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Abstract: We propose a new Riemannian gradient descent method for computing spherical area-
preserving mappings of topological spheres using a Riemannian retraction-based framework with
theoretically guaranteed convergence. The objective function is based on the stretch energy functional,
and the minimization is constrained on a power manifold of unit spheres embedded in three-
dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the
accuracy and stability of the proposed framework. Comparisons with three existing state-of-the-art
methods for computing area-preserving mappings demonstrate that our algorithm is both competitive
and more efficient. Finally, we present a concrete application to the problem of landmark-aligned
surface registration of two brain models.
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1. Introduction

This paper proposes a new method for computing spherical area-preserving mappings of topological
spheres using a Riemannian optimization framework.

Area-preserving mappings can serve as parameterization of surfaces and have been applied to the
field of computer graphics and medical imaging [6]. State-of-the-art methods for the computation of
area-preserving parameterizations include diffusion-based methods [8], optimal mass transportation-
based methods [18], and nonlinear optimization methods [20]. It is worth noting that most previous
works consider area-preserving parameterization from simply connected open surfaces to planar
regions. For the spherical area-preserving mapping of genus-zero closed surfaces, recently developed
methods include the adaptive area-preserving parameterization method [7], the spherical optimal
transportation mapping [10], and the stretch energy minimization method [21].
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Riemannian optimization generalizes unconstrained, continuous optimization (defined on Euclidean
space) following the same principle that Riemannian geometry is a generalization of Euclidean space.
In traditional optimization methods, nonlinear matrix manifolds rely on the Euclidean vector space
structure. In contrast, in the Riemannian optimization framework, algorithms and convergence analysis
are formulated based on the language of differential geometry, and numerical linear algebra techniques
are then used for implementation. Riemannian optimization focuses on matrix manifolds, which are
manifolds in the sense of classical Riemannian geometry that admit a natural representation of their
elements in the form of matrices. Retraction mappings play a vital role in this framework, as they
are used to turn objective functions defined in Euclidean space into functions defined on an abstract
manifold so that constraints are taken into account explicitly. A vast body of literature on the theory and
implementation of Riemannian optimization now exists. Some of the earliest references for this field,
especially for line-search methods, go back to Luenberger [15], Gabay [14], and Udrişte [19]. More
recent literature that encompasses the findings and developments of the last three decades is [2, 5, 12].

Our Riemannian gradient descent (RGD) method involves classical components from
computational geometry (simplicial surfaces and mappings) and Riemannian optimization (line search,
retractions, and Riemannian gradients). To the best of the authors’ knowledge, this is the first time this
approach has been used in computational geometry. In this paper, we minimize the normalized stretch
energy [20] for simplicial mappings subject to the constraint that the image of the mapping belongs to
a power manifold of n unit spheres embedded in R3.

1.1. Contributions

In this paper, we propose an RGD method to compute spherical area-preserving mappings on a
power manifold of unit spheres. In particular, the main contributions are as follows:

(i) We combine the tools from the Riemannian optimization framework and the components from
computational geometry to propose an RGD method for computing spherical area-preserving
mappings of topological spheres.

(ii) We explore two different line-search strategies: one using MATLAB’s fminbnd, and the other
using the quadratic/cubic interpolant approximation from [11, §6.3.2].

(iii) We conduct extensive numerical experiments on several mesh models to demonstrate the accuracy
and efficiency of the algorithm.

(iv) We demonstrate the competitiveness and efficiency of our algorithm over three state-of-the-art
methods for computing area-preserving mappings.

(v) We show that our algorithm is stable with respect to small perturbations in the initial mesh model.

(vi) We apply the algorithm to the concrete application of landmark-aligned surface registration
between two human brain models.

1.2. Outline of the paper

The remaining part of this paper is organized as follows. Section 2 introduces the main concepts
on simplicial surfaces and mappings and presents the formulation of the objective function. Section 3
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provides some preliminaries on the Riemannian optimization framework, briefly recalls the geometry
of the unit sphere, and then describes the tools needed to perform optimization on the power manifold.
Section 4 is about the RGD method and reports known convergence results. Section 5 discusses the
extensive numerical experiments to evaluate our algorithm in terms of accuracy and efficiency, and
provides a concrete application. Finally, we wrap our paper with conclusions and a future outlook
in Section 6. The appendices contain other details about the calculations of the area of the simplicial
mapping, the Hessian of the objective function, and the line-search procedure used in the RGD method.

1.3. Notation

In this section, we list the notations and symbols adopted in order of appearance in the paper.
Symbols specific to a particular section are usually not included in this list.

τ A triangular face
|τ| The area of the triangle τ
M Simplicial surface
V(M) Set of vertices ofM
F (M) Set of faces ofM
E(M) Set of edges ofM
vi, v j, vk Vertices of a triangular face
f Simplicial mapping
f Representative matrix of f
fℓ Coordinates of a vertex f (vℓ)
vec Column-stacking vectorization operator
S 2 Unit sphere in R3(
S 2)n Power manifold of n unit spheres in R3

EA( f ) The authalic energy
ES ( f ) The stretch energy
LS ( f ) Weighted Laplacian matrix
ωS Modified cotangent weights
A( f ) Area of the image of f
E( f ) The normalized stretch energy
TxS 2 Tangent space to S 2 at x
PTxS 2 Orthogonal projector onto the tangent space to S 2 at x
P

Tfℓ

(
S 2
)n Orthogonal projector onto the tangent space to

(
S 2)n at fℓ

R Retraction mapping
∇E( f ) Euclidean gradient of E( f )
grad E( f ) Riemannian gradient of E( f )
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2. Simplicial surfaces, mappings, and objective function

We introduce the simplicial surfaces and mappings in subsection 2.1 and the objective function in
subsection 2.2.

2.1. Simplicial surfaces and mappings

A simplicial surfaceM is the underlying set of a simplicial 2-complex K(M) = F (M) ∪ E(M) ∪
V(M) composed of vertices

V(M) =
{
vℓ =

(
v1
ℓ , v

2
ℓ , v

2
ℓ

)⊤
∈ R3

}n

ℓ=1
,

oriented triangular faces

F (M) =
{
τℓ = [viℓ , v jℓ , vkℓ] | viℓ , v jℓ , vkℓ ∈ V(M)

}m

ℓ=1
,

and undirected edges

E(M) =
{
[vi, v j] | [vi, v j, vk] ∈ F (M) for some vk ∈ V(M)

}
.

A simplicial mapping f : M→ R3 is a particular type of piecewise affine mapping with the restriction
mapping f |τ being affine, for every τ ∈ F (M). We denote

fℓ B f (vℓ) =
(

f 1
ℓ , f 2

ℓ , f 3
ℓ

)⊤
, for every vℓ ∈ V(M).

The mapping f can be represented as a matrix

f =


f⊤1
...

f⊤n

 =


f 1
1 f 2

1 f 3
1

...
...
...

f 1
n f 2

n f 3
n

 C [
f1 f2 f3

]
, (2.1)

or a vector

vec(f) =


f1

f2

f3

 .
2.2. The objective function

The authalic energy for simplicial mappings f : M→ R3 is defined as [20]

EA( f ) = ES ( f ) −A( f ),

where ES is the stretch energy defined as

ES ( f ) =
1
2

vec(f)⊤(I3 ⊗ LS ( f )) vec(f),
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where I3 is the identity matrix of size 3-by-3, ⊗ denotes the Kronecker product, and LS ( f ) is the
weighted Laplacian matrix LS ( f ). The latter is defined by

[LS ( f )]i, j =


−

∑
[vi,v j,vk]∈F (M)[ωS ( f )]i, j,k if [vi, v j] ∈ E(M),

−
∑
ℓ,i[LS ( f )]i,ℓ if j = i,

0 otherwise,

(2.2)

in which ωS ( f ) is the modified cotangent weight defined as

[ωS ( f )]i, j,k =
cot(θki, j( f )) | f ([vi, v j, vk])|

2|[vi, v j, vk]|
, (2.3)

with θki, j( f ) being the angle opposite to the edge f ([vi, v j]) at the point f (vk) on the image f (M), as
illustrated in Figure 1.

θki, j( f ) θℓj,i( f )

fi

f j

fℓfk

Figure 1. An illustration of the cotangent weight defined on the image of f .

