Research article

The Hermite-Hadamard inequality for $ s $-Convex functions in the third sense

  • Received: 19 February 2021 Accepted: 10 May 2021 Published: 13 May 2021
  • MSC : 26A51

  • In this paper, the Hermite-Hadamard inequality for $ s $-convex functions in the third sense is provided. In addition, some integral inequalities for them are presented. Also, the new functions based on the integral and double integral of $ s $-convex functions in the third sense are defined and under certain conditions, the third sense $ s $-convexity of these functions are shown and some inequality relations for these are expressed.

    Citation: Sevda Sezer. The Hermite-Hadamard inequality for $ s $-Convex functions in the third sense[J]. AIMS Mathematics, 2021, 6(7): 7719-7732. doi: 10.3934/math.2021448

    Related Papers:

  • In this paper, the Hermite-Hadamard inequality for $ s $-convex functions in the third sense is provided. In addition, some integral inequalities for them are presented. Also, the new functions based on the integral and double integral of $ s $-convex functions in the third sense are defined and under certain conditions, the third sense $ s $-convexity of these functions are shown and some inequality relations for these are expressed.



    加载中


    [1] G. R. Adilov, S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities, J. Inequal. Appl., 2009 (2009), 943534. doi: 10.1155/2009/943534
    [2] G. R. Adilov, S. Kemali, Hermite-Hadamard-type inequalities for increasing positively homogeneous functions, J. Inequal. Appl., 2007 (2007), 021430.
    [3] M. Alomari, M. Darus, Hadamard-Type Inequalities for s-Convex Functions, Int. Math. Forum, 3 (2008), 1965-1975.
    [4] J. Bastero, J. Bernués, A. Peña, The theorems of Caratheodory and Gluskin for $ 0 < p < 1$, Proc. Am. Math. Soc., 123 (1995), 141-144.
    [5] A. Bayoumi, Foundation of complex analysis in non locally convex spaces, In: North Holland, mathematics studies, Amsterdam: Elsevier Science, 193 (2003).
    [6] W. W. Breckner, Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, Publ. I. Math.-Beograd, 23 (1978), 13-20.
    [7] F. X. Chen, S. H. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32
    [8] S. S. Dragomir, C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science Direct Working Paper No S1574-0358(04)70845-X, Available from: https://ssrn.com/abstract = 3158351.
    [9] S. S. Dragomir, S. Fitzpatrick, Hadamard's inequality for s-convex functions in the first sense and applications, Demonstratio Mathematica, 31 (1998), 633-642.
    [10] S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Mathematica, 32 (1999), 687-696.
    [11] S. S. Dragomir, R. P. Agarwal, N. S. Barnett. Inequalities for Beta and Gamma functions via some classical and new integral inequalities, J. Inequal. Appl., 5 (2000), 103-165.
    [12] T. S. Du, M. U. Awan, A. Kashuri, S. S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 100 (2021), 642-662. doi: 10.1080/00036811.2019.1616083
    [13] T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. doi: 10.1142/S0218348X19501172
    [14] S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-Type Inequalities for s-Convex Functions I, Punjab Uni. J. Math., 41 (2009), 51-60.
    [15] İ. İşcan, Hermite-Hadamard type inequalities for harmonically $(\alpha, m)$-convex functions, Hacet. J. Math. Stat., 45 (2016), 381-390.
    [16] S. Kemali, G. Tinaztepe, G. Adilov, New type inequalities for B-convex functions involving hadamard fractional integral, Facta Univ.-series: Math. informa., 33 (2018), 697-704.
    [17] S. Kemali, S. Sezer, G. Tınaztepe, G. Adilov, $s$-Convex function in the third sense, Akademik Veri Yönetim Sistemi, Available from: http://aves.akdeniz.edu.tr/sevdasezer/dokumanlar.
    [18] M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for s-convex functions with applications, Open Math., 15 (2017), 1414-1430. doi: 10.1515/math-2017-0121
    [19] U. S. Kirmaci, B. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193 (2007), 26-35.
    [20] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. doi: 10.1186/s13660-019-2047-1
    [21] H. X. Mo, X. Sui, D. Y. Yu, Generalized $s$-convex functions on fractal sets, Abstr. Appl. Anal. 2014 (2014), 636751.
    [22] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. doi: 10.3390/sym12040595
    [23] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl. 2019 (2019), 201.
    [24] F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for$ (\alpha, m)$-convex functions, J. Inequal. Appl., 2019 (2019), 135. doi: 10.1186/s13660-019-2079-6
    [25] M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, 16 (2015), 491-501. doi: 10.18514/MMN.2015.1099
    [26] S. Sezer, Z. Eken, G. Tınaztepe, G. Adilov, $p$-convex functions and some of their properties, Numeri. Func. Anal. Opt., 2021. DOI: 10.1080/01630563.2021.1884876.
    [27] B. Y. Xi, F. Qi, Some Hermite-Hadamard type inequalities for differentiable convex functions and applications, Hacet. J. Math. Stat., 42 (2013), 243-257.
    [28] I. Yeşilce, G. Adilov, Hermite-Hadamard inequalities for $ \mathbb{B} $-convex and $ \mathbb{B}^{-1} $-convex functions, Int. J. Nonlinear Anal. Appl., 8 (2017), 225-233.
    [29] I. Yesilce, G. Adilov, Hermite-Hadamard type inequalities for B-1-convex functions involving generalized fractional integral operators, Filomat, 32 (2018), 6457-6464. doi: 10.2298/FIL1818457Y
    [30] I. Yesilce, G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions and S (j)-convex Functions, Malaya J. Mat., 3 (2015), 346-359.
    [31] I. Yeşilce, Inequalities for B-convex functions via generalized fractional integral, J. Inequal. Appl., 2019 (2019), 194. doi: 10.1186/s13660-019-2150-3
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5554) PDF downloads(1754) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog