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Abstract: The main aim of this study is to reveal new generalized-Ostrowski-type inequalities
using Katugampola fractional integral operator which generalizes Riemann-Liouville and Hadamard
fractional integral operators into a single form. For this purpose, at first, a new fractional integral
identity is generated by the researchers. Then, by using this identity, some inequalities for the class
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1. Introduction

Fractional calculus was first suggested for consideration by Leibnitz in his letter to L’Hospital which
dealt with derivatives of order α = 1

2 (see [10]). Hereupon, this theory has been used in many fields
of science such as economics, biology, engineering, physics and mathematics for sure. Many types of
fractional derivatives and integrals were studied by Hadamard, Caputo, Riemann-Liouville, Grünwald-
Letnikov, etc. Various properties of these operators have been summarized in [9]. For the last decades,
this theory has been used in inequality theory frequently because it enables scientists to obtain integral
inequalities for also non-integer orders. One of the most famous inequality is Ostrowski’s which has
lead to gain many practical inequalities with fractional calculus as well.

Ostrowski proved an important integral inequality in 1938 which gives an upper bound for
difference between the value f (x) and mean value of f for functions whose derivatives’ absolute
values are bounded, which can be seen in [11] as the following.
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Theorem 1. Let f : I ⊆ R → R be a differentiable mapping on I◦ and a, b ∈ I with a < b. If
| f ′ (x)| ≤ M then, ∣∣∣∣∣∣ f (x) −

1
b − a

∫ b

a
f (t) dt

∣∣∣∣∣∣ ≤ M (b − a)

1
4

+

(
x − a+b

2

)2

(b − a)2


holds for all x ∈ [a, b]. Here 1

4 is the best possible constant.

Zhang and Wan introduced p−convex functions in [14], and İşcan gave a different version of this
definition in [5] as follows.

Definition 1. Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0}. A function f : I → R is said to be a
p−convex function , if

f
([

txp + (1 − t) yp] 1
p

)
≤ t f (x) + (1 − t) f (y) (1.1)

for all x, y ∈ I and t ∈ [0, 1].

It is easy to see that p−convexity reduces to ordinary convexity for p = 1 and harmonically
convexity for p = −1.

p−convex functions are frequently considered in the inequalities especially when using fractional
integral calculations. Some fractional integral operators are used to do these calculations. Therefore,
some new definitions about fractional calculus are given. First of them is Riemann-Liouville fractional
integration operator (see [9]) which ables to integrate functions on fractional orders.

Definition 2. Let f ∈ L1 [a, b]. The Riemann-Liouville integrals Jαa+ f and Jαb− f of order α > 0 with
a > 0 are defined by

Jαa+ f =
1

Γ (α)

∫ x

a
(x − t)α−1 f (t) dt, x > a

and

Jαb− f =
1

Γ (α)

∫ b

x
(t − x)α−1 f (t) dt, x < b

respectively where Γ (α) =
∫ ∞

0
e−tuα−1du. Here J0

a+ f (x) = J0
b− f (x) = f (x).

Definition 3. [9] The left and right-side Hadamard fractional integrals of order α ∈ R+ are defined as

=αa+ϕ =
1

Γ (α)

∫ x

a

ϕ (t)(
ln x

t

)1−α

dt
t

, x > a > 0,

=αb−ϕ =
1

Γ (α)

∫ b

x

ϕ (t)(
ln t

x

)1−α

dt
t

, 0 < x < b.

where Γ is the gamma function.

Definition 4. [8] Let the space Xp
c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesque

measurable functions f on [a, b] for which ‖ f ‖ xp
c < ∞, where the norm is defined by

‖ f ‖ xp
c =

(∫ b

a
|tc f (t)|p

dt
t

) 1
p

< ∞ (1.2)
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for 1 ≤ p ≤ ∞, c ∈ R and for the case p = ∞,

‖ f ‖ xp
c = ess sup

a≤t≤b

[
tc | f (t)|

]
( c ∈ R). (1.3)

Katugampola revealed a new fractional integration operator which generalizes both
Riemann-Liouville and Hadamard fractional integration operators. This integration operator also
holds semigroup property (see [6, 7]) and is defined as the following statement.

