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1. Introduction

Stefan Hilger [1] proposed the concept of dynamic equations on time scales to unite continuous and
discrete analysis. Dynamic equation theory includes classical theories for differential and difference
equations and instances in between. The q-difference equations, with significant consequences in
quantum theory (refer to [2]), can be analyzed across several time scales. The time scales include
T=qN0 := {qλ : λ ∈ N0 for q > 1}, T=hN, T= N2, and T = Tn, where Tn denotes harmonic numbers.
See the sources [3, 4] for more information on time scale calculus.

Researchers from a wide variety of applied fields have demonstrated a substantial amount of interest
in the phenomena of oscillation. This is primarily owing to the fact that oscillation has its roots in
mechanical vibrations and has a wide range of applications in the fields of science and engineering. It
is possible for oscillation models to integrate advanced terms or delays in order to take into account the
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influence that temporal contexts have on different solutions. There has been a substantial amount of
investigation carried out on the topic of oscillation in delay equations, as evidenced by the contributions
made by [5–11]. Compared to other areas of research, the extant literature on advanced oscillation is
rather limited, consisting of only a few publications that specifically explore this topic [12–17].

In order to examine and gain an understanding of the phenomenon of oscillation, which is present in
a wide variety of practical applications, a wide variety of models are applied. Through the integration of
cross-diffusion factors, particular models within the field of mathematical biology have been improved
in order to take into consideration the effects of delay and/or oscillation. It is recommended that
interested parties consult the scholarly publications with the titles [18, 19] in order to have a more in-
depth understanding of this subject matter. Since differential equations are of such critical importance
in understanding and analyzing a wide variety of events that occur in the real world, the focus of the
inquiry that is now being conducted is on the examination of these equations. In this study, differential
equations are utilized to investigate the turbulent flow of a polytrophic gas through a porous material
and non-Newtonian fluid theory. The non-Newtonian fluid theory is also taken into consideration.
A comprehensive understanding of the mathematical principles that support these fields is required,
since they have significant practical implications and require a comprehensive understanding of those
principles. Individuals who are interested in further information might consult the papers [20–25] that
were previously mentioned. Therefore, this aims to study the oscillatory behavior of a specific class of
second-order half-linear dynamic equations with deviating arguments of the form[

r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0 (1.1)

on an unbounded above arbitrary time scale T, where τ ∈ [τ0,∞)T, τ0 ≥ 0, τ0 ∈ T, γ > 0,
r, q ∈Crd (T,R+) such that

R (τ) :=
∫ τ

τ0

∆ω

r
1
γ (ω)

→ ∞ as τ→ ∞, (1.2)

and ϕ ∈ Crd (T,T) satisfying limτ→∞ ϕ(τ) = ∞. By a solution of Eq (1.1), we mean a nontrivial real-
valued function z ∈C1

rd[Tz,∞)T, Tz ∈ [τ0,∞)T such that r
∣∣∣z∆

∣∣∣γ−1
z∆ ∈C1

rd[Tz,∞)T and z satisfies (1.1) on
[Tz,∞)T, where Crd is the set of rd-continuous functions. A solution z of (1.1) is considered oscillatory
if it does not eventually become positive or negative. Otherwise, we refer to it as nonoscillatory. We
will exclude solutions that vanish in the vicinity of infinity. Note that if T = R, then (1.1) becomes the
second-order half-linear differential equation[

r |z′|γ−1 z′
]′

(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0.

If T = Z, then (1.1) gets the second-order half-linear difference equation

∆
[
r |∆z|γ−1 ∆z

]
(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0,

where
σ(τ) = τ + 1 and ∆z (τ) := z(τ + 1) − z(τ).

If T =hZ, h > 0, thus (1.1) converts the second order half-linear difference equation

∆h

[
r |∆hz|γ−1 ∆hz

]
(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0,
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where
σ(τ) = τ + h and ∆hz (τ) :=

z(τ + h) − z(τ)
h

.