It is proved that EA( f ) ⩾ 0 and the equality holds if and only if f preserves the area [20, Corollary
3.4]. Due to the optimization process, the image area A( f ) is not constant, hence we introduce a
prefactor |M|/A( f ) and define the normalized stretch energy as

E( f ) =
|M|

A( f )
ES ( f ). (2.4)

To perform numerical optimization via the RGD method, we need to compute the Euclidean gradient.
By applying the formula ∇ES ( f ) = 2 (I3 ⊗ LS ( f )) vec(f) from [20, (3.6)], the gradient of E( f ) can be
formulated as

∇E( f ) = ∇
(
|M|

A( f )
ES ( f )

)
=
|M|

A( f )
∇ES ( f ) + ES ( f )∇

|M|

A( f )

=
2|M|
A( f )

(I3 ⊗ LS ( f )) vec(f) −
|M|ES ( f )
A( f )2 ∇A( f ). (2.5)

The following proposition gives an explicit formula for calculating ∇A( f ).

Proposition 2.1 (Formula for ∇A). The gradient ofA can be explicitly formulated as

∇A( f |τ) =
|τ|

A( f |τ)
vec(LS ( f |τ) fτ). (2.6)
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Proof. By applying the explicit formulas ES ( f |τ) =
A( f |τ)2

|τ|
and ∇ES ( f |τ) = 2 vec(LS ( f |τ) fτ) from [20],

the chain rule yields

2 vec(LS ( f |τ) fτ) = ∇ES ( f |τ) =
2A( f |τ)
|τ|

∇A( f |τ),

which is equivalent to (2.6). □

Other details about the calculation ofA( f ) are reported in Appendix A.

3. Riemannian optimization framework and geometry

The Riemannian optimization framework [2,5,12] solves constrained optimization problems where
the constraints have a geometric nature. This approach utilizes the underlying geometric structure
of the problems, which allows the constraints to be taken explicitly into account. The optimization
variables are constrained to a smooth manifold, and the optimization is performed on that manifold.
Typically, the manifolds considered are matrix manifolds, meaning there is a natural representation
of their elements in matrix form. In particular, in this paper, the problem is formulated on a power
manifold of n unit spheres embedded in R3, and we use the RGD method for minimizing the cost
function (2.4) on this power manifold.

Traditional optimization methods rely on the Euclidean vector space structure. For instance, the
steepest descent method for minimizing a function g : Rn → R updates the current iterate xk by moving
in the direction dk of the anti-gradient of g, by a step size αk chosen according to an appropriate line-
search rule. However, on a nonlinear manifold, the vector addition xk + αkdk does not make sense
in general due to the manifold curvature. We need the notion of tangent vectors and their length to
generalize the steepest descent direction to a Riemannian manifold. The retraction mapping is also a
vital tool in the Riemannian optimization framework. It is a mapping from the tangent space to the
manifold, used to transform objective functions defined in Euclidean space into functions defined on a
manifold while explicitly taking the constraints into account.

Similarly to the line-search method in Euclidean space, a line-search method in the Riemannian
framework determines at a current iterate xk on a manifold M a search direction ξ on the tangent space
TxM. The next iterate xk+1 is then determined by a line search along a curve α 7→ Rx(αξ) where
Rx : TxM → M is the retraction mapping. The procedure is then repeated for xk+1 taking the role
of xk. Similarly to optimization methods in Euclidean space, search directions can be the negative
of the Riemannian gradient, leading to the Riemannian steepest descent method. Other choices of
search directions lead to other methods, e.g., Riemannian versions of the trust-region method [1] or
BFGS [17].

In what follows, we introduce some fundamental geometry concepts used in Riemannian
optimization, which are necessary to formulate the RGD method for our problems. We first briefly
recall the geometry of the unit sphere S 2 embedded in R3, and then we switch to the power manifold
of n unit spheres, denoted by

(
S 2)n.

3.1. Geometry of the unit sphere S 2

The unit sphere S 2 is a Riemannian submanifold of R3 defined as

S 2 = {x ∈ R3 : x⊤x = 1}.
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The Riemannian metric (inner product) on the sphere is inherited from the embedding space R3, i.e.,

⟨ξ,η⟩x = ξ
⊤η, ξ, η ∈ TxS 2,

where TxS 2 is the tangent space to S 2 at x ∈ S 2, defined as the set of all vectors orthogonal to x in R3,
i.e.,

TxS 2 = {z ∈ R3 : x⊤z = 0}.

The projector PTxS 2 from R3 onto the tangent space TxS 2 is a mapping PTxS 2 : R3 → TxS 2, defined by

PTxS 2(z) = (I3 − xx⊤) z. (3.1)

In the following, points on the unit sphere are denoted by fℓ (the vertices of the simplicial mapping f ),
and tangent vectors are represented by ξℓ.

3.2. Geometry of the power manifold
(
S 2)n

We aim to minimize the function E( f ) = E(f1, . . . , fn) (2.4), where each fℓ, ℓ = 1, . . . , n, lives on the
same manifold S 2. This leads us to consider the power manifold of n unit spheres(

S 2)n
= S 2 × S 2 × · · · S 2︸              ︷︷              ︸

n times

,

with the metric of S 2 extended elementwise. In the remaining part of this section, we present the tools
from Riemannian geometry needed to generalize gradient descent to this manifold. The projector onto
the tangent space is used to compute the Riemannian gradient, as it will be explained in Section 4. The
projection onto the power manifold turns points of Rn×3 into points of

(
S 2)n. Finally, the retraction

turns an objective function defined on Rn×3 into an objective function defined on the manifold
(
S 2)n.

3.2.1. Projection onto the tangent space

As seen above, the projector onto the tangent space to the unit sphere at the point x is given by (3.1).
Here, the points are denoted by fℓ ∈ R3, ℓ = 1, . . . , n, so we write

PTfℓS
2 = I3 − fℓf⊤ℓ .

It clearly changes for every vertex fℓ. The projector from Rn×3 onto the tangent space at f to the power
manifold

(
S 2)n is a mapping

P
Tf
(

S 2
)n : Rn×3 → Tf

(
S 2)n
,

and can be represented by a block diagonal matrix of size 3n × 3n, i.e.,

P
Tf
(

S 2
)n B blkdiag

(
PTf1 S 2 ,PTf2 S 2 , . . . ,PTfn S 2

)
=


PTf1 S 2

PTf2 S 2

. . .

PTfn S 2

 . (3.2)

In practice, we never actually create this matrix. Instead, we implement an efficient version using
vectorized operations (MATLAB’s bsxfun).
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3.2.2. Projection onto
(
S 2)n

The projection of a single vertex fℓ from R3 to the unit sphere S 2 is given by the normalization

f̃ℓ =
fℓ
∥fℓ∥2
.

Hence, the projection of the whole of f onto the power manifold
(
S 2)n is given by

P(
S 2
)n : Rn×3 →

(
S 2)n
,

defined by

f 7→ f̃ B diag
(

1
∥f1∥2
,

1
∥f2∥2
, . . . ,

1
∥fn∥2

) [
f1 f2 · · · fn

]⊤
.

Again, this representative matrix is only shown for illustrative purposes; in the actual implementation,
we use row-wise normalization of f.

3.2.3. Retraction onto
(
S 2)n

A retraction is a mapping from the tangent space to the manifold used to turn tangent vectors into
points on the manifold and functions defined on the manifold into functions defined on the tangent
space; see [2, 3] for more details.

The retraction of a single tangent vector ξℓ from TfℓS
2 to S 2 is a mapping Rfℓ : TfℓS

2 → S 2, defined
by [2, Example 4.1.1]

Rfℓ(ξℓ) =
fℓ + ξℓ
∥fℓ + ξℓ∥

.

Figure 2 provides an illustration of the retraction from TfℓS
2 to S 2.

Rfℓ(ξℓ)

TfℓS
2

S2

ξℓ
fℓ

Figure 2. An illustration of the retraction mapping on the unit sphere S 2.

For the power manifold
(
S 2)n, the retraction of all the tangent vectors ξℓ, ℓ = 1, . . . , n, is a mapping

Rf : Tf
(
S 2)n

→
(
S 2)n
,

AIMS Mathematics Volume 9, Issue 7, 19414–19445.



19422

defined by [
ξ1 · · · ξn

]⊤
7→ diag

(
1

∥f1 + ξ1∥2
, . . . ,

1
∥fn + ξn∥2

) [
f1 + ξ1 · · · fn + ξn

]⊤
. (3.3)

Again, this retraction is implemented by row-wise normalization of f + ξ.

4. Riemannian gradient descent method

We are now in the position of introducing the RGD method. In this section, we will first provide
the formula for the Riemannian gradient on the power manifold

(
S 2)n. Then, we will explain the RGD

method by providing its pseudocode, and finally, we will recall the known theoretical results that ensure
the convergence of RGD.

The Riemannian gradient of the objective function E in (2.4) is given by the projection onto Tf
(
S 2)n

of the Euclidean gradient of E, namely,

grad E( f ) = P
Tf
(

S 2
)n(∇E( f )), (4.1)

where ∇E is explicitly formulated in (2.5). This is always the case for embedded submanifolds; see [2,
§3.6.1]. Figure 3 illustrates the difference between the Euclidean and the Riemannian gradient for one
point on the unit sphere.

