids + 2d})
1 1 2= v = .
(I +ylv, gDlv + 1, qla,,, — azs (1 +y[2v, ¢gD[2v + 1, 4]

Using the fact | ¢y |[< 2, ¢; |I< 1 and | d; |< 1, we have

41b |
(1 +7y[2v,qD[2v + 1,491

| azys1 — (1 +ylv, gDlv + 1, qlaz,, I<

From (2.18), we have

2(1 + y[2u,g)[2v + 1, ¢]
b

1 +y[2v, gD[2v + 1, g]
{a2v+1 - (d+y q2) 1 ai+1} = pi(c2 — dy).

Again using the fact | ¢; |< 2,| ¢, |[< 1 and | d; |[< 1, we have

(I +y[2v,gD[2v + 1,4] , 21D
Aryi1 — | < .
2 (I +y[2v,gD[2v + 1,4]

Take g —» 1-,¥y =0,v =1, and k = n — 1 in the Theorem 2.3, we get known corollary.
Corollary 2.4. [22]. For b € C\ {0}, let h) € R,(¢) be given by (1.1), then

bl, if 1bl < 3,
la,| <

41b . 4
Wi bl 4

(2.19)

(2.20)

(2.21)

AIMS Mathematics Volume 8, Issue 5, 10283-10302.



10294

2w bl if bl < 2,
las| <

41b . 2
%7 lf |b| 2 §,

41b
las — 2a3] < %,

Theorem 2.5. For b € C\ {0}. Let b, € RU(b, ,y) by given by (1.3). If a1 = 0,1 < i <k~ 1. Then

(B — By)Ib|
(1 +ylvk,gDlvk + 1,41

where, By =1 —a(l + q) and B, = —q.

|lavis1| < for k> 2.

Proof. Let}, € Rg(b, a,y). Then

1
L+ {(Dghu() + yzDh,(2) — 1)

14 Z (1 + Y[Uk’ Q])[Uk+ 1’ Q] vk

£ b Ayk+13 (2.22)
and
1+ (D00 + 7wDg,00) ~ 1
1+ i (1 + ylvk, q;)[“k Ll (2.23)
k=1
where,
Apir1 = (vkl-l- 1)%_(Uk+1)(av+l’a2v+la o Qyikr1)s k> 1

Since h, € R/(D,,y) and g, € RY(b, @,y) by definition, there exist two positive real functions p(z)
and r(w) given in (2.3) and (2.4), then we have

1+ By(p(2)) SR

- TV 1 _ -1 vk

TTEBOoR) A ;(%0 BUR 1, €ar o Bz (2.24)
1 + Bo(r(w)) = & . )

T 14 B,0w) 1 - Z Z(%o - B)R;(d1, day ..oy di, BW™ (2.25)

k=1 I=1
Equating the corresponding coefficients of (2.22) and (2.24), we have

(I + ylvk,gD[vk + 1, 4]
b

et = (Bo — BDR; ' (c1, €2, oons Cpy B1)Z™, (2.26)
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Similarly, corresponding coefficient of (2.23)and (2.25), we have

(1 +ylvk, gDlvk + 1,4]
b

Avert = (Bo — BDR (d1, do, ..o di, BW™. (2.27)
Fora,,; =0; 1 <i<k-1, we get

Apkr1 = — Qi

and we have

(I +ylvk,gDlvk + 1, 4q]

b Ayes1 = (Bo — Bi)cx, (2.28)
and
SRS Ly = (B~ B (2.29)
Taking modulus on (2.28) and (2.29), we have
(L+ ylok, q;)[vk +L.q] Ayer1| = [(Bo — Bi)ewl,
‘ _ U ylvk q;)[vk i l’q]Aka = |(Bo — By)dyl-
Since
lcil £ 1 and |di| < 1(see[14]),
we have
|y < i [(Bo — Bi)cyl
(1 + yluk, qgl)[vk +1,4]
TR T B
(Bo — BIb|

<
ot < (1 + y[vk, qD)lvk + 1,41’

which complete the proof of Theorem.
Forb=1,k=1,u=n—-1,9g - 1—,andy = 0 in the above Theorem 2.5, we obtain the following
result given in [40]. O