If T = {τ : τ = qk, k ∈ N0, q > 1}, then (1.1) becomes the second-order half-linear q-difference
equation

∆q

[
r
∣∣∣∆qz

∣∣∣γ−1
∆qz

]
(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0,

where
σ(τ) = qτ and ∆qz(τ) =

z(qτ) − z(τ)
(q − 1)τ

.

If T = N2
0 := {τ2 : τ ∈ N0}, then (1.1) gets the second-order half-linear difference equation

∆N

[
r |∆Nz|γ−1 ∆Nz

]
(τ) + q(τ) |z (ϕ (τ))|γ−1 z (ϕ (τ)) = 0,

where

σ(τ) = (
√
τ + 1)2 and ∆Nz(τ) =

z((
√
τ + 1)2) − z(τ)
1 + 2

√
τ

.

If T = {Hn : n ∈ N} where Hn is the n-th harmonic number defined by H0 = 0, Hn =
∑n

k=1
1
k , n ∈ N0,

then (1.1) converts the second-order half-linear harmonic difference equation

∆Hn

[
r
∣∣∣∆Hnz

∣∣∣γ−1
∆Hnz

]
(Hn) + q(Hn) |z (ϕ (Hn))|γ−1 z (ϕ (Hn)) = 0,

where
σ(Hn) = Hn+1 and ∆Hnz(Hn) = (n + 1)∆z(Hn).

The oscillation results for differentials that are linked to the oscillation results for (1.1) on time scales
are presented in the following. In addition, it offers a comprehensive summary of the significant
contributions that this paper has made. Oscillation theory has consistently relied heavily on Euler
differential equations and their numerous generalizations ever since Sturm’s significant contribution to
the literature. One of the most well-known and widely used is the second-order Euler equation

z′′(τ) +
q0

τ2 z(τ) = 0, q0 > 0, (1.3)

which is oscillatory if and only if

q0 >
1
4
.

Among the most important oscillation criteria of second-order differential equations are Kneser-type
(see [26]), which used Sturmian comparison methods, and the oscillatory behavior of the Euler
equation (1.3) to show that the linear differential equation

z′′(τ) + q(τ)z(τ) = 0, (1.4)

is oscillatory if

lim inf
τ→∞

τ2q (τ) >
1
4
. (1.5)

Since then, in the same way, many works have appeared that deduce Kneser-type criteria for different
types of differential equations. Some of these works follow; see [27–29]:
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(I) The linear differential equation [
rz′

]′ (τ) + q(τ)z (τ) = 0 (1.6)

is oscillatory if

lim inf
τ→∞

r(τ)R2(τ)q (τ) >
1
4
. (1.7)

(II) The half-linear differential equation[
|z′|γ−1 z′

]′
(τ) + q(τ) |z (τ)|γ−1 z (τ) = 0 (1.8)

is oscillatory if

lim inf
τ→∞

τγ+1q (τ) >
(

γ

γ + 1

)γ+1

. (1.9)

(III) The half-linear differential equation[
r |z′|γ−1 z′

]′
(τ) + q(τ) |z (τ)|γ−1 z (τ) = 0 (1.10)

is oscillatory if

lim inf
τ→∞

r
1
γ (τ)Rγ+1(τ)q (τ) >

(
γ

γ + 1

)γ+1

. (1.11)

We note that the Euler equation[
r |z′|γ−1 z′

]′
(τ) +

q0

r
1
γ (τ)Rγ+1(τ)

|z (τ)|γ−1 z (τ) = 0, q0 > 0 (1.12)

has a nonoscillatory solution z(τ) = R
γ
γ+1 (τ) if q0 =

(
γ

γ + 1

)γ+1

. That is to say, the constant(
γ

γ + 1

)γ+1

serves as the lower bound of oscillation for all solutions of the Eq (1.12).