TfℓS
2

S2

∇E

gradEfℓ

Figure 3. Illustration of the difference between Euclidean and Riemannian gradient. The
dashed green line represents the projection step.

Given an initial iterate f (0) ∈
(
S 2)n, the RGD algorithm generates a sequence of iterates { f (k)} as

follows. At each iteration k = 0, 1, 2, . . ., it chooses a search direction d(k) = − grad E( f (k)) in the
tangent space Tf(k)

(
S 2)n such that the sequence {d(k)} is gradient related. Then, the new point f (k+1) is

chosen such that it satisfies the sufficient decrease condition

E( f (k)) − E( f (k+1)) ⩾ c
(
E( f (k)) − E

(
Rf(k)(αkd(k))

))
, (4.2)
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where c > 0 and αk is the step size for the given d(k).
The RGD method on the power manifold

(
S 2)n is summarized in Algorithm 1. It has been adapted

from [2, p. 63]. In practice, in our numerical experiments of Section 5, the initial mapping f(0) ∈
(
S 2)n

is computed by applying the fixed-point iteration (FPI) method of [21] until the first increase in energy
is detected; see subsection 5.3, Algorithm 2. The line-search procedure used in line 7 is described in
detail in Appendix C.

Algorithm 1: The RGD method on
(
S 2)n.

1 Given objective function E, power manifold
(
S 2)n, initial iterate f(0) ∈

(
S 2)n, projector P

Tf
(

S 2
)n

from Rn×3 to Tf
(
S 2)n, retraction Rf from Tf

(
S 2)n to

(
S 2)n;

Result: Sequence of iterates { f (k)}.
2 k ← 0;
3 while f (k) does not sufficiently minimize E do
4 Compute the Euclidean gradient of the objective function ∇E( f (k)) (2.5);
5 Compute the Riemannian gradient as grad E( f (k)) = P

Tf(k)

(
S 2
)n
(
∇E( f (k))

)
;

6 Choose the anti-gradient direction d(k) = − grad E( f (k));
7 Use a line-search procedure to compute a step size αk > 0 that satisfies the sufficient

decrease condition (4.2); see Appendix C;
8 Set f(k+1) = Rf(k)(αkd(k));
9 k ← k + 1;

10 end while

Known convergence results

The RGD method has theoretically guaranteed convergence. For the reader’s convenience, we
report the two main results on the convergence of RGD. The first result is about the convergence of
Algorithm 1 to critical points of the objective function. The second result is about the convergence of
RGD to a local minimizer with a line-search technique.

Theorem 4.1 ( [2, Theorem 4.3.1]). Let { f (k)} be an infinite sequence of iterates generated by
Algorithm 1. Then, every accumulation point f (∗) of { f (k)} is a critical point of the cost function E.

Remark 4.1. We are implicitly saying that a sequence can have more than one accumulation point;
for example, from a sequence { f (k)}, we may extract two subsequences such that they have two distinct
accumulation points.

The proof of Theorem 4.1 can be done by contradiction, but it remains pretty technical, so we
refer the interested reader to [2, p. 65]. It should be pointed out that Theorem 4.1 only guarantees the
convergence to critical points. It does not tell us anything about their nature, i.e., whether the critical
points are local minimizers, local maximizers, or saddle points. However, if the smallest eigenvalue of
the Hessian of E at f (∗), λH,min > 0, then the critical point f (∗) is a local minimizer of E. Under this
assumption (i.e., that λH,min > 0), [2, §4.5.2] gives an asymptotic convergence bound for Algorithm 1.
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Indeed, the following result uses the smallest and largest eigenvalues of the Hessian of the objective
function at a critical point f (∗).

Theorem 4.2 ( [2, Theorem 4.5.6]). Let { f (k)} be an infinite sequence of iterates generated by
Algorithm 1, converging to a point f (∗). (By Theorem 4.1, f (∗) is a critical point of E.) Let
λH,min and λH,max be the smallest and largest eigenvalues of the Hessian of E at f (∗). Assume
that λH,min > 0 (hence f (∗) is a local minimizer of E). Then, given r in the interval (r∗, 1) with
r∗ = 1 −min

(
2σᾱλH,min, 4σ(1 − σ)β λH,min

λH,max

)
, there exists an integer K ⩾ 0 such that

E( f (k+1)) − E( f (∗)) ⩽ (r + (1 − r)(1 − c))
(
E( f (k)) − E( f (∗))

)
, (4.3)

for all k ⩾ K, where c is the parameter in (4.2) of Algorithm 1. Note that 0 < r∗ < 1 since β, σ ∈ (0, 1).

As noted in [2, p. 71], in typical cases of Algorithm 1, the constant c in the descent condition (4.2)
equals 1, hence (4.3) reduces to E( f (k+1)) − E( f (∗)) ⩽ r

(
E( f (k)) − E( f (∗))

)
.

5. Numerical experiments

In this section, we demonstrate the convergence behavior of the RGD method using twelve mesh
models and two line-search techniques. We present numerical results in tables and provide convergence
plots. The computational time cost of the RGD in every table does not include the time cost for the
initial mapping by the FPI method. In subsection 5.2, we introduce a correction for bijectivity, which
helps to unfold the folding triangles. We then compare RGD to the FPI method of [21] in subsection 5.3
and the adaptive area-preserving parameterization method of [7] in subsection 5.4. In subsection 5.5,
we compare our RGD to the spherical optimal transportation mapping proposed by Cui et al. [10].
Then, in subsection 5.6, we show that the algorithm is robust to noise by starting the algorithm from an
initial guess with small perturbations. Finally, in subsection 5.7, we apply our algorithm to the concrete
application of surface registration of two brain models.

We conducted all our experiments on a laptop Lenovo ThinkPad T460s, with Windows 10 Pro and
MATLAB R2021a installed, with Intel Core i7-6600 CPU, 20GB RAM, and Mesa Intel HD Graphics
520. The benchmark triangular mesh models used in our numerical experiments are shown in Figure 4,
arranged per increasing number of vertices and faces, from the top left to bottom right.

5.1. Convergence behavior of RGD

To provide the RGD method with a good initial mapping, we first apply the FPI method of [21],
described in subsection 5.3. Specifically, we apply the FPI until the first increase in energy occurs. We
adopted two different line-search strategies: one that uses MATLAB’s fminbnd and another that uses
the quadratic/cubic interpolant of [11, §6.3.2], described in Appendix C.

In all the experiments, we monitor the authalic energy EA( f ) B ES ( f )−A( f ) defined in subsection
2.2 instead of the normalized stretch energy (2.4) because when EA = 0, we know from the theory
that f is an area-preserving mapping. Strictly speaking, in practice, we never obtain a mapping that
exactly preserves the area, but we obtain a mapping that is area-distortion minimizing, since EA is
never identically zero. We also monitor the ratio between the standard deviation and the mean of the
area ratio. This quantity has been considered in [8]. Finally, the computational time is always reported
in seconds, and #Fs denotes the number of folding triangles.
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Model Name Right Hand David Head Cortical Surface Bull
# Faces 8,808 21,338 30,000 34,504
# Vertices 4,406 10,671 15,002 17,254

Model Name Bulldog Lion Statue Gargoyle Max Planck
# Faces 99,590 100,000 100,000 102,212
# Vertices 49,797 50,002 50,002 51,108

Model Name Bunny Chess King Art Statuette Bimba
# Faces 111,364 263,712 895,274 1,005,146
# Vertices 55,684 131,858 447,639 502,575

Figure 4. The benchmark triangular mesh models used in this paper.

AIMS Mathematics Volume 9, Issue 7, 19414–19445.
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Tables 1 and 2 report the numerical results for RGD for minimizing the normalized stretch energy
E, when run for a fixed maximum number of iterations (10 on the left and 100 on the right). Table 1
is for the RGD that uses the fminbnd line-search strategy, while Table 2 is for the RGD that uses the
quadratic/cubic interpolant from [11, §6.3.2]. Similarly to the tables, Figures 5 and 6 illustrate the
convergence behavior of RGD in the same setting when run for 100 iterations.

Table 1. RGD for minimizing the normalized stretch energy E. Line-search strategy:
fminbnd.