Corollary 2.6. Letly, € R(n,a,y) be given by (1.3). Ifa,_;1 =0, and 1 <i < k-1, then

2(1-a)

ol S Ty

ne€N\{l,2}.
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Theorem 2.7. For b € C\ {0}, let }, € Rg(b, a,y) be given by (1.3), then

(Bo — By)ID|
(1 +ylv.gDlv + 1,41

V2blgrs(v, g) if 1bl = ¥3(v. q),

if bl <3, q),

|av+1| <

blya(v, @) + Ya(v, PI(Bo — B b1, if bl < ya(v, q),
lazy1] <
1bI(1B1| + Dpa(v, q) if |bl = yu(v,q),

a1 = (1 +ylv,qDlv + 1, glay, | < 1DI(B1] + 1)a(v, @)

and
= I qz])[zv Ll | < biaw o,
where
W3(v, q) = 1By — By {|By] + 1)

(A +[2v,¢gD[2v + 1,gD(A + y[v, gDV + 1,9])
1Bo — By

(1 +y[2v,qD[2v + 1,491

Proof. Take k = 1 and k = 2 in (2.26) and (2.27). Then we have

Ya(v,q) =

e qli)[v - I’Q]avﬂ = (By — By)cy,
(I +y[2v,¢D[2v + 1,4]
b
_ (L +y[v,gDlv +1,4]

b

i1 = (Bo — B)(=Bict + ),

ayr1 = —(Bo — By)d,,
b(By — B1)(—=B1d: + d»)
(1 +7y[2v,gD2v + 1,q]

From (2.30) and (2.32) and using the fact |¢;| < 2,|ci| < 1 and |di| < 1, we have

(1 +y[v, gDl + 1,qld>,, — azir =

|b|
lay1| < 0+ v aDv + 1,q]|(%0 - By)cl

||

T (I+y[v.qDv + L. q]
(B — By)lb|

T (L+ylv,gDlv+ 1,91

|(Bo — B1)d,|

(2.30)
(2.31)

(2.32)

(2.33)

(2.34)
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Adding (2.31) and (2.33) we have

3 b(By — B){(cr + do) + Bi(ci +d})}

2
Yt = (T y2v, qD2v + L a)(( + y[v. aDlv + L. q])

and
20| 1B — B [{IB1]| + 1}
(A +y[2vu,gD2v + 1,gD((1 + y[v, gDlv + 1,4

Taking the square-root of (2.35), we have

|y < 20618y — B [{IBy] + 1}
N+ y[20,gDR2v + 1, gD+ ylv, gDlv + 1, q])

2
|av+1| <

Now the bounds given for |a,,;| can be justified since

bl < \/ 2|b|By — B1l{|By| + 1}
(I +y[2v,gD[2v + 1,gD((1 + ylv, gDlv + 1,4])
2|b||By — B1l{|By| + 1}
(1 +y[2v,gD2v + 1,gD((1 + y[v, gDlv + 1,4])

for |b| <

From (2.31), we have

1BII(Bo = B1)(Bict + o)

(I +y[2v,gD[2v + 1,4]
1bl|By — Bi|(IBy] + 1)

~ (L+y[2v,gD2v + 1,q]
Next we subtract (2.33) from (2.31), we get

|a2u+l| =

2(1 +y[2v,gD[2v + 1, 4] (2001 - A +ylv.gDlv+1.q] » }
b 2u+1 D) U+l

= (By — BNIBi(d] — ¢) — (c2 — do)} = (By — By)(c2 — db),

or

P (1 +vylv,gDlv+1,4] 2 (Bo — B1)b(c, — d)
vkl = 2 172 +y[2u, gD[2v + 1, g1

Taking the absolute values yield

(Bo =Bl blle =l (1 +ylv.gDlv+ 1] @
2(1 + y[2v,qD[2v + 1, 4] 2 vl

|a2u+1| <

Using the assertion (2.34) on (2.39), we have

I(By — By)| |p] N I(Bo — B |bI?
(1 +y2v,qD2v+ 1,1  2(1 +y[v,gDlv + 1,91’

|a2v+1 | <

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)
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It follows from (2.36) and (2.40) upon noting that

