The complex dynamics of a slow-fast predator-prey interaction with herd behavior are examined in this work. We investigate the presence and stability of fixed points. By employing the bifurcation theory, it is shown that the model undergoes both a period-doubling and a Neimark-Sacker bifurcation at the interior fixed point. Under the influence of period-doubling and Neimark-Sacker bifurcations, chaos is controlled using the hybrid control approach. Moreover, numerical simulations are carried out to highlight the model's complexity and show how well they agree with analytical findings. Employing the slow-fast factor as the bifurcation parameter shows that the model goes through a Neimark-Sacker bifurcation for greater values of the slow-fast factor at the interior fixed point. This makes sense because if the slow-fast factor is large, the growth rates of the predator and its prey will be about identical, automatically causing the interior fixed point to become unstable owing to the predator's slow growth.
Citation: Ahmad Suleman, Rizwan Ahmed, Fehaid Salem Alshammari, Nehad Ali Shah. Dynamic complexity of a slow-fast predator-prey model with herd behavior[J]. AIMS Mathematics, 2023, 8(10): 24446-24472. doi: 10.3934/math.20231247
The complex dynamics of a slow-fast predator-prey interaction with herd behavior are examined in this work. We investigate the presence and stability of fixed points. By employing the bifurcation theory, it is shown that the model undergoes both a period-doubling and a Neimark-Sacker bifurcation at the interior fixed point. Under the influence of period-doubling and Neimark-Sacker bifurcations, chaos is controlled using the hybrid control approach. Moreover, numerical simulations are carried out to highlight the model's complexity and show how well they agree with analytical findings. Employing the slow-fast factor as the bifurcation parameter shows that the model goes through a Neimark-Sacker bifurcation for greater values of the slow-fast factor at the interior fixed point. This makes sense because if the slow-fast factor is large, the growth rates of the predator and its prey will be about identical, automatically causing the interior fixed point to become unstable owing to the predator's slow growth.
[1] | E. Aulisa, S. R. J. Jang, Continuous-time predator-prey systems with allee effects in the prey, Math. Comput. Simul., 105 (2014), 1–16. https://doi.org/10.1016/j.matcom.2014.04.004 doi: 10.1016/j.matcom.2014.04.004 |
[2] | F. Wang, R. Yang, Y. Xie, J. Zhao, Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak allee effect on prey and fear effect on predator, AIMS Math., 8 (2023), 17719–17743. https://doi.org/10.3934/math.2023905 doi: 10.3934/math.2023905 |
[3] | S. S. Askar, On complex dynamics of differentiated products: cournot duopoly model under average profit maximization, Discrete Dyn. Nat. Soc., 2022 (2022), 1–14. https://doi.org/10.1155/2022/8677470 doi: 10.1155/2022/8677470 |
[4] | R. Ahmed, N. Ali, F. M. Rana, Analysis of a cournot-bertrand duoploy game with differentiated products: stability, bifurcation and control, Asian Res. J. Math., 18 (2022), 115–125. https://doi.org/10.9734/arjom/2022/v18i1030422 doi: 10.9734/arjom/2022/v18i1030422 |
[5] | N. A. Shah, A. A. Zafar, S. Akhtar, General solution for MHD-free convection flow over a vertical plate with ramped wall temperature and chemical reaction, Arab. J. Math., 7 (2018), 49–60. https://doi.org/10.1007/s40065-017-0187-z doi: 10.1007/s40065-017-0187-z |
[6] | C. Fetecau, N. A. Shah, D. Vieru, General solutions for hydromagnetic free convection flow over an infinite plate with newtonian heating, mass diffusion and chemical reaction, Commun. Theor. Phys., 68 (2017), 768. https://doi.org/10.1088/0253-6102/68/6/768 doi: 10.1088/0253-6102/68/6/768 |
[7] | I. Khan, N. A. Shah, L. C. C. Dennis, A scientific report on heat transfer analysis in mixed convection flow of maxwell fluid over an oscillating vertical plate, Sci. Rep., 7 (2017), 40147. https://doi.org/10.1038/srep40147 doi: 10.1038/srep40147 |