In consideration of the aforementioned comments, we establish the Kneser-type oscillation criterion
for the dynamic equation (1.1) on time scales with deviating arguments by employing the Riccati
transformation technique:

(i) Include the oscillation criterion (1.5) that has been given by Kneser [26] for the Eq (1.4).
(ii) Include the oscillation criterion (1.7). (1.9), and (1.11) for the differential equations (1.6), (1.8),

and (1.10), respectively.
(iii) Obtained results are applicable to all time scales, whether continuous or discrete.

2. Main results

We begin this section with the following lemma, which we need to substantiate the main results.

Lemma 2.1 (see [30, Theorem 1]). Assume z is a positive solution of (1.1) on [τ0,∞)T. Then

z∆(τ) > 0,
[ z
R

]∆

(τ) < 0, z (τ) ≥
[
r

1
γ z∆R

]
(τ) , and

[
r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) < 0 (2.1)

eventually.
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The following main theorem is the Kneser-type oscillation criterion in Eq (1.1).

Theorem 2.1. If l := lim infτ→∞
R (τ)

R (σ (τ))
> 0 and

A := lim inf
τ→∞

r
1
γ (τ) R (τ) Rγ (η (τ)) q (τ) >

1
lγ(γ+1)

(
γ

γ + 1

)γ+1

, (2.2)

where the forward jump operator σ : T→ T is given by

σ(τ) := inf{ω ∈ T : ω > τ}, (2.3)

and η (τ) := min {τ, ϕ (τ)} , then all solutions of Eq (1.1) oscillate.

Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution z on [τ0,∞)T. Without loss
of generality, we let z(τ) > 0 and z(ϕ(τ)) > 0 for τ ∈ [τ0,∞)T. By using Lemma 2.1, there exists
τ1 ∈ (τ0,∞)T such that for τ ≥ τ1,

z∆(τ) > 0,
[ z
R

]∆

(τ) < 0, z (τ) ≥
[
r

1
γ z∆R

]
(τ) , and

[
r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) < 0. (2.4)

Let

w(τ) :=
r (τ)

(
z∆ (τ)

)γ
zγ (τ)

. (2.5)

It follows that

w∆(τ) =
1

zγ (τ)

[
r
(
z∆

)γ]∆

(τ) −
(zγ)∆ (τ)

zγ(τ)zγ(σ(τ))

[
r
(
z∆

)γ]σ
(τ)

(1.1)
= −q(τ)

(
z (ϕ (τ))

z (τ)

)γ
−

(zγ)∆ (τ)
zγ(τ)

wσ (τ) .
(2.6)

Pötzsche chain rule application yields

(zγ)∆ (τ)
zγ(τ)

≥


γ

(
zσ (τ)
z(τ)

)γ z∆(τ)
zσ (τ)

, 0 < γ ≤ 1

γ
zσ (τ)
z(τ)

z∆(τ)
zσ (τ)

, γ ≥ 1

(2.4)
≥ γr−

1
γ (τ)

r−
1
γ z∆

z

σ (τ)

= γr−
1
γ (τ) (wσ (τ))

1
γ .

Hence,

w∆(τ) ≤ −q(τ)
(
z (ϕ (τ))

z (τ)

)γ
− γr−

1
γ (τ) (wσ (τ))1+ 1

γ .

By using the fact that
[ z
R

]∆

(τ) < 0, we get for τ ≥ τ1,

w∆(τ) ≤ −q(τ)
(
R (η (τ))

R (τ)

)γ
− γr−

1
γ (τ) (wσ (τ))1+ 1

γ . (2.7)
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From the definitions of l and A, we obtain that, for any ε ∈ (0, 1), there exists a τ2 ∈ [τ1,∞)T such that,
for τ ∈ [τ2,∞)T,

R (τ)
Rσ (τ)