Definition 5. Let [a, b] ⊂ R be a finite interval. Then, the left and right-side Katugampola fractional
integrals of order (α > 0) of f ∈ Xp

c (a, b) are defined by

ρIαa+ f (x) =
ρ1−α

Γ (α)

∫ x

a

tρ−1

(xρ − tρ)1−α f (t) dt

and
ρIαb− f (x) =

ρ1−α

Γ (α)

∫ b

x

tρ−1

(tρ − xρ)1−α f (t) dt

with a < x < b and ρ > 0 if the integral exists.

Theorem 2. [7] Let α > 0 and ρ > 0. Then for x > a,

1. lim
ρ→1

ρIαa+ f (x) = Jαa+ f (x)

2. lim
ρ→0+

ρIαa+ f (x) = =αa+ f (x) .

Similar results also hold for right-sided operators.

Erdélyi et al. deeply involved in hypergeometric functions which Whittaker discovered in 1904 and
gave the definition of it in [4] as:

2F1(a, b; c; z) =
1

β(b, b − c)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−adt, c > b > 0, |z| < 1 (1.4)

Throughout the paper the notation Y f (α, ρ; a, x, b) will be used in the meaning of following
statement.

Y f (α, ρ; a, x, b) =
ρ f (x)
b − a

[
(xρ − aρ)α + (bρ − xρ)α

]
(1.5)

−
ρα+1Γ (α + 1)

b − a
[ ρIαx− f (a) + ρIαx+ f (b)

]
.

where Γ is Euler Gamma function, i.e., Γ (α) =
∫ ∞

0
e−tuα−1du.

Alomari et al. proved the following lemma in 2010 in [2] to obtain new Ostrowski-type results.

Lemma 1. Let f : I ⊂ R −→ R be a differentiable mapping on I◦ where a, b ∈ I with a < b. If
f ′ ∈ L [a, b], then the following equality holds

f (x) −
1

b − a

∫ b

a
f (t) dt (1.6)

=
(x − a)2

b − a

∫ 1

0
t f ′ (tx + (1 − t) a) dt −

(b − x)2

b − a

∫ 1

0
t f ′ (tx + (1 − t) b) dt

for each x ∈ [a, b].
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Set proved the next lemma in 2012 which helps to obtain Ostrowski-type inequalities for Riemann-
Liouville fractional integrals in [13].

Lemma 2. Let f : [a, b] → R, be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L [a, b] , then
for all x ∈ [a, b] and α > 0 the following identity holds

f (x)
b − a

[
(x − a)α + (b − x)α

]
−

Γ (α + 1)
b − a

[
Jαx− f (a) + Jαx+ f (b)

]
(1.7)

=
(x − a)α+1

b − a

∫ 1

0
tα f ′ (tx + (1 − t) a) dt −

(b − x)α+1

b − a

∫ 1

0
tα f ′ (tx + (1 − t) b) dt

where Γ is Euler Gamma function.

To see more studies involving Ostrowski-type inequalities, one can see references [1, 3, 12]. Also
in [2] and [5], Ostrowski-type inequalities using integer order integrals and in [13], Ostrowski-type
inequalities using Riemann-Liouville integral operator were obtained. On the other hand, the findings
in this study were obtained using Katugampola fractional integration operator, which gives more
general results than inequalities using integer order integral or Riemann-Liouville fractional integral
operator.

In this paper, a new lemma including Katugampola fractional integral has been proved inspired by
Lemma 2. Then with the help of some properties and inequalities like Hölder and power mean, new
Ostrowski-type inequalities are proved. It is seen that results are supported by the literature.

2. Main results

Lemma 3. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ where a, b ∈ I with a < b. If
f ′ ∈ L [a, b] , then for all x ∈ [a, b] the following identity holds

Y f (α, ρ; a, x, b) =
(xρ − aρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) aρ]

1
ρ

)
(txρ + (1 − t) aρ)1− 1

ρ

dt

−
(bρ − xρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) bρ]

1
ρ

)
(txρ + (1 − t) bρ)1− 1

ρ

dt (2.1)

where α > 0, ρ > 0.