10 Iterations 100 Iterations

Model Name SD/Mean EA( f ) Time #Fs SD/Mean EA( f ) Time #Fs

Right Hand 0.1950 2.17 × 10−1 0.85 4 0.1459 1.28 × 10−1 9.37 2
David Head 0.0178 4.04 × 10−3 1.66 0 0.0156 3.05 × 10−3 14.95 0

Cortical Surface 0.0214 4.68 × 10−3 3.62 0 0.0200 4.15 × 10−3 32.40 0
Bull 0.1492 2.58 × 10−1 4.99 4 0.1380 2.31 × 10−1 43.27 1

Bulldog 0.0369 1.41 × 10−2 13.59 0 0.0343 1.27 × 10−2 136.63 0
Lion Statue 0.1935 4.77 × 10−1 16.83 0 0.1922 4.69 × 10−1 160.20 0
Gargoyle 0.0690 5.28 × 10−2 19.55 0 0.0653 4.84 × 10−2 192.62 0

Max Planck 0.0537 3.54 × 10−2 16.52 0 0.0525 3.38 × 10−2 161.01 0
Bunny 0.0417 2.18 × 10−2 20.59 0 0.0404 2.04 × 10−2 226.99 0

Chess King 0.0687 6.07 × 10−2 52.36 21 0.0639 5.14 × 10−2 518.18 17
Art Statuette 0.0408 2.14 × 10−2 140.59 0 0.0405 2.10 × 10−2 1 111.67 0
Bimba Statue 0.0514 3.31 × 10−2 270.63 1 0.0511 3.29 × 10−2 2 320.19 1

Table 2. RGD for minimizing the normalized stretch energy E. Line-search strategy:
quadratic/cubic approximation from [11, §6.3.2].

10 Iterations 100 Iterations

Model Name SD/Mean EA( f ) Time #Fs SD/Mean EA( f ) Time #Fs

Right Hand 0.1936 2.16 × 10−1 0.36 4 0.1204 9.40 × 10−2 4.07 1
David Head 0.0178 4.04 × 10−3 0.99 0 0.0156 3.04 × 10−3 9.16 0

Cortical Surface 0.0216 4.75 × 10−3 1.40 0 0.0200 3.72 × 10−3 16.01 0
Bull 0.1492 2.59 × 10−1 1.77 4 0.1348 2.19 × 10−1 18.89 1

Bulldog 0.0369 1.41 × 10−2 6.60 0 0.0343 1.27 × 10−2 61.93 0
Lion Statue 0.1935 4.77 × 10−1 7.75 0 0.1894 4.54 × 10−1 76.76 0
Gargoyle 0.0688 5.26 × 10−2 7.81 0 0.0646 4.76 × 10−2 80.52 0

Max Planck 0.0537 3.54 × 10−2 7.18 0 0.0525 3.39 × 10−2 75.60 0
Bunny 0.0417 2.18 × 10−2 8.30 0 0.0390 1.91 × 10−2 89.62 0

Chess King 0.0692 6.07 × 10−2 20.06 21 0.0647 5.23 × 10−2 207.47 17
Art Statuette 0.0408 2.14 × 10−2 57.71 0 0.0405 2.10 × 10−2 654.57 0
Bimba Statue 0.0514 3.31 × 10−2 70.83 1 0.0512 3.29 × 10−2 775.36 1
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Figure 5. Convergence of the authalic energy for the benchmark mesh models, with the RGD
method for minimizing the normalized stretch energy E. Line-search strategy: fminbnd.

Figure 6. Convergence of the authalic energy for the benchmark mesh models, with
the RGD method for minimizing the normalized stretch energy E. Line-search strategy:
quadratic/cubic approximation from [11, §6.3.2].
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A comparison of the computational times between the two line-search strategies shows that the
line-search strategy with a quadratic/cubic interpolant (Table 2) is much more efficient than the line-
search strategy that uses MATLAB’s fminbnd (Table 1). In many cases, the former even yields more
accurate results than the latter. This is particularly evident for the Art Statuette (1 111.67 s versus
654.57 s) and the Bimba Statue (2 320.19 s versus 775.36 s) mesh models. The numerical results show
that, in general, RGD can still decrease energy as the number of iterations increases.

Table 3 presents the results using a different stopping criterion instead of a fixed maximum number
of iterations. Specifically, we keep track of the following quantity

∆E(k)
A B

EA( f (k−1)) − EA( f (k))
EA( f (k−1))

,

which represents the relative improvement in the authalic energy EA( f ) between two successive
iterates, and we stop the RGD method if the value of ∆E(k)

A is smaller than 10−3.
It is apparent from Table 3 that RGD stops at different numbers of iterations for different mesh

models. Comparing with Table 2 above, it suggests that the improvement after doing more iterations
is not significant for a few mesh models, especially Lion Statue, Art Statuette, and Bimba Statue.
Table 3 also shows the values of the monitored quantities SD/Mean, EA( f ), and #Fs before and after
the bijectivity correction described in subsection 5.2. In all cases where the bijectivity correction
is applied, the number of folding triangles #Fs decreases or reduces to zero. Moreover, the post-
processing for bijectivity correction improves the SD/Mean value in all the cases. For the Right Hand
mesh model, the SD/Mean value even improves significantly from 0.2063 to 0.1071 before and after
the bijectivity correction. In one case (Gargoyle), the value of authalic energy EA( f ) also improves.

Table 3. RGD for minimizing the normalized stretch energy E. Line-search strategy:
quadratic/cubic approximation from [11, §6.3.2]. Stopping criterion: ∆E(k)

A ⩽ 10−3.

Before bijectivity correction After bijectivity correction

Model Name SD/Mean EA
(
f
)

#Fs SD/Mean EA
(
f
)

#Fs Time #Its

Right Hand 0.2063 8.01 × 10−2 3 0.1071 8.12 × 10−2 0 6.67 127
David Head 0.0123 1.87 × 10−3 0 ——————— 83.66 432

Cortical Surface 0.0187 4.23 × 10−3 0 ——————— 9.22 52
Bull 0.1520 2.37 × 10−1 11 0.1403 2.40 × 10−1 3 12.20 50

Bulldog 0.0351 1.31 × 10−2 0 ——————— 72.64 60
Lion Statue 0.1940 4.79 × 10−1 2 0.1938 4.79 × 10−1 0 2.63 2
Gargoyle 0.0704 5.17 × 10−2 3 0.0682 5.14 × 10−2 0 26.71 17

Max Planck 0.0464 3.54 × 10−2 0 ——————— 10.58 8
Bunny 0.0417 2.17 × 10−2 0 ——————— 20.77 13

Chess King 0.0715 5.17 × 10−2 43 0.0641 5.38 × 10−2 17 370.68 107
Art Statuette 0.0409 2.14 × 10−2 0 ——————— 31.53 3
Bimba Statue 0.0515 3.32 × 10−2 2 0.0514 3.32 × 10−2 0 19.24 2

Figure 7 shows the convergence behavior for the first three smallest mesh models considered,
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namely Right Hand, David Head, and Cortical Surface, when the algorithm is run for many more
iterations; here, 10 000 iterations. It shows that RGD keeps decreasing the authalic energy EA,
albeit very slowly. The values of SD/Mean are also improved for all three mesh models. The
corresponding numerical results are reported in Table 4; results for 100 iterations are also reported
for easier comparison.

Table 4. RGD for minimizing the normalized stretch energy E. Line-search strategy:
quadratic/cubic approximation from [11, §6.3.2]. Results for 10 000 iterations for the three
smallest mesh models considered.

100 Iterations 10 000 Iterations

Model Name SD/Mean EA( f ) Time #Fs SD/Mean EA( f ) Time #Fs

Right Hand 0.1204 9.40 × 10−2 4.07 1 0.0545 2.07 × 10−2 431.28 0
David Head 0.0156 3.04 × 10−3 9.16 0 0.0029 1.01 × 10−4 1 018.87 0

Cortical Surface 0.0200 3.72 × 10−3 16.01 0 0.0045 2.06 × 10−4 1 328.56 0

Figure 7. Convergence of the authalic energy for the three smallest benchmark mesh models,
with the RGD method for minimizing the normalized stretch energy E. Line-search strategy:
quadratic/cubic approximation from [11, §6.3.2]. 10 000 iterations.

We compute with MATLAB the eigenvalues of the Hessian matrix at the minimizer. Table 5 reports
on the smallest eigenvalue of the Hessian of the initial mapping (produced by the FPI method) and
eigenvalues of the Hessian of the mapping when the prescribed maximum number of RGD iterations is
achieved. The eigenvalues of the Hessian are computed by the MATLAB built-in function eigs with
the option smallestabs and the number of eigenvalues to compute being 2 000. We observe that the
Hessian eigenvalues are significantly closer to zero after running the RGD method, as we expected.
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Table 5. The smallest eigenvalue of the Hessian of the initial mapping given by FPI and after
10 000 iterations of RGD.

