In this paper, we investigate a coupled semilinear parabolic system with singular localized sources at the point $ x_{0} $: $ u_{t}-\Delta u = af\left(v\left(x_{0}, t\right) \right) $, $ v_{t}-\Delta v = bg\left(u\left(x_{0}, t\right) \right) $ for $ x\in B_{1}\left(x_{0}\right) $ and $ t\in \left(0, T\right) $ with the Dirichlet boundary condition, where $ a $ and $ b $ are positive real numbers, $ B_{1}\left(x_{0}\right) $ is a $ n $-dimensional ball with the center and radius being $ x_{0} $ and $ 1 $, and the nonlinear sources $ f $ and $ g $ are positive functions such that they are unbounded when $ u $ and $ v $ tend to a positive constant $ c $, respectively. We prove that the solution $ \left(u, v\right) $ quenches simultaneously and non-simultaneously under some sufficient conditions.
Citation: W. Y. Chan. Simultaneous and non-simultaneous quenching for a coupled semilinear parabolic system in a $ n $-dimensional ball with singular localized sources[J]. AIMS Mathematics, 2021, 6(7): 7704-7718. doi: 10.3934/math.2021447
In this paper, we investigate a coupled semilinear parabolic system with singular localized sources at the point $ x_{0} $: $ u_{t}-\Delta u = af\left(v\left(x_{0}, t\right) \right) $, $ v_{t}-\Delta v = bg\left(u\left(x_{0}, t\right) \right) $ for $ x\in B_{1}\left(x_{0}\right) $ and $ t\in \left(0, T\right) $ with the Dirichlet boundary condition, where $ a $ and $ b $ are positive real numbers, $ B_{1}\left(x_{0}\right) $ is a $ n $-dimensional ball with the center and radius being $ x_{0} $ and $ 1 $, and the nonlinear sources $ f $ and $ g $ are positive functions such that they are unbounded when $ u $ and $ v $ tend to a positive constant $ c $, respectively. We prove that the solution $ \left(u, v\right) $ quenches simultaneously and non-simultaneously under some sufficient conditions.
[1] | K. Bimpong-Bota, P. Ortoleva, J. Ross, Far-from-equilibrium phenomena at local sites of reaction, J. Chem. Phys., 60 (1974), 3124-3133. doi: 10.1063/1.1681498 |
[2] | J. M. Chadam, A. Peirce, H. M. Yin, The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 169 (1992), 313-328. doi: 10.1016/0022-247X(92)90081-N |
[3] | W. Y. Chan, Simultaneous quenching for semilinear parabolic system with localized sources in a square domain, J. Appl. Math. Phys., 7 (2019), 1473-1487. doi: 10.4236/jamp.2019.77099 |
[4] | C. Chang, Y. Hsu, H. T. Liu, Quenching behavior of parabolic problems with localized reaction term, Math. Stat., 2 (2014), 48-53. doi: 10.13189/ms.2014.020107 |
[5] | K. Deng, H. A. Levine, On the blowup of $u_{t}$ at quenching, Proc. Amer. Math. Soc., 106 (1989), 1049-1056. |
[6] | J. S. Guo, On the quenching behavior and the solution of a semilinear parabolic equation, J. Math. Anal. Appl., 151 (1990), 58-79. doi: 10.1016/0022-247X(90)90243-9 |
[7] | R. H. Ji, C. Y. Qu, L. D. Wang, Simultaneous and non-simultaneous quenching for coupled parabolic system, Appl. Anal., 94 (2015), 233-250. doi: 10.1080/00036811.2014.887694 |
[8] | Z. Jia, Z. Yang, C. Wang, Non-simultaneous quenching in a semilinear parabolic system with multi-singular reaction terms, Electron. J. Differ. Equ., 100 (2019), 1-13. |
[9] | G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone iterative techniques for nonlinear differential equations, Pitman, 1985,139. |
[10] | H. Li, M. Wang, Blow-up properties for parabolic systems with localized nonlinear sources, Appl. Math. Lett., 17 (2004), 771-778. doi: 10.1016/j.aml.2004.06.004 |
[11] | N. Nouaili, A Liouville theorem for a heat equation and applications for quenching, Nonlinearity, 24 (2011), 797-832. doi: 10.1088/0951-7715/24/3/005 |
[12] | P. Ortoleva, J. Ross, Local structures in chemical reactions with heterogeneous catalysis, J. Chem. Phys., 56 (1972), 4397-4400. doi: 10.1063/1.1677879 |
[13] | C. V. Pao, Nonlinear parabolic and elliptic equations, New York: Plenum Press, 1992, pp. 54, 55, 97, and 436. |
[14] | G. F. Roach, Green's functions, New York: Cambridge University Press, 1982,267-268. |
[15] | A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Blow-up in quasilinear parabolic equations, New York: Walter de Gruyter, 1995, 10-11. |
[16] | S. Zheng, W. Wang, Non-simultaneous versus simultaneous quenching in a coupled nonlinear parabolic system, Nonlinear Anal., 69 (2008), 2274-2285. doi: 10.1016/j.na.2007.08.007 |