1By — B[ 14| L B B bP

(1 +yR2u,gD2v+ 1,q1  2(1 +y[v,gDlv + 1,41
I(Bo — By)| |b] . (B — By)|

< if |b| < .
(I +v[2v,gD[2v + 1, 4] (I +¥[2v,¢D[2v + 1, 4]

Now, we rewrite (2.33) as follows:

b(By — B)(—B1d: + d»)
(1 +y[2v,gD[2v + 1,91

Taking the modulus and using || < 2, |ck| < 1 and |di| < 1, we have

{(1 +y[v,gDlv + 1,qla’,, — azii} =

(Bo—B)(IB:+ 1) ||
(1 +y[2u,qD2v + 1,41

|azp1 — (1 +y[v, qDlv + 1,qla’,,| <

Finally, from (2.37), we have

(1 +y[2v,qD[2v + 1, 4] 2 } _ b(Bo—By)(cr—dr)
2 w20 + y[2u, gD[2u + 1, g1

{a2v+1 -

Taking the modulus and using |c;| < 1 and |di| < 1, we have

(Bo — By)D|
(I +v[2v,gD[2v + 1,491’

(I +y[2v,qD[2v + 1,4] ,
2 av+1

Ary+1 —

Forv=1,y=0,g > 1—,k =n—1in Theorem 2.7, then we obtain result proved in [22].

Corollary 2.8. [22]. For b € C\ {0}, let b, € Ry(¢) be given by (1.1), then

4
b, if |b| < =,
BL, if bl <3
las| <
4|b 4
if bl 3,
) 2
By bP, if bl < 3
las| < 5
4l
laz — 2| < =
21b|
@l <5
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2.1. Applications of our main results

Here, in this section, we consider the newly defined Salagean g—differential operator for subclass
of RZ’Z”"((p) of class of )}, and investigate some new application in the form of results

Theorem 2.9. For b € C\ {0}. Let b, € R,""(p) by given by (1.3). If a,is; =0,and 1 <i < k-1, then

b.q
2|
vk+1] < , k> 2.
ol = T ok gk + gy 7"
Proof. We can prove Theorem 2.9 by using the similar method of Theorem 2.1. O

Theorem 2.10. For b € C\ {0}. Let b, € RZ:;’m(tp) by given by (1.3). Then

20| .
Ty vah oL if bl < y3(v, q),
VIbl (v, q), if bl = Y3(v, ),

b2, @) + e i 1b] < Ya(v, @),

(I+ylv,gDlv+1.9

|au+l| <

lazy1] <
2blrn (v, q) if 1Dl = Ya(v, q),

a1 — (1 + ylv, gDlv + 1,q1"al,,| < 21blyu(v, q),

1
agper = ———az | < ba(v, ),

Y2 (v, q)
where
8
(A +y[2v,gD)[2v + 1,qI"™)((A + y[v, gDV + 1,g]™)’

l,//3(U, Cl) =

2
(1 +y[2v,qD[2v + 1,q]""

Proof. We can prove Theorem 2.10 by using the similar method of Theorem 2.3. O

l//4(U, Q) =

3. Conclusions

In this article, first of all, we used the g-difference operator for v-fold symmetric functions in order
to define some new subclasses of the v-fold symmetric bi-univalent functions in the open symmetric
unit disk Y. We also used the basic concepts of g-calculus and defined the Salagean g-differential
operator for v-fold symmetric functions. We considered this operator and investigated a new subclass
of v-fold symmetric bi-univalent functions. Faber Polynomial expansion method and g-analysis are
used in order to determined general coefficient bounds |a,| for functions in each of these newly
defined v-fold symmetric bi-univalent functions classes. Feketo-Sezego problems and initial coefficient
bounds |a,.1| and |ay,+| for the function belonging to the subclasses of v-fold symmetric bi-univalent
functions in open symmetric unit disk U are also investigated.
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