Smallest eigenvalue of the Hessian

Model Name After FPI After RGD

Right Hand −2.4429 × 100 −1.9013 × 10−1

David Head −1.8481 × 100 −2.8445 × 10−6

Cortical Surface −4.4940 × 10−1 −3.6768 × 10−3

Figure 8 displays the spherical mappings resulting from applying our RGD algorithm to the
benchmark mesh models considered, offering a qualitative insight into the goodness of the mappings
obtained.

Right Hand David Head Cortical Surface Bull

Bulldog Lion Statue Gargoyle Max Planck

Bunny Chess King Art Statuette Bimba

Figure 8. The resulting spherical mappings after running RGD.

AIMS Mathematics Volume 9, Issue 7, 19414–19445.



19431

5.2. Correction for bijectivity

The proposed RGD method does not guarantee the produced mapping is bijective. To remedy this
drawback, we introduce a post-processing method to ensure bijectivity in the mapping. This is achieved
by employing a modified version of the mean value coordinates, as described in [13].

Suppose we have a spherical mapping f : M → S 2 that may not be bijective. First, we map the
spherical image to the extended complex plane C = C ∪ {∞} by the stereographic projection

ΠS 2(x, y, z) =
x

1 − z
+ i

y
1 − z

. (5.1)

Denote the mapping h = ΠS 2 ◦ f and the complex-valued vector hi = h(vi), for vi ∈ V(M). The
folding triangular faces in the southern hemisphere are now mapped in D ⊂ C, which can be unfolded
by solving the linear systems

[LM(h)]I,Ih̃I = −[LM(h)]I,BhB, (5.2)

where I = {i | |h(vi)| < r} denotes the vertex index set with r being a value slightly larger than 1, e.g.,
r = 1.2, B = {1, . . . , n}\I, and LM is the Laplacian matrix defined as

[LM(h)]i, j =


−

∑
[vi,v j,vk]∈F (M)[ωM(h)]i, j,k if [vi, v j] ∈ E(M),

−
∑
ℓ,i[LM(h)]i,ℓ if j = i,

0 otherwise,

(5.3a)

with ωM(h) being a variant of the mean value weight [13] defined as

[ωM(h)]i, j,k =
1

∥hi − h j∥
tan
φk

i, j(h)

2
, (5.3b)

in which φk
i, j(h) is the angle opposite to the edge [h(v j), h(vk)] at the point h(vi) on h(M), as illustrated

in Figure 9. Then, the mapping is updated by replacing hI with h̃I. Next, an inversion

Inv(z) =
1
z̄

(5.4)

is performed to reverse the positions of the southern and northern hemispheres. Then, the linear system
(5.2) is solved again to unfold the triangular faces originally located in the northern hemisphere. We
denote the updated mapping as h̃. Ultimately, the corrected mapping is given by Π−1

S 2 ◦ h̃, where Π−1
S 2

denotes the inverse stereographic projection

Π−1
S 2 (u + i v) =

(
2u

u2 + v2 + 1
,

2v
u2 + v2 + 1

,
u2 + v2 − 1
u2 + v2 + 1

)
. (5.5)

In our numerical experiments, we perform the bijectivity correction both after the FPI method and
after the RGD method, if needed.
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φℓi, j( f )φk
i, j( f )

fi

f j

fℓfk

Figure 9. An illustration for the mean value weight [13].

5.3. Comparison with the FPI method

To validate the algorithm, we compare it with the numerical results on the same models obtained
using the FPI method. This method was proposed by Yueh et al. [21] to calculate area-preserving
boundary mapping while parameterizing 3-manifolds.

The FPI method of stretch energy minimization (SEM) is performed as follows. First, a spherical
harmonic mapping f (0) : M → S 2 is computed by the Laplacian linearization method [4]. Suppose a
spherical mapping f (k) is computed. Then, we map the spherical image to the extended complex plane
by the stereographic projection (5.1) together with an inversion (5.4). Then, we define the mapping
h(k) : M→ C ∪ {∞} as

h(k)(v) = Inv ◦ ΠS 2 ◦ f (k)(v).

The mapping h(k) is represented as the complex-valued vector by h(k)
i = h(k)(vi). Next, we define the

interior vertex index set as
I(k) = {i | |h(k)(vi)| < r},

which collects the indices of vertices in the circle centered at the origin of radius r. Other vertices are
defined as boundary vertices and the associated index set is defined as

B(k) = {1, . . . , n}\I(k).

Then, the interior mapping is updated by solving the linear system

[LS ( f (k))]I(k),I(k)h(k+1)
I(k) = −[LS ( f (k))]I(k),B(k)h(k)

B(k) ,

while the boundary mapping remains the same, i.e., h(k)
B(k+1) = h(k)

B(k) . The updated spherical mapping
f (k+1) : M→ S 2 is computed by

f (k+1)(vi) = Π−1
S 2 (h(k)

i ),

where Π−1
S 2 is the inverse stereographic projection (5.5). This procedure is summarized by Algorithm 2.

Table 6 reports the numerical results for the FPI method applied to the twelve benchmark mesh
models considered. Two different stopping criteria are considered: increase in authalic energy
(columns 2 to 6) and maximum number of iterations (columns 7 to 10). From Table 6, it appears that
performing more iterations of the FPI method does not necessarily improve the mapping f . In most
cases, except for David Head and Cortical Surface, the authalic energy and the values of SD/Mean
increase. This motivates us to use the FPI method only to calculate a good initial mapping and then
switch to RGD.

AIMS Mathematics Volume 9, Issue 7, 19414–19445.



19433

Algorithm 2: FPI method of the SEM [21].
1 Given a genus-zero closed meshM, a tolerance ε, a radius r (e.g., ε = 10−6, r = 1.2);

Result: A spherical area-preserving parameterization f.
2 Compute a spherical conformal map g using the Laplacian linearization method [4];
3 Perform the stereographic projection hℓ = ΠS 2(gℓ), ℓ = 1, . . . , n, as in (5.1);
4 Let δ = ∞;
5 while δ > ε do
6 Update the matrix L← LS ( f ), where LS ( f ) is defined as in (2.2);
7 Perform the inversion hℓ ← Inv(hℓ), ℓ = 1, . . . , n, as in (5.4);
8 Update the index sets I = {i | |hi| < r } and B = {1, . . . , n}\I;
9 Update h by solving the linear system LI,IhI = −LI,BhB;

10 Update h← h/medianℓ∥hℓ∥;
11 Let fℓ ← Π−1

S 2 (hℓ) as in (5.5), ℓ = 1, . . . , n;
12 Update δ← ES (g) − ES (f);
13 Update g← f.
14 end while

Table 6. FPI method for minimizing the authalic energy EA, using two different stopping
criteria. #Its denotes the number of iterations at which the energy started to increase.

Energy EA Increased 100 Iterations

Model Name SD/Mean EA( f ) Time #Fs #Its SD/Mean EA( f ) Time #Fs

Right Hand 0.2050 2.86 × 10−1 0.08 12 6 0.4598 2.92 × 100 1.35 67
David Head 0.0191 4.66 × 10−3 0.35 0 8 0.0169 3.58 × 10−3 4.30 0

Cortical Surface 0.0220 4.93 × 10−3 0.85 0 15 0.0174 3.21 × 10−3 5.62 0
Bull 0.1504 2.74 × 10−1 1.29 8 18 0.1876 4.59 × 10−1 6.90 40

Bulldog 0.0381 1.49 × 10−2 2.61 0 10 0.1833 3.99 × 10−1 22.22 53
Lion Statue 0.1940 5.10 × 10−1 1.12 1 4 0.2064 5.28 × 10−1 23.67 38
Gargoyle 0.0704 5.47 × 10−2 2.64 0 11 4.1020 4.85 × 102 36.10 1955

Max Planck 0.0544 3.67 × 10−2 1.35 0 5 0.1844 1.67 × 101 25.99 144
Bunny 0.0423 2.24 × 10−2 6.40 0 20 0.0394 3.96 × 10−2 35.78 2

Chess King 0.0713 6.91 × 10−2 6.35 9 8 1.0903 1.79 × 101 88.04 1655
Art Statuette 0.0411 2.15 × 10−2 23.27 0 7 0.0908 1.07 × 10−1 342.95 126
Bimba Statue 0.0515 3.32 × 10−2 29.94 6 9 0.0932 7.42 × 10−2 305.00 144

5.4. Comparison with the adaptive area-preserving parameterization

In this section, we compare the numerical results of our RGD method with the adaptive area-
preserving parameterization for genus-zero closed surfaces proposed by Choi et al. [7]. The
computational procedure is summarized as follows. First, the mesh is punctured by removing two
triangular faces τ1 and τ2 that share a common edge. Then, the FPI of the SEM [22] is applied to
compute an area-preserving initial mapping g0 : M\{τ1, τ2} → D B {x ∈ R2 | ∥x∥2 ⩽ 1}. The Beltrami
coefficient of the mapping g0 is denoted by µg0 . Next, a quasi-conformal map g : M\{τ1, τ2} → D with
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∥µg∥∞ = ∥λµg0∥∞ < 1 is constructed [9]. The scaling factor λ ∈ [0, 1] is chosen to be 0.2 in practice.
Then, the optimal mass transport mapping hr : M\{τ1, τ2} → rD is computed by the method proposed
by Zhao et al. [23], with the optimal radius r satisfying

r = argmin
r

∫
|µ(hr◦rg)−1(z)|

2 dz.