[8] | A. J. Lotka, Elements of physical biology, Science Progress in the Twentieth Century (1919–1933), 21 (1926), 341–343. |
[9] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[10] | H. Freedman, G. Wolkowicz, Predator-prey systems with group defence: the paradox of enrichment revisited, Bull. Math. Biol., 48 (1986), 493–508. |
[11] | C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 91 (1959), 385–398. https://doi.org/10.4039/ent91385-7 doi: 10.4039/ent91385-7 |
[12] | P. H. Crowley, E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 8 (1989), 211–221. https://doi.org/10.2307/1467324 doi: 10.2307/1467324 |
[13] | J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866 |
[14] | D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298 |
[15] | H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with monod-haldane and holling type ii functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919 |
[16] | C. Arancibia-Ibarra, P. Aguirre, J. Flores, P. van Heijster, Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response, Appl. Math. Comput., 402 (2021), 126152. https://doi.org/10.1016/j.amc.2021.126152 doi: 10.1016/j.amc.2021.126152 |
[17] | X. Chen, X. Zhang, Dynamics of the predator-prey model with the sigmoid functional response, Stud. Appl. Math., 147 (2021), 300–318. https://doi.org/10.1111/sapm.12382 doi: 10.1111/sapm.12382 |
[18] | M. F. Elettreby, A. Khawagi, T. Nabil, Dynamics of a discrete prey-predator model with mixed functional response, Int. J. Bifurcat. Chaos, 29 (2019), 1950199. https://doi.org/10.1142/s0218127419501992 doi: 10.1142/s0218127419501992 |
[19] | P. Panja, Combine effects of square root functional response and prey refuge on predator-prey dynamics, Int. J. Model. Simul., 41 (2021), 426–433. https://doi.org/10.1080/02286203.2020.1772615 doi: 10.1080/02286203.2020.1772615 |
[20] | S. M. Sohel Rana, U. Kulsum, Bifurcation analysis and chaos control in a discrete-time predator-prey system of leslie type with simplified holling type iv functional response, Discrete Dyn. Nat. Soc., 2017 (2017), 9705985. https://doi.org/10.1155/2017/9705985 doi: 10.1155/2017/9705985 |
[21] | X. Han, C. Lei, Bifurcation and turing instability analysis for a space- and time-discrete predator-prey system with smith growth function, Chaos, Solitons Fract., 166 (2023), 112910. https://doi.org/10.1016/j.chaos.2022.112910 doi: 10.1016/j.chaos.2022.112910 |
[22] | V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal.: Real World Appl., 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 doi: 10.1016/j.nonrwa.2011.02.002 |
[23] | P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal.: Real World Appl., 13 (2012), 1837–1843. https://doi.org/10.1016/j.nonrwa.2011.12.014 doi: 10.1016/j.nonrwa.2011.12.014 |
[24] | M. G. Mortuja, M. K. Chaube, S. Kumar, Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response, Chaos, Solitons Fract., 148 (2021), 111071. https://doi.org/10.1016/j.chaos.2021.111071 doi: 10.1016/j.chaos.2021.111071 |
[25] | D. Pal, P. Santra, G. S. Mahapatra, Predator-prey dynamical behavior and stability analysis with square root functional response, Int. J. Appl. Comput. Math., 3 (2017), 1833–1845. https://doi.org/10.1007/s40819-016-0200-9 doi: 10.1007/s40819-016-0200-9 |
[26] | S. M. Salman, A. M. Yousef, A. A. Elsadany, Stability, bifurcation analysis and chaos control of a discrete predator-prey system with square root functional response, Chaos, Solitons Fract., 93 (2016), 20–31. https://doi.org/10.1016/j.chaos.2016.09.020 doi: 10.1016/j.chaos.2016.09.020 |
[27] | N. C. Stenseth, W. Falck, O. N. Bjornstad, C. J. Krebs, Population regulation in snowshoe hare and canadian lynx: Asymmetric food web configurations between hareandlynx, Proceedings of the National Academy of Sciences, 94 (1997), 5147–5152. https://doi.org/10.1073/pnas.94.10.5147 doi: 10.1073/pnas.94.10.5147 |
[28] | G. Hek, Geometric singular perturbation theory in biological practice, J. Math. Biol., 60 (2010), 347–386. https://doi.org/10.1007/s00285-009-0266-7 doi: 10.1007/s00285-009-0266-7 |
[29] | S. Rinaldi, S. Muratori, Slow-fast limit cycles in predator-prey models, Ecol. Model., 61 (1992), 287–308. https://doi.org/10.1016/0304-3800(92)90023-8 doi: 10.1016/0304-3800(92)90023-8 |