Proof. By integrating by parts, the following statement is obtained

I1 =

∫ 1

0

tα f ′
(
[txρ + (1 − t) aρ]

1
ρ

)
(txρ + (1 − t) aρ)1− 1

ρ

dt

=
ρ f (x)
xρ − aρ

−
αρ

xρ − aρ

∫ 1

0
tα−1 f

(
[txρ + (1 − t) aρ]

1
ρ

)
dt.

With changing the variable u = [txρ + (1 − t) aρ]
1
ρ , it is easy to get

I1 =
ρ f (x)
xρ − aρ

−
αρ

xρ − aρ

∫ x

a

(
uρ − aρ

xρ − aρ

)α−1
ρuρ−1

xρ − aρ
f (u) du
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=
ρ f (x)
xρ − aρ

−
αρ2

(xρ − aρ)α+1

∫ x

a

uρ−1

(uρ − aρ)1−α f (u) du

=
ρ f (x)
xρ − aρ

−
αρ2Γ (α)

(xρ − aρ)α+1 ρ1−α
ρIαx− f (a)

=
ρ f (x)
xρ − aρ

−
ρα+1Γ (α + 1)
(xρ − aρ)α+1

ρIαx− f (a) . (2.2)

In the same way, integrating by parts I2 can be revealed as

I2 =

∫ 1

0

tα f ′
(
[txρ + (1 − t) bρ]

1
ρ

)
(txρ + (1 − t) bρ)1− 1

ρ

dt

=
ρ f (x)
xρ − bρ

−
αρ

xρ − bρ

∫ 1

0
tα−1 f

(
[txρ + (1 − t) bρ]

1
ρ

)
dt .

With same change of variable, it can be seen that

I2 =
ρ f (x)
xρ − bρ

−
αρ

xρ − bρ

∫ x

b

(
uρ − bρ

xρ − bρ

)α−1
ρuρ−1

xρ − bρ
f (u) du

= −
ρ f (x)
bρ − xρ

+
αρ2

(bρ − xρ)α+1

∫ b

x

uρ−1

(bρ − uρ)1−α f (u) du

= −
ρ f (x)
bρ − xρ

+
αρ2Γ (α)

(bρ − xρ)α+1 ρ1−α
ρIαx+ f (b)

= −
ρ f (x)
bρ − xρ

+
ρα+1Γ (α + 1)
(bρ − xρ)α+1

ρIαx+ f (b) . (2.3)

Multiplying (2.2) with (xρ−aρ)α+1

b−a and (2.3) with
(
−

(bρ−xρ)α+1

b−a

)
and summing them side by side, the

following calculations can be performed.

(xρ − aρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) aρ]

1
ρ

)
(txρ + (1 − t) aρ)1− 1

ρ

dt

−
(bρ − xρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) bρ]

1
ρ

)
(txρ + (1 − t) bρ)1− 1

ρ

dt

=
ρ f (x) (xρ − aρ)α

b − a
−
ρα+1Γ (α + 1) ρIαx− f (a)

b − a

+
ρ f (x) (bρ − xρ)α

b − a
−
ρα+1Γ (α + 1) ρIαx+ f (b)

b − a
.

With rearranging the last statement

ρ f (x)
b − a

[
(xρ − aρ)α + (bρ − xρ)α

]
−
ρα+1Γ (α + 1)

b − a
[ ρIαx− f (a) + ρIαx+ f (b)

]
AIMS Mathematics Volume 5, Issue 1, 42–53.
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=
(xρ − aρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) aρ]

1
ρ

)
(txρ + (1 − t) aρ)1− 1

ρ

dt

−
(bρ − xρ)α+1

b − a

∫ 1

0

tα f ′
(
[txρ + (1 − t) bρ]

1
ρ

)
(txρ + (1 − t) bρ)1− 1

ρ

dt

is obtained, which completes the proof. �

Remark 1. Under necessary conditions of Lemma 3 with choosing ρ = 1, we get Lemma 2 which is
proven in [13].

Remark 2. By choosing α = 1 in Remark 1, it is easy to obtain Lemma 1 which is proven in [2].