The final spherical area-preserving parameterization is obtained by the composition mapping f =
Π−1

S 2 ◦ hr ◦ rg, where Π−1
S 2 denotes the inverse stereographic projection (5.5).

Table 7 reports on the numerical results. The algorithm of Choi et al. [7] was run with the default
parameters found in the code package*. The only satisfactory results are those for the David Head
mesh model. However, even in this case, the values of the monitored quantities (SD/Mean, EA( f ),
and computation time) do not compete with those obtained by running our RGD method for only ten
iterations; compare with the fourth column of Table 2. Our method is much more efficient and accurate
and provides mappings with better bijectivity properties.

Table 7. Adaptive area-preserving parameterization for genus-zero closed surfaces proposed
by Choi et al. [7] applied to the twelve mesh models considered in this work. Stopping
criterion: default values found in the code package.

Model Name SD/Mean EA( f ) Time #Foldings

Right Hand 18.3283 4.84 × 103 218.03 672
David Head 0.0426 2.27 × 10−2 298.76 0

Cortical Surface 0.6320 1.14 × 100 420.20 10
Bull 8.5565 1.82 × 103 34.42 335

Bulldog 9.2379 1.22 × 103 183.94 338
Lion Statue 0.2626 8.96 × 10−1 1498.91 540
Gargoyle 0.3558 1.30 × 100 1483.35 571

Max Planck 11.6875 1.49 × 103 195.39 575
Bunny 27.6014 8.94 × 103 157.87 208

Chess King 11.8300 1.65 × 103 608.55 948
Art Statuette 394.4414 9.93 × 100 2284.79 2242
Bimba Statue 0.5110 2.01 × 100 16 773.34 11 821

5.5. Comparison with the spherical optimal transportation mapping

In this section, we compare the numerical results of our RGD method with the spherical optimal
transportation mapping proposed by Cui et al. [10]. The computational procedure can be summarized
as follows. First, the algorithm calculates a conformal map from a genus-zero closed surface M to
the unit sphere and then normalizes the area of M. Iteratively, a power diagram is computed from
the sphere and the power radii. The gradient of the energy is calculated from the vertices, followed
by the Hessian matrix, which depends on the source measure. A linear equation is solved at every

*Available at https://www.math.cuhk.edu.hk/~ptchoi/files/adaptiveareapreservingmap.zip.
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step to update the power radii, and a line search strategy is used. The step length parameter is chosen
so that all cells of the power diagram are non-degenerated. If some cells are degenerated, the step
length is reduced by half, and the power diagram is computed again until all cells are non-degenerated.
After the loop, the centroid of each power cell in the power diagram is computed, and the mapping
from each vertex to each centroid of the power cell is returned. The algorithmic details can be found
in [10, Algorithm 1].

Here, we run the algorithm of [10] with the default parameters found in the code package†. The
target mesh for the mesh model was adapted to be its spherical harmonic mapping as suggested in [10].

From Table 8, it appears that the method of [10] is capable, at least when working, of computing
bijective spherical mappings within a relatively moderate number of iterations. However, the area-
preserving properties, as measured by SD/Mean and EA( f ), are inferior to those obtained with our
RGD method for all four mesh models considered.

Table 8. Spherical optimal transportation mapping proposed by Cui et al. [10] applied to the
twelve mesh models considered in this work. The executable fails to output a mapping for
eight mesh models among the twelve, which are not shown in the table.

Model Name SD/Mean EA( f ) #Foldings # Iterations

David Head 0.4189 2.25 × 100 0 27
Cortical Surface 0.5113 3.11 × 100 0 27

Bulldog 0.8665 1.00 × 101 0 33
Max Planck 0.5619 4.38 × 100 0 25

5.6. Numerical stability

In this section, we investigate the numerical stability of our scheme. To this aim, we introduce
Gaussian random noise to the vertex normal of each vertex in every mesh model according to a given
value of noise variance σnoise. We then re-run the entire algorithm, i.e., we first perform a few iterations
of the FPI method (Algorithm 2) to obtain a mapping that is used as an initial mapping for the RGD
method (Algorithm 1). We then calculate a relative error on the authalic energy, as defined below
in (5.6). We repeat this procedure for different values of noise variance σnoise.

Figure 10 shows the original mesh model of the Lion Statue (panel (a)) and two noisy versions
(panels (b) and (c)).

We compute the following relative error on the authalic energy

err-EA
(
f , f̃

)
B #Vertices ×

|EA
(
f̃
)
− EA( f )|∑

v∈V(M) ∥̃v − v∥2
, (5.6)

where EA
(
f̃
)

and EA( f ) are the authalic energies after 100 iterations of RGD for the mesh model with
and without noise, respectively, and ṽ and v denote the coordinates of the vertices of the mesh model
with and without noise, respectively.

†Available at https://www3.cs.stonybrook.edu/~gu/software/SOT/index.html
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(a) (b) (c)

Figure 10. The “Lion Statue” mesh model: (a) without noise; (b), (c) with noise variance
σnoise = 1 × 10−3 and 5 × 10−3, respectively.

Tables 9 and 10 report the numerical results for all the noisy mesh models, with σnoise = 1 × 10−3

and 5 × 10−3, respectively. The values of authalic energy for the non-noisy mesh models from Table 2
are reported in the second last column for easier comparison. We observe that the values for SD/Mean
and EA

(
f̃
)

remain bounded and reasonable with respect to the original mesh models, demonstrating
that our method is stable to noise.

Table 9. Numerical stability study: 100 iterations of RGD with σnoise = 1 × 10−3. Line-
search strategy: quadratic/cubic approximation from [11, §6.3.2]. The quantity err-EA is
defined in (5.6).

σnoise = 1 × 10−3

Model Name SD/Mean EA
(
f̃
)

Time #Fs
#Fs

EA( f ) err-EA
(
f , f̃

)
after b.c.

Right Hand 0.1254 1.03 × 10−1 3.13 14 1 9.40 × 10−2 5.84 × 10−2

David Head 0.0108 1.44 × 10−3 9.98 0 0 3.04 × 10−3 4.47 × 10−3

Cortical Surface 0.0187 3.82 × 10−3 12.78 0 0 3.72 × 10−3 3.45 × 10−3

Bull 0.2528 9.23 × 10−1 16.74 19 6 2.19 × 10−1 1.12 × 100

Bulldog 0.0273 6.94 × 10−3 59.26 0 0 1.27 × 10−2 7.19 × 10−6

Lion Statue 0.1630 3.27 × 10−1 66.78 1 0 4.54 × 10−1 1.36 × 10−4

Gargoyle 0.1677 3.66 × 10−1 65.72 0 0 4.76 × 10−2 4.45 × 10−3

Max Planck 0.0464 2.67 × 10−2 64.30 0 0 3.39 × 10−2 5.27 × 10−5

Bunny 0.0297 1.11 × 10−2 81.31 0 0 1.91 × 10−2 5.32 × 10−3

Chess King 0.0747 6.08 × 10−2 193.04 119 38 5.23 × 10−2 1.03 × 10−3

Art Statuette 0.0235 6.88 × 10−3 636.30 0 0 2.10 × 10−2 2.54 × 10−2

Bimba Statue 0.0541 3.33 × 10−2 759.36 2 0 3.29 × 10−2 5.81 × 10−4
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Table 10. Numerical stability study: 100 iterations of RGD with σnoise = 5 × 10−3. Line-
search strategy: quadratic/cubic approximation from [11, §6.3.2]. The quantity err-EA is
defined in (5.6).

σnoise = 5 × 10−3

Model Name SD/Mean EA
(
f̃
)

Time #Fs
#Fs

EA( f ) err-EA
(
f , f̃

)
after b.c.