≥ εl and r
1
γ (τ) R (τ) Rγ (η (τ)) q (τ) ≥ εA, (2.8)

and
Rγ (τ) wσ (τ) ≥ εW∗ (2.9)

where
W∗ := lim inf

τ→∞
Rγ (τ) wσ (τ) , 0 ≤ W∗ ≤ 1 (2.10)

due to (2.4) and (2.5). Therefore, (2.7) becomes

w∆(τ) ≤ −
εAr−

1
γ (τ)

Rγ+1 (τ)
−
γr−

1
γ (τ)

Rγ+1 (τ)
(εW∗)1+ 1

γ

≤ −

[
εA
γ

+ (εW∗)1+ 1
γ

]
γr−

1
γ (τ)

Rγ+1 (τ)
. (2.11)

Applying the Pötzsche chain rule, we obtain[
−1
Rγ

]∆

(τ) ≤
γr−

1
γ (τ)

Rγ+1 (τ)
. (2.12)

Substituting (2.12) into (2.11), we have

w∆(τ) ≤ −
[
εA
γ

+ (εW∗)1+ 1
γ

] (
−1

Rγ (τ)

)∆

.

Integrating from σ (τ) to v, we get

w (v) − wσ (τ) ≤ −
[
εA
γ

+ (εW∗)1+ 1
γ

] (
1

Rγσ (τ)
−

1
Rγ (v)

)
.

Due to w > 0 and letting v→ ∞, we see

−wσ (τ) ≤ −
[
εA
γ

+ (εW∗)1+ 1
γ

] (
1

Rγσ (τ)

)
.

Therefore,
εA ≤ γRγσ (τ) wσ (τ) − γ (εW∗)1+ 1

γ .

By using (2.8), we achieve
εA ≤

γ

(εl)γ
Rγ (τ) wσ (τ) − γ (εW∗)1+ 1

γ .

Taking the lim inf of both sides as τ→ ∞, we obtain

εA ≤
γ

(εl)γ
W∗ − γ (εW∗)1+ 1

γ .
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Since ε is arbitrary, we arrive at

A ≤
γ

lγ
W∗ − γW

1+ 1
γ

∗ .

Let
Y = γ, X =

γ

lγ
, and U = W∗.

By the inequality

XU − YU1+ 1
γ ≤

Xγ+1

Yγ

γγ

(γ + 1)γ+1 , X,Y > 0. (2.13)

Hence,

A ≤
1

lγ(γ+1)

(
γ

γ + 1

)γ+1

,

which gives us the contradiction in (2.2). This completes the proof. �

Motivated by Theorem 2.1, we can prove the following result, which is the Kneser-type oscillation
criterion for Eq (1.1) in the case when r∆ ≥ 0 on [τ0,∞)T.

Corollary 2.1. Let r∆ ≥ 0 on [τ0,∞)T. If l∗ := lim infτ→∞
τ

σ (τ)
> 0 and

B := lim inf
τ→∞

τηγ (τ) q (τ)
r (τ)

>
1

lγ(γ+1)
∗

(
γ

γ + 1

)γ+1

, (2.14)

where η (τ) := min {τ, ϕ (τ)}, then all solutions of Eq. (1.1) oscillate.

Proof. Assume to the contrary that Eq (1.1) has a nonoscillatory solution z on [τ0,∞)T. Without loss
of generality, we let z(τ) > 0 and z(ϕ(τ)) > 0 for τ ∈ [τ0,∞)T. As shown in the proof of Theorem 2.1,
we have

w∆(τ) ≤ −q(τ)
(
z (ϕ(τ))

z (τ)

)γ
− γr−

1
γ (τ) (wσ (τ))1+ 1

γ ,

where w is defined as in (2.5). By using [21, Lemma 2.2], there exists τ1 ∈ (τ0,∞)T such that

z∆(τ) > 0,
[

z (τ)
τ − τ0

]∆

< 0, and
[
r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) < 0 for τ ≥ τ1. (2.15)

Assume κ ∈ (0, 1) is arbitrary. We have from (2.15) that there is a τκ ∈ [τ1,∞)T such that for τ ∈
[τκ,∞)T,

w∆(τ) ≤ −κq(τ)
(
ϕ (τ)
τ

)γ
− γr−

1
γ (τ) (wσ (τ))1+ 1

γ . (2.16)