Theorem 3. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ and a, b ∈ I with a < b such
that f ′ ∈ L [a, b]. If | f ′| is p−convex on I and | f ′ (x)| ≤ M for all x ∈

[
a, 2

1
ρ a

)
(if 2

1
ρ a < b, otherwise

x ∈ [a, b]), then the following inequality holds

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ M

(xρ − aρ)α+1

b − a
{R (a) + S (a)} + M

(bρ − xρ)α+1

b − a
{R (b) + S (b)} (2.4)

where

R (λ) =
λ1−ρ

α + 2 2F1

(
α + 2,

ρ − 1
ρ

; α + 3; 1 −
xρ

λρ

)
S (λ) =

λ
1−ρ

(α + 1) (α + 2)

 (α + 2) 2F1

(
α + 1, ρ−1

ρ
; α + 2; 1 − xρ

λρ

)
− (α + 1) 2F1

(
α + 2, ρ−1

ρ
; α + 3; 1 − xρ

λρ

) 
and ρ > 1, α > 0, λ ∈ {a, b}, 2F1 (., .; .; .) is hypergeometric function and Y f (α, ρ; a, x, b) is as

defined in (1.4).

Proof. By using Lemma 3 and properties of modulus, it can be written

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) aρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) aρ)1− 1

ρ

dt

+
(bρ − xρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) bρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) bρ)1− 1

ρ

dt.

By means of p−convexity of | f ′|, following computations can be performed

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1

b − a

∫ 1

0

tα
[
t | f ′ (x)| + (1 − t) | f ′ (a)|

]
(txρ + (1 − t) aρ)1− 1

ρ

dt

+
(bρ − xρ)α+1

b − a

∫ 1

0

tα
[
t | f ′ (x)| + (1 − t) | f ′ (b)|

]
(txρ + (1 − t) bρ)1− 1

ρ

dt

=
(xρ − aρ)α+1

b − a
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×

 | f ′ (x)|
∫ 1

0
tα+1 (txρ + (1 − t) aρ)

1
ρ−1 dt

+ | f ′ (a)|
∫ 1

0

(
tα − tα+1

)
(txρ + (1 − t) aρ)

1
ρ−1 dt


+

(bρ − xρ)α+1

b − a

×

 | f ′ (x)|
∫ 1

0
tα+1 (txρ + (1 − t) bρ)

1
ρ−1 dt

+ | f ′ (b)|
∫ 1

0

(
tα − tα+1

)
(txρ + (1 − t) bρ)

1
ρ−1 dt

 .

With necessary computations, it is easy to see that

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1

b − a
{| f ′ (x)|R (a) + | f ′ (a)| S (a)}

+
(bρ − xρ)α+1

b − a
{| f ′ (x)|R (b) + | f ′ (b)| S (b)} .

By using boundedness of f ′ (x), that is, | f ′ (x)| ≤ M, it is easy to see

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ M

(xρ − aρ)α+1

b − a
{R (a) + S (a)} + M

(bρ − xρ)α+1

b − a
{R (b) + S (b)}

which completes the proof. �

Remark 3. By choosing ρ = 1 in Theorem 3, it reduces to Theorem 7 with s = 1 in [13] where we used
the fact that 2F1 (x, 0; y; z) = 1.

Theorem 4. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ and a, b ∈ I with a < b such
that f ′ ∈ L [a, b]. If | f ′|q is p−convex on I and | f ′ (x)| ≤ M for all x ∈ I − {a, b} , then the following
inequality holds

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ M

b − a

(
1

αq + 1

) 1
q [

(xρ − aρ)α+1 K
1
r (a) + (bρ − xρ)α+1 K

1
r (b)

]
where

K (λ) =
ρ
(
xr(1−ρ)+ρ − λr(1−ρ)+ρ

)
(xρ − λρ) (r (1 − ρ) + ρ)

and ρ > 0, α > 0, λ ∈ {a, b}, r > 1, 1
r + 1

q = 1, r , ρ

ρ−1 and Y f (α, ρ; a, x, b) is as defined in (1.4).