Right Hand 0.2304 5.77 × 10−1 3.12 10 4 9.40 × 10−2 1.45 × 100

David Head 0.0211 5.51 × 10−3 9.43 0 0 3.04 × 10−3 6.84 × 10−3

Cortical Surface 0.0301 1.02 × 10−2 12.72 0 0 3.72 × 10−3 2.28 × 10−1

Bull 0.1723 2.98 × 10−1 17.40 18 4 2.19 × 10−1 1.19 × 10−1

Bulldog 0.0629 3.86 × 10−2 61.75 2 0 1.27 × 10−2 3.23 × 10−5

Lion Statue 0.1044 1.36 × 10−1 69.55 0 0 4.54 × 10−1 3.36 × 10−4

Gargoyle 0.0974 9.68 × 10−2 69.32 1 0 4.76 × 10−2 6.87 × 10−4

Max Planck 0.0782 7.11 × 10−2 67.30 0 0 3.39 × 10−2 2.75 × 10−4

Bunny 0.0455 2.57 × 10−2 80.93 0 0 1.91 × 10−2 4.40 × 10−3

Chess King 0.1521 2.72 × 10−1 187.57 95 35 5.23 × 10−2 2.64 × 10−2

Art Statuette 0.0981 5.41 × 10−2 617.75 0 0 2.10 × 10−2 5.92 × 10−2

Bimba Statue 0.1083 1.25 × 10−1 743.00 76 0 3.29 × 10−2 1.68 × 10−1

5.7. Registration problem between two brain surfaces

A registration mapping between surfacesM0 andM1 refers to a bijective mapping g : M0 →M1.
An ideal registration mapping keeps important landmarks aligned while preserving specified geometry
properties. In this section, we demonstrate a framework for the computation of landmark-aligned area-
preserving parameterizations of genus-zero closed surfaces.

Suppose a set of landmark pairs {(pi, qi) | pi ∈ M0, qi ∈ M1}
m
i=1 is given. The goal is to compute

an area-preserving simplicial mapping g : M0 → M1 that satisfies g(pi) ≈ qi, for i = 1, . . . ,m. First,
we compute area-preserving parameterizations f0 : M0 → S 2 and f1 : M1 → S 2 of surfacesM0 and
M1, respectively. The simplicial registration mapping h : S 2 → S 2 that satisfies h ◦ f0(pi) = f1(qi), for
i = 1, . . . ,m, can be carried out by minimizing the registration energy

ER(h) = ES (h) +
m∑

i=1

λi∥h ◦ f0(pi) − f1(qi)∥2.

Let

h =


(h ◦ f0(v1))⊤

...

(h ◦ f0(vn))⊤

 = [
h1 h2 h3

]
be the matrix representation of h. The gradient of ER with respect to h can be formulated as

∇ER(h) = 2 (I3 ⊗ LS (h)) vec(h) + vec(r),
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where r is the matrix of the same size as h given by

r(i, :) =

2λi
(
h(i, :) − ( f1(qi))⊤

)
if pi is a landmark,

(0, 0, 0) otherwise.

In practice, we define the midpoints ci of each landmark pairs on S 2 as

ci =
1
2

( f0(pi) + f1(qi)),

for i = 1, . . . ,m, and compute h0 and h1 on S 2 that satisfy h0◦ f0(pi) = ci and h1◦ f1(qi) = ci, respectively.
Ultimately, the registration mapping g : M0 → M1 is obtained by the composition mapping g =
f −1
1 ◦ h−1

1 ◦ h0 ◦ f0. Figure 11 schematizes this composition of functions for the landmark-aligned
morphing process from one brain to another.

M0 M1

S 2 S 2

g = f −1
1 ◦ h−1

1 ◦ h0 ◦ f0

f0 f1

h0 h1

Figure 11. Scheme for the landmark-aligned surface registration application described in
subsection 5.7.

A landmark-aligned morphing process fromM0 toM1 can be constructed by the linear homotopy
H : M0 × [0, 1]→ R3 defined as

H(v, t) = (1 − t) v + t g(v). (5.7)

In Figure 12, we demonstrate the morphing process from one brain to another brain by four snapshots
at four different values of t. The brain surfaces are obtained from the source code package in [9].

H(M0, 0) =M0 H(M0, 0.33) H(M0, 0.67) H(M0, 1) =M1

Figure 12. The images of the linear homotopy (5.7) from one brain to another brain.
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6. Conclusions and outlook

In this paper, we introduced an RGD method for computing spherical area-preserving mappings
of genus-zero closed surfaces. Our approach combines the tools of Riemannian optimization and
computational geometry to develop a method based on the minimization of the normalized stretch
energy. The proposed algorithm has theoretically guaranteed convergence and is accurate, efficient, and
robust. We tested two different line-search strategies and conducted extensive numerical experiments
on various mesh models to demonstrate the algorithm’s stability and effectiveness. By comparing with
three existing methods for computing area-preserving mappings, we demonstrated that our algorithm is
more efficient than these state-of-the-art methods. Moreover, we show that our approach is stable and
robust even when the mesh model undergoes small perturbations. Finally, we applied our algorithm to
the practical problem of landmark-aligned surface registration between two human brain models.

There are some directions in which we could conduct further research. Specifically, we would like to
enhance the speed of convergence of the algorithm we have proposed while keeping the computational
cost low. One potential way to improve this would be to use appropriate Riemannian generalizations of
the conjugate gradient method or the limited memory BFGS (L-BFGS) method, as suggested in [17].
Another research direction may target genus-one or higher genus closed surfaces.

Appendix A Calculation of the gradient of the image area

The image area of the simplicial mapping f can be calculated as follows. Let τ = [vi, v j, vk] and
denote f ℓi j = f ℓi − f ℓj , f ℓik = f ℓi − f ℓk , and f ℓjk = f ℓi j − f ℓk , for ℓ = 1, 2, 3. The image area of a simplicial
mapping f can be formulated as

A( f ) =
∑
τ∈F (M)

| f (τ)| =
∑
τ∈F (M)

1
2

√
A12( f |τ)2 +A13( f |τ)2 +A23( f |τ)2,

where
A12( f |τ) = f 1

i j f 2
ik − f 2

i j f 1
ik, A13( f |τ) = f 1

i j f 3
ik − f 3

i j f 1
ik, A23( f |τ) = f 2

i j f 3
ik − f 3

i j f 2
ik.

The functionalsA12,A13 andA23 measure the image area of mappings ΠPxy ◦ f , ΠPxz ◦ f and ΠPyz ◦ f ,
respectively. The partial derivatives ofA( f |τ) can be formulated as

∂

∂ f 1
i

A( f |τ) =
1

4A( f |τ)

(
A12( f |τ) f 2

jk +A13( f |τ) f 3
jk

)
,

∂

∂ f 2
i

A( f |τ) =
−1

4A( f |τ)

(
A12( f |τ) f 1

jk −A23( f |τ) f 3
jk

)
,

∂

∂ f 3
i

A( f |τ) =
−1

4A( f |τ)

(
A13( f |τ) f 1

jk −A23( f |τ) f 2
jk

)
,

∂

∂ f 1
j

A( f |τ) =
−1

4A( f |τ)

(
A12( f |τ) f 2

ik +A13( f |τ) f 3
ik

)
,

∂

∂ f 2
j

A( f |τ) =
1

4A( f |τ)

(
A12( f |τ) f 1

ik −A23( f |τ) f 3
ik

)
,
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∂

∂ f 3
j

A( f |τ) =
1

4A( f |τ)

(
A13( f |τ) f 1

ik +A23( f |τ) f 2
ik

)
,

∂

∂ f 1
k

A( f |τ) =
1

4A( f |τ)

(
A12( f |τ) f 2

i j +A13( f |τ) f 3
i j

)
,

∂

∂ f 2
k

A( f |τ) =
−1

4A( f |τ)

(
A12( f |τ) f 1

i j −A23( f |τ) f 3
i j

)
,

∂

∂ f 3
k

A( f |τ) =
−1

4A( f |τ)

(
A13( f |τ) f 1

i j +A23( f |τ) f 2
i j

)
.

