The aim of this paper is to deal with the Kirchhoff type equation involving fractional Laplacian operator
$ \left(\alpha+\beta \int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}\psi|^{2}\,\mathrm{d} x\right)(-\Delta)^{s}\psi+\kappa \psi = |\psi|^{p-2}\psi \ \ \ \mbox{in} \ \mathbb{R}^{3}, $
where $ \alpha, \beta, \kappa > 0 $ are constants. By constructing a Palais-Smale-Pohozaev sequence at the minimax value $ c_{mp} $, the existence of ground state solutions to this equation for all $ p\in(2, 2_{s}^{*}) $ is established by variational arguments. Furthermore, the decay property of the ground state solution is also investigated.
Citation: Dengfeng Lu, Shuwei Dai. Ground states to a Kirchhoff equation with fractional Laplacian[J]. AIMS Mathematics, 2023, 8(10): 24473-24483. doi: 10.3934/math.20231248
The aim of this paper is to deal with the Kirchhoff type equation involving fractional Laplacian operator
$ \left(\alpha+\beta \int_{\mathbb{R}^{3}}|(-\Delta)^{\frac{s}{2}}\psi|^{2}\,\mathrm{d} x\right)(-\Delta)^{s}\psi+\kappa \psi = |\psi|^{p-2}\psi \ \ \ \mbox{in} \ \mathbb{R}^{3}, $
where $ \alpha, \beta, \kappa > 0 $ are constants. By constructing a Palais-Smale-Pohozaev sequence at the minimax value $ c_{mp} $, the existence of ground state solutions to this equation for all $ p\in(2, 2_{s}^{*}) $ is established by variational arguments. Furthermore, the decay property of the ground state solution is also investigated.
[1] | V. Ambrosio, Concentration phenomena for a class of fractional Kirchhoff equations in $\mathbb{R}^{N}$ with general nonlinearities, Nonlinear Anal., 195 (2020), 111761. https://doi.org/10.1016/j.na.2020.111761 doi: 10.1016/j.na.2020.111761 |
[2] | G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal., 125 (2015), 699–714. https://doi.org/10.1016/j.na.2015.06.014 doi: 10.1016/j.na.2015.06.014 |
[3] | J. Byeon, O. Kwon, J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659–1681. https://doi.org/10.1088/1361-6544/aa60b4 doi: 10.1088/1361-6544/aa60b4 |
[4] | S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Le Mat., 68 (2013), 201–216. https://doi.org/10.4418/2013.68.1.15 doi: 10.4418/2013.68.1.15 |
[5] | P. Felmer, A. Quaas, J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746 |
[6] | A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011 |
[7] | A. Fiscella, P. K. Mishra, The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms, Nonlinear Anal., 186 (2019), 6–32. https://doi.org/10.1016/j.na.2018.09.006 doi: 10.1016/j.na.2018.09.006 |
[8] | T. Isernia, Sign-changing solutions for a fractional Kirchhoff equation, Nonlinear Anal., 190 (2020), 111623. https://doi.org/10.1016/j.na.2019.111623 doi: 10.1016/j.na.2019.111623 |
[9] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal., 28 (1997), 1633–1659. https://doi.org/10.1016/S0362-546X(96)00021-1 doi: 10.1016/S0362-546X(96)00021-1 |
[10] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2 |
[11] | G. B. Li, H. Y. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in $\mathbb{R}^{3}$, J. Differ. Equ., 257 (2014), 566–600. https://doi.org/10.1016/j.jde.2014.04.011 doi: 10.1016/j.jde.2014.04.011 |
[12] | D. F. Lu, S. W. Dai, On a class of three coupled fractional Schrödinger systems with general nonlinearities, AIMS Math., 8 (2023), 17142–17153. https://doi.org/10.3934/math.2023875 doi: 10.3934/math.2023875 |
[13] | E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[14] | N. H. Tuan, A. T. Nguyen, N. H. Can, Existence and continuity results for Kirchhoff parabolic equation with Caputo-Fabrizio operator, Chaos Solitons Fract., 167 (2023), 113028. https://doi.org/10.1016/j.chaos.2022.113028 doi: 10.1016/j.chaos.2022.113028 |
[15] | J. Zhang, Z. L. Lou, Y. J. Ji, W. Shao, Ground state of Kirchhoff type fractional Schrödinger equations with critical growth, J. Math. Anal. Appl., 462 (2018), 57–83. https://doi.org/10.1016/j.jmaa.2018.01.060 doi: 10.1016/j.jmaa.2018.01.060 |