[30] | W. Liu, D. Cai, Bifurcation, chaos analysis and control in a discrete-time predator-prey system, Adv. Differ. Equ., 2019 (2019), 11. https://doi.org/10.1186/s13662-019-1950-6 doi: 10.1186/s13662-019-1950-6 |
[31] | A. Q. Khan, I. Ahmad, H. S. Alayachi, M. S. M. Noorani, A. Khaliq, Discrete-time predator-prey model with flip bifurcation and chaos control, Math. Biosci. Eng., 17 (2020), 5944–5960. https://doi.org/10.3934/mbe.2020317 doi: 10.3934/mbe.2020317 |
[32] | Z. AlSharawi, S. Pal, N. Pal, J. Chattopadhyay, A discrete-time model with non-monotonic functional response and strong allee effect in prey, J. Differ. Equ. Appl., 26 (2020), 404–431. https://doi.org/10.1080/10236198.2020.1739276 doi: 10.1080/10236198.2020.1739276 |
[33] | R. Ahmed, A. Ahmad, N. Ali, Stability analysis and neimark-sacker bifurcation of a nonstandard finite difference scheme for lotka-volterra prey-predator model, Commun. Math. Biol. Neurosci., 2022 (2022), 61. https://doi.org/10.28919/cmbn/7534 doi: 10.28919/cmbn/7534 |
[34] | P. A. Naik, Z. Eskandari, M. Yavuz, J. Zu, Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect, J. Comput. Appl. Math., 413 (2022), 114401. https://doi.org/10.1016/j.cam.2022.114401 doi: 10.1016/j.cam.2022.114401 |
[35] | S. M. Sohel Rana, Dynamics and chaos control in a discrete-time ratio-dependent holling-tanner model, J. Egypt. Math. Soc., 27 (2019), 48. https://doi.org/10.1186/s42787-019-0055-4 doi: 10.1186/s42787-019-0055-4 |
[36] | P. Baydemir, H. Merdan, E. Karaoglu, G. Sucu, Complex dynamics of a discrete-time prey-predator system with leslie type: stability, bifurcation analyses and chaos, Int. J. Bifurcat. Chaos, 30 (2020), 2050149. https://doi.org/10.1142/s0218127420501497 doi: 10.1142/s0218127420501497 |
[37] | M. Zhao, C. Li, J. Wang, Complex dynamic behaviors of a discrete-time predator-prey system, J. Appl. Anal. Comput., 7 (2017), 478–500. https://doi.org/10.11948/2017030 doi: 10.11948/2017030 |
[38] | A. A. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong allee effect, AIMS Math.., 8 (2023), 8060–8081. https://doi.org/10.3934/math.2023408 doi: 10.3934/math.2023408 |
[39] | S. Akhtar, R. Ahmed, M. Batool, N. A. Shah, J. D. Chung, Stability, bifurcation and chaos control of a discretized leslie prey-predator model, Chaos, Solitons Fract., 152 (2021), 111345. https://doi.org/10.1016/j.chaos.2021.111345 doi: 10.1016/j.chaos.2021.111345 |
[40] | A. Tassaddiq, M. S. Shabbir, Q. Din, H. Naaz, Discretization, bifurcation, and control for a class of predator-prey interactions, Fractal Fract., 6 (2022), 31. https://doi.org/10.3390/fractalfract6010031 doi: 10.3390/fractalfract6010031 |
[41] | Z. Zhu, Y. Chen, Z. Li, F. Chen, Stability and bifurcation in a Leslie-Gower predator-prey model with allee effect, Int. J. Bifurcat. Chaos, 32 (2022), 2250040. https://doi.org/10.1142/s0218127422500407 doi: 10.1142/s0218127422500407 |
[42] | C. Lei, X. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. https://doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313 |
[43] | X. Han, C. Lei, Stability, bifurcation analysis and pattern formation for a nonlinear discrete predator-prey system, Chaos, Solitons Fract., 173 (2023), 113710. https://doi.org/10.1016/j.chaos.2023.113710 doi: 10.1016/j.chaos.2023.113710 |
[44] | A. C. J. Luo, Regularity and complexity in dynamical systems, Springer, 2012. https://doi.org/10.1007/978-1-4614-1524-4 |
[45] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, 2003. https://doi.org/10.1007/b97481 |
[46] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[47] | R. Ahmed, M. S. Yazdani, Complex dynamics of a discrete-time model with prey refuge and holling type-ii functional response, J. Math. Comput. Sci., 12 (2022), 113. https://doi.org/10.28919/jmcs/7205 doi: 10.28919/jmcs/7205 |
[48] | X. S. Luo, G. Chen, B. H. Wang, J. Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos, Solitons Fract., 18 (2003), 775–783. https://doi.org/10.1016/s0960-0779(03)00028-6 doi: 10.1016/s0960-0779(03)00028-6 |