Now, for any ε ∈ (0, 1), there exists a τ2 ∈ [τ1,∞)T such that, for τ ∈ [τ2,∞)T,

τγwσ (τ)
r (τ)

≥ εW∗,
τ

σ (τ)
≥ εl∗, and

τϕγ (τ) c (τ)
r (τ)

≥ εB, (2.17)

where
W∗ := lim inf

τ→∞

τγwσ (τ)
r (τ)

, 0 ≤ W∗ ≤ 1. (2.18)
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Hence,

w∆(τ) ≤ −εκB
r (τ)
τγ+1 −

γr (τ)
τγ+1

(εW∗)1+ 1
γ

= −
γr (τ)
τγ+1

[
εκB
γ

+ (εW∗)1+ 1
γ

]
≤ −

γr (τ)
τγ+1

[
εκB
γ

+ (εW∗)1+ 1
γ

]
. (2.19)

Applying the Pötzsche chain rule, we obtain[
−1
τγ

]∆

≤
γ

τγ+1 . (2.20)

Substituting (2.20) into (2.19), we have

w∆(τ) ≤ −r (τ)
[
εκB
γ

+ (εW∗)1+ 1
γ

] [
−1
τγ

]∆

.

Integrating from σ (τ) to v, we get

w (v) − wσ (τ) ≤ −
[
εκB
γ

+ (εW∗)1+ 1
γ

] ∫ v

σ(τ)
r (ω)

[
−1
ωγ

]∆

∆ω.

Due to r∆ ≥ 0 and w > 0, and letting v→ ∞, we see

−wσ (τ) ≤ −
r (τ)
σγ (τ)

[
εκB
γ

+ (εW∗)1+ 1
γ

]
.

Therefore,

εκB ≤ γ
σγ (τ) wσ (τ)

r (τ)
− γ (εW∗)1+ 1

γ .

By using (2.17), we obtain

εκB ≤
γ

(εl∗)γ
τγwσ (τ)

r (τ)
− γ (εW∗)1+ 1

γ .

Taking the lim inf of both sides as τ→ ∞, we obtain

εκB ≤
γ

(εl∗)γ
W∗ − γ (εW∗)1+ 1

γ .

Since ε and κ are arbitrary, we arrive at

B ≤
γ

lγ∗
W∗ − γ (W∗)1+ 1

γ .

Let
Y = γ, X =

γ

lγ∗
, and U = W∗.

By the inequality (2.13), we have

B ≤
1

lγ(γ+1)
∗

(
γ

γ + 1

)γ+1

,

which gives us the contradiction in (2.14). This completes the proof. �
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3. Examples

The applications of the theoretical results presented are illustrated through the following examples:

Example 3.1. The Euler dynamic equations[
r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) +
q0

r
1
γ (τ)Rγ+1(τ)

|z (τ)|γ−1 z (τ) = 0

and [
r
∣∣∣z∆

∣∣∣γ−1
z∆

]∆

(τ) +
q0

r
1
γ (τ)Rγ+1(τ)

|z (σ (τ))|γ−1 z (σ (τ)) = 0,

are oscillatory if q0 >
1

lγ(γ+1)

(
γ

γ + 1

)γ+1

by using Theorem 2.1. This condition is known to be the

optimal one for the second-order Euler differential equation[
r |z′|γ−1 z′

]′
(τ) +

q0

r
1
γ (τ)Rγ+1(τ)

|z (τ)|γ−1 z (τ) = 0.