Proof. With the help of Lemma 3 and properties of modulus, one can write∣∣∣Y f (α, ρ; a, x, b)
∣∣∣

≤
(xρ − aρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) aρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) aρ)1− 1

ρ

dt

+
(bρ − xρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) bρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) bρ)1− 1

ρ

dt.
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By using Hölder inequality, it can be written as∣∣∣Y f (α, ρ; a, x, b)
∣∣∣

≤
(xρ − aρ)α+1

b − a

(∫ 1

0

(
(txρ + (1 − t) aρ)

1
ρ−1

)r
dt

) 1
r

×

(∫ 1

0
tαq

∣∣∣∣ f ′ ([txρ + (1 − t) aρ]
1
ρ

)∣∣∣∣q dt
) 1

q

+
(bρ − xρ)α+1

b − a

(∫ 1

0

(
(txρ + (1 − t) bρ)

1
ρ−1

)r
dt

) 1
r

×

(∫ 1

0
tαq

∣∣∣∣ f ′ ([txρ + (1 − t) bρ]
1
ρ

)∣∣∣∣q dt
) 1

q

.

From the p−convexity of | f ′|q and | f ′ (x)| ≤ M, it follows that∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1

b − a
K

1
r (a)

×

(∫ 1

0
tαq+1 | f ′ (x)|q dt +

∫ 1

0
tαq (1 − t) | f ′ (a)|q dt

) 1
q

+
(bρ − xρ)α+1

b − a
K

1
r (b)

×

(∫ 1

0
tαq+1 | f ′ (x)|q dt +

∫ 1

0
tαq (1 − t) | f ′ (b)|q dt

) 1
q

≤
(xρ − aρ)α+1

b − a
K

1
r (a)

(
Mq 1

αq + 2
+ Mq 1

(αq + 1) (αq + 2)

) 1
q

+
(bρ − xρ)α+1

b − a
K

1
r (b)

(
Mq 1

αq + 2
+ Mq 1

(αq + 1) (αq + 2)

) 1
q

=
M

b − a

(
1

αq + 1

) 1
q [

(xρ − aρ)α+1 K
1
r (a) + (bρ − xρ)α+1 K

1
r (b)

]
which completes the proof. �

Theorem 5. Let f : I ⊂ (0,∞) → R be a differentiable mapping on I◦ and a, b ∈ I with a < b such
that f ′ ∈ L [a, b]. If | f ′|q is p−convex on I and | f ′ (x)| ≤ M for all x ∈

[
a, 2

1
ρ a

)
(if 2

1
ρ a < b, otherwise

x ∈ [a, b]), then the following inequality holds∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ M

b − a
(xρ − aρ)α+1 L1− 1

q (a) (R (a) + S (a))
1
q

+
M

b − a
(bρ − xρ)α+1 L1− 1

q (b) (R (b) + S (b))
1
q

where

R (λ) =
λ1−ρ

α + 2 2F1

(
α + 2,

ρ − 1
ρ

; α + 3; 1 −
xρ

λρ

)
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S (λ) =
λ

1−ρ

(α + 1) (α + 2)

 (α + 2) 2F1

(
α + 1, ρ−1

ρ
; α + 2; 1 − xρ

λρ

)
− (α + 1) 2F1

(
α + 2, ρ−1

ρ
; α + 3; 1 − xρ

λρ

) 
L (λ) =

λ1−ρ

α + 1 2F1

(
α + 1,

ρ − 1
ρ

;α + 2; 1 −
xρ

λρ

)
and ρ > 1, α > 0, q > 1, λ ∈ {a, b}, 2F1 (., .; .; .) is hypergeometric function and Y f (α, ρ; a, x, b) is as
defined in (1.4).

Proof. Making use of Lemma 3 and properties of absolute value, it can be seen that∣∣∣Y f (α, ρ; a, x, b)
∣∣∣

≤
(xρ − aρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) aρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) aρ)1− 1

ρ

dt

+
(bρ − xρ)α+1

b − a

∫ 1

0

tα
∣∣∣∣ f ′ ([txρ + (1 − t) bρ]

1
ρ

)∣∣∣∣
(txρ + (1 − t) bρ)1− 1

ρ

dt.