Appendix B Calculation of the Hessian of the stretch energy functional

In this appendix, we describe the calculation of the Hessian of the stretch energy functional. Let
τ = [vi, v j, vk]. From [20, Theorem 3.5 and (3.1)], we know that

∇fℓES ( f |τ) = 2LS ( f |τ) f|ℓτ, ℓ = 1, 2, 3,

where

LS ( f |τ) =
1

4|τ|



(fi − fk)⊤(f j − fk)
+(fi − f j)⊤(fk − f j)

−(fi − fk)⊤(f j − fk) −(fi − f j)⊤(fk − f j)

−(fi − fk)⊤(f j − fk)
(fi − fk)⊤(f j − fk)
+(f j − fi)⊤(fk − fi)

−(f j − fi)⊤(fk − fi)

−(fi − f j)⊤(fk − f j) −(f j − fi)⊤(fk − fi)
(fi − f j)⊤(fk − f j)
+(f j − fi)⊤(fk − fi)


,

and f|ℓτ = (fℓi , f
ℓ
j , f
ℓ
k)⊤, ℓ = 1, 2, 3. A direct calculation yields that the Hessian matrix

Hess(ES ( f |τ)) =



∂ES ( f |τ)
∂ f s

i ∂ f t
i

∂ES ( f |τ)
∂ f s

i ∂ f t
j

∂ES ( f |τ)
∂ f s

i ∂ f t
k

∂ES ( f |τ)
∂ f s

j ∂ f t
i

∂ES ( f |τ)
∂ f s

j ∂ f t
j

∂ES ( f |τ)
∂ f s

j ∂ f t
k

∂ES ( f |τ)
∂ f s

k ∂ f t
i

∂ES ( f |τ)
∂ f s

k ∂ f t
j

∂ES ( f |τ)
∂ f s

k ∂ f t
k



3

s,t=1

can be formulated as

Hess(ES ( f |τ)) =
1

2|τ|



h2
i jkh2

i jk
⊤
+ h3

i jkh3
i jk
⊤ h1

i jkh2
i jk
⊤
− 2h2

i jkh1
i jk
⊤ h1

i jkh3
i jk
⊤
− 2h3

i jkh1
i jk
⊤

h2
i jkh1

i jk
⊤
− 2h1

i jkh2
i jk
⊤ h1

i jkh1
i jk
⊤
+ h3

i jkh3
i jk
⊤ h2

i jkh3
i jk
⊤
− 2h3

i jkh2
i jk
⊤

h3
i jkh1

i jk
⊤
− 2h1

i jkh3
i jk
⊤ h3

i jkh2
i jk
⊤
− 2h2

i jkh3
i jk
⊤ h1

i jkh1
i jk
⊤
+ h2

i jkh2
i jk
⊤


,

where hℓi jk = ( f ℓj − f ℓk , f ℓk − f ℓi , f ℓi − f ℓj )⊤, ℓ = 1, 2, 3.
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Appendix C Line-search procedure of the RGD method

In this appendix, we describe the line-search procedure used in our RGD method. We start by
detailing how to compute the derivative appearing in the sufficient decrease condition, and then we
describe the interpolant line-search strategy from [11, §6.3.2].

In Euclidean space Rn, the steepest descent method updates a current iterate by moving in the
direction of the anti-gradient, by a step size chosen according to an appropriate line-search rule. The
step size is related to the sufficient decrease condition [16]

ϕ(αk) ⩽ ϕ(0) + c1αkϕ
′(0). (C.1)

In the Euclidean setting, the univariate function ϕ(α) in the line-search procedure is

ϕ(α) = E
(
f(k) + αd(k)),

where E is the objective function considered, and f(k) is the current iterate. However, this function
changes in the Riemannian optimization framework because we cannot directly perform the vector
addition f(k) + αd(k) without leaving the manifold.

Let f(k) be a point of
(
S 2)n at the kth iteration of our RGD algorithm, and Rf(k) the retraction at f(k),

as defined in subsection 3.2.3. Let the objective function be E :
(
S 2)n

→ R. For a fixed point f(k)

and a fixed tangent vector d(k), we introduce the vector-valued function ψ : R →
(
S 2)n, defined by

α 7→ Rf(k)(αd(k)). Hence, by composition of functions, we have ϕ : R→ R, defined by

ϕ(α) B E(ψ(α)).

Note that ϕ(0) = E(ψ(0)) = E(f(k)) C E(k), due to the definition of retraction.
To evaluate the sufficient decrease condition (C.1), we need to calculate ϕ′(0), and to compute ϕ′(0)

we need to calculate the derivative of the retraction Rf(k)(αd(k)) with respect to α. The derivative of
ϕ(α) is given by the chain rule

ϕ′(α) = ∇E(ψ(α))⊤ψ′(α),

and then we evaluate it at α = 0, i.e.,

ϕ′(0) = ∇E(f(k))⊤ψ′(0).

In general, the retraction and the derivative ψ′(α) depend on the choice of the manifold. The
differentials of a retraction provide the so-called vector transports, and the derivative of the retraction
on the unit sphere appears in [2, §8.1.2].

In the following formulas, we omit the superscript (k) referring to the current iteration of RGD and
assume that the line-search direction d is also partitioned as the matrix f; see (2.1). Recalling the
retraction on the power manifold

(
S 2)n from (3.3), we can write ψ(α) as

ψ(α) = Rf(αd) =



1
∥f1 + αd1∥2

1
∥f2 + αd2∥2

. . .
1

∥fn + αdn∥2




f⊤1 + αd⊤1
f⊤2 + αd⊤2
...

f⊤n + αd⊤n

 .

AIMS Mathematics Volume 9, Issue 7, 19414–19445.



19442

The derivative ψ′(α) can be computed via the formula (cf. [2, Example 8.1.4])

ψ′(α) =



−
(f1 + αd1)⊤d1

∥f1 + αd1∥
3
2

(f1 + αd1)⊤

−
(f2 + αd2)⊤d2

∥f2 + αd2∥
3
2

(f2 + αd2)⊤

...

−
(fn + αdn)⊤dn

∥fn + αdn∥
3
2

(fn + αdn)⊤


+



d⊤1
∥f1 + αd1∥2

d⊤2
∥f2 + αd2∥2

...

d⊤n
∥fn + αdn∥2


,

At α = 0, this simplifies into

ψ′(0) =



d⊤1
∥f1∥2

d⊤2
∥f2∥2

...

d⊤n
∥fn∥2


−



(f1)⊤d1

∥f1∥
3
2

f⊤1

(f2)⊤d2

∥f2∥
3
2

f⊤2

...

(fn)⊤dn

∥fn∥
3
2

f⊤n


.

This value is needed to evaluate the sufficient decrease condition (C.1).

Quadratic/cubic approximation

At every step of our RGD algorithm, we want to satisfy the sufficient decrease condition (C.1).
Here, we adopt the safeguarded quadratic/cubic approximation strategy described in [11, §6.3.2].

In the following, we let αk and αk−1 denote the step lengths used at iterations k and k − 1 of the
optimization algorithm, respectively. We denote the initial guess using α0. We suppose that the initial
guess is given; alternatively, one can use [16, (3.60)] as initial guess, i.e.,

α0 =
2(E(k) − E(k−1))
ϕ′(0)

.

If α0 satisfies the sufficient decrease condition (C.1), i.e.,

ϕ(α0) ⩽ ϕ(0) + c1α0ϕ
′(0),

then α0 is accepted as step length, and we terminate the search. Otherwise, we build a quadratic
approximation ϕq(α) of ϕ(α) using the information we have, that is, ϕ(0), ϕ′(0), and ϕ(α0). The
quadratic model is

ϕq(α) =
[
ϕ(α0) − ϕ(0) − ϕ′(0)α0

]
α2 + ϕ′(0)α + ϕ(0).

The new trial value α1 is defined as the minimizer of this quadratic, i.e.,

α1 = −
ϕ′(0)α2

0

2
[
ϕ(α0) − ϕ(0) − ϕ′(0)α0

] .
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We terminate the search if the sufficient decrease condition is satisfied at α1, i.e.,

ϕ(α1) ⩽ ϕ(0) + c1α1ϕ
′(0).

Otherwise, we need to backtrack again. We now have four pieces of information about ϕ(α), so it
is desirable to use all of them. Hence, at this and any subsequent backtrack steps during the current
iteration of RGD, we use a cubic model ϕc(α) that interpolates the four pieces of information ϕ(0),
ϕ′(0), and the last two values of ϕ(α), and set αk to the value of α at which ϕc(α) has its local minimizer.

Let αprev and α2prev be the last two previous values of αk tried in the backtrack procedure. The cubic
that fits ϕ(0), ϕ′(0), ϕ(αprev), and ϕ(α2prev) is

ϕc(α) = aα3 + bα2 + ϕ′(0)α + ϕ(0),

where [
a
b

]
=

1
αprev − α2prev


1
α2

prev

−1
α2

2prev
−α2prev

α2
prev

αprev

α2
2prev


 ϕ(αprev) − ϕ(0) − ϕ′(0)αprev

ϕ(α2prev) − ϕ(0) − ϕ′(0)α2prev

 .
The local minimizer of this cubic is given by [11, (6.3.18)]

−b +
√

b2 − 3aϕ′(0)
3a

,

and we set αk equal to this value. If necessary, this process is repeated, using a cubic interpolant of
ϕ(0), ϕ′(0), and the two most recent values of ϕ, namely, ϕ(αprev) and ϕ(α2prev), until a step size that
satisfies the sufficient decrease condition is located. Numerical experiments in Section 5 demonstrate
the usage and effectiveness of this line-search technique.
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