Example 3.2. Consider a second-order half-linear delay dynamic equation for τ ∈ [τ0,∞)T,[
τ2

(
z∆(τ)

)3
]∆

+
q0

64l12τϕ(τ)
z3 (ϕ (τ)) = 0, (3.1)

where q0 > 0 is a constant and ϕ (τ) ≤ τ for τ ∈ [τ0,∞)T. It is evident that (1.2) holds since∫ ∞

τ0

∆ω

r
1
γ (ω)

=

∫ ∞

τ0

∆ω
3√
ω2

= ∞,

by [4, Example 5.60]. Also, by the Pötzsche chain rule, we have

R (τ) =

∫ τ

τ0

∆ω
3√
ω2
≥ 3

∫ τ

τ0

(
3√ω

)∆
∆ω = 3

(
3√τ − 3

√
τ0

)
,

and so,

lim inf
τ→∞

r
1
γ (τ) R (τ) Rγ (η (τ)) q (τ) =

81q0

64l12 lim inf
τ→∞

(
1 − 3

√
τ0

τ

) (
1 − 3

√
τ0

ϕ (τ)

)
=

81q0

64l12 .

Then, by applying Theorem 2.1, all solutions of Eq (3.1) oscillate if q0 >
1
4
.

Example 3.3. Consider a second-order half-linear functional advanced dynamic equation for τ ∈
[τ0,∞)T,  3

√(
z∆(τ)

)5

σ (τ)


∆

+ q0
σ (τ)

4
3√
τ8

3
√

z(ϕ(τ)) = 0, (3.2)
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where q0 > 0 is a constant and ϕ (τ) ≥ τ for τ ∈ [τ0,∞)T. It is evident that (1.2) holds since, by the
Pötzsche chain rule, we have

R (τ) =

∫ τ

τ0

σ (ω) ∆ω ≥
1
2

∫ τ

τ0

(
ω2

)∆
∆ω =

1
2

(
τ2 − τ2

0

)
.

Also,

lim inf
τ→∞

r
1
γ (τ) R (τ) Rγ (η (τ)) q (τ) =

q0

4
lim inf
τ→∞

(
1 −

(
τ0

τ

)2
)

3

√
1 −

(
τ0

τ

)2
=

q0

4
.

Then, by applying Theorem 2.1, all solutions of Eq (3.2) oscillate if q0 >
1

9√
64l4

.

Example 3.4. Consider a second-order half-linear functional dynamic equation for τ ∈ [τ0,∞)T, 4√τ
z∆(τ)√∣∣∣z∆(τ)

∣∣∣

∆

+
q0

3
4√
τ3

√
3η (τ)

z(ϕ(τ))√
|z(ϕ(τ))|

= 0 (3.3)

where q0 > 0 is a constant. It is evident that (1.2) holds since∫ ∞

τ0

∆ω

r
1
γ (ω)

=

∫ ∞

τ0

∆ω
√
ω

= ∞,

by [4, Example 5.60]. Also,

lim inf
τ→∞

τηγ (τ) q (τ)
r (τ)

=
q0

3
√

3
.

Hence, by Corollary 2.1, all solutions of Eq (3.3) oscillate if q0 >
1

4
√

l3
∗

.

4. Discussion and conclusions

This research paper introduces a criterion for Kneser-type oscillations that can be applied to (1.1)
in both cases, ϕ (τ) ≤ τ and ϕ (τ) ≥ τ, and on any arbitrary time scale. Also, our results expand related
contributions to second-order differential equations; see the details below:

(1) Criterion (2.14) becomes (1.4) in the case when T = R, γ = 1, r (τ) = τ, and ϕ (τ) = τ;
(2) Criterion (2.14) becomes (1.9) in the case where T = R, r (τ) = τ, and ϕ (τ) = τ;
(3) Criterion (2.2) becomes (1.7) supposing that T = R, γ = 1, and ϕ (τ) = τ;
(4) Criterion (2.2) becomes (1.11) in the case when T = R and ϕ (τ) = τ.

Remark 4.1. It would be valuable to propose a methodology for examining the Kneser-type oscillation
criterion (1.1) under the assumption that ∫ ∞

τ0

∆ω

r
1
γ (ω)

< ∞.
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