Then, making use of Power-Mean inequality, the following computations can be performed

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1

b − a

(∫ 1

0
tα (txρ + (1 − t) aρ)

1
ρ−1 dt

)1− 1
q

×

(∫ 1

0
tα (txρ + (1 − t) aρ)

1
ρ−1

∣∣∣∣ f ′ ([txρ + (1 − t) aρ]
1
ρ

)∣∣∣∣q dt
) 1

q

+
(bρ − xρ)α+1

b − a

(∫ 1

0
tα (txρ + (1 − t) bρ)

1
ρ−1 dt

)1− 1
q

×

(∫ 1

0
tα (txρ + (1 − t) bρ)

1
ρ−1

∣∣∣∣ f ′ ([txρ + (1 − t) bρ]
1
ρ

)∣∣∣∣q dt
) 1

q

.

Hence | f ′|q is chosen as p−convex on I∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ (xρ − aρ)α+1 L1− 1

q (a)
b − a

×

 ∫ 1

0
tα+1 (txρ + (1 − t) aρ)

1
ρ−1
| f ′ (x)|q dt

+
∫ 1

0

(
tα − tα+1

)
(txρ + (1 − t) aρ)

1
ρ−1
| f ′ (a)|q dt


1
q

+
(bρ − xρ)α+1 L1− 1

q (b)
b − a

×

 ∫ 1

0
tα+1 (txρ + (1 − t) bρ)

1
ρ−1
| f ′ (x)|q dt

+
∫ 1

0

(
tα − tα+1

)
(txρ + (1 − t) bρ)

1
ρ−1
| f ′ (b)|q dt


1
q

.

With necessary computations, it can be easily seen that∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ =

(xρ − aρ)α+1 L1− 1
q (a)

b − a
(
| f ′ (x)|q R (a) + | f ′ (a)|q S (a)

) 1
q
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+
(bρ − xρ)α+1 L1− 1

q (b)
b − a

(
| f ′ (x)|q R (b) + | f ′ (b)|q S (b)

) 1
q

With using boundedness of | f ′ (x)|, it can be written that

∣∣∣Y f (α, ρ; a, x, b)
∣∣∣ ≤ M

(xρ − aρ)α+1 L1− 1
q (a)

b − a
(R (a) + S (a))

1
q

+ M
(bρ − xρ)α+1 L1− 1

q (b)
b − a

(R (b) + S (b))
1
q .

So the proof is completed. �

Remark 4. By choosing ρ = 1 in Theorem 5, it reduces to Theorem 9 with s = 1 in [13] where we used
the fact that 2F1 (x, 0; y; z) = 1.

3. Applications to special means

Let us recall the following means for two positive real numbers.
(1) The arithmetic mean:

A = A (a, b) =
a + b

2
; a, b > 0; a, b ∈ R,

(2) The logarithmic mean:

L = L (a, b) =
b − a

ln b − ln a
; a, b > 0; a, b ∈ R.

Proposition 1. Let 0 < a < b and a+b
2 < 2

1
ρ a. Then the following inequality holds∣∣∣∣∣∣4A (a, b) ln (A (a, b)) − 2

b(b2) − a(a2)

b − a
L−1

(
a(a2), b(b2)) + 2A (a, b)

∣∣∣∣∣∣
≤ |M|

(
b2 − a2

)
2

where M = max {|ln a| , |ln b|}.

Proof. The proof follows from Theorem 3 on applying α = 1, ρ = 2, x = a+b
2 and f (x) = − ln x which

is p−convex on (0,∞) for p ≥ 1. �

Proposition 2. Let 0 < a < b and a+b
2 < 2

1
ρ a. Then the following inequality holds

∣∣∣4A−1 (a, b) − 4L−1 (a, b)
∣∣∣ ≤ b2 − a2

2a2 .

Proof. The proof is immediate from Theorem 3 on applying α = 1, ρ = 2, x = a+b
2 and f (x) = x−2

which is p−convex on (0,∞). �
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4. Conclusion

In this study, new lemma and theorems are put forward to obtain new upper bounds for Ostrowski-
type inequalities including Katugampola fractional operator. Researchers can obtain new lemmas and
theorems by using similar method used in this study or use the obtained results in many fields of
science.
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