Research article

New integral inequalities using exponential type convex functions with applications

  • Received: 29 January 2021 Accepted: 28 April 2021 Published: 13 May 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.

    Citation: Jian Wang, Saad Ihsan But, Artion Kashuri, Muhammad Tariq. New integral inequalities using exponential type convex functions with applications[J]. AIMS Mathematics, 2021, 6(7): 7684-7703. doi: 10.3934/math.2021446

    Related Papers:

  • In this paper, we establish some new Hermite-Hadamard type inequalities for differential exponential type convex functions and discuss several special cases. Moreover, in order to give the efficient of our main results, some applications for special means and error estimations are obtain.



    加载中


    [1] I. A. Baloch, Y. M. Chu, Petrovíc-type inequalities for harmonic $h$-convex functions, J. Funct. Spaces, 2020 (2020), 3075390.
    [2] X. Qiang, G. Farid, J. Pečarič, S. B. Akbar, Generalized fractional integrals inequalities for exponentially $(s, m)$-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7
    [3] Y. Khurshid, M. A. Khan, Y. M. Chu, Conformable integral inequalities of the Hermite-Hadamard type in terms of $GG$- and $GA$-convexities, J. Funct. Spaces, 2019 (2019), 6926107.
    [4] T. Toplu, M. Kadakal, Í. Íşcan, On $n$-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304-1318. doi: 10.3934/math.2020089
    [5] N. Mehreen, M. Anwar, Some integral inequalities for co-ordinated harmonically convex functions via fractional integrals, Eng. Appl. Sci. Lett., 3 (2020), 60-74. doi: 10.30538/psrp-easl2020.0052
    [6] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95.
    [7] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806. doi: 10.1515/math-2020-0038
    [8] A. Kashuri, R. Liko, Some new Hermite-Hadamard type inequalities and their applications, Stud. Sci. Mathematicarum Hung., $\bf 56$ (2019), 103-142.
    [9] A. Kashuri, S. Iqbal, S. I. Butt, J. Nasir, K. S. Nisar, T. Abdeljawad, Trapezium-type inequalities for $k$-fractional integral via new exponential-type convexity and their applications, J. Math., 2020 (2020), 8672710.
    [10] G. Farid, K. Mahreen, Y. M. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open J. Math. Sci., 5 (2021), 80-93. doi: 10.30538/oms2021.0147
    [11] P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. doi: 10.3390/sym12091485
    [12] G. Farid, A. Ur Rehman, S. Bibi, Y. M. Chu, Refinements of two fractional versions of Hadamard inequalities for Caputo fractional derivatives and related results, Open J. Math. Sci., 5 (2021), 1-10. doi: 10.30538/oms2021.0139
    [13] S. Mehmood, G. Farid, Fractional integrals inequalities for exponentially $m$-convex functions, Open J. Math. Sci., 4 (2020), 78-85. doi: 10.30538/oms2020.0097
    [14] T. A. Aljaaidi, D. B. Pachpatte, Reverse Hermite-Hadamards inequalities using $\psi$-fractional integral, Eng. Appl. Sci. Lett., 3 (2020), 75-84. doi: 10.30538/psrp-easl2020.0053
    [15] A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable $s$-convex functions and their applications, J. Fractional Calculus Nonlinear Syst., 1 (2021), 75-94. doi: 10.48185/jfcns.v1i1.150
    [16] D. Baleanu, A. Kashuri, P. O. Mohammed, B. Meftah, General Raina fractional integral inequalities on coordinates of convex functions, Adv. Differ. Equations, 2021 (2021), 82. doi: 10.1186/s13662-021-03241-y
    [17] P. O. Mohammed, T. Abdeljawad, M. A. Alqudah, F. Jarad, New discrete inequalities of Hermite-Hadamard type for convex functions, Adv. Differ. Equations, 2021 (2021), 122. doi: 10.1186/s13662-021-03290-3
    [18] N. Mehreen, M. Anwar, Hermite-Hadamard-Fejér type inequalities for co-ordinated harmonically convex functions via Katugampola fractional integrals, Eng. Appl. Sci. Lett., 4 (2021), 12-28. doi: 10.30538/psrp-easl2021.0067
    [19] S. N. Bernstein, Sur les fonctions absolument monotons, Acta Math., 52 (1929), 1-66. doi: 10.1007/BF02592679
    [20] D. V. Widder, Necessary and sufficient conditions for the representation of a function by a doubly infinite Laplace integral, Trans. Am. Math. Soc., 40 (1934), 321-326.
    [21] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via $n$-polynomial exponential-type convexity and their applications, Adv. Differ. Equations, 2020 (2020), 508. doi: 10.1186/s13662-020-02967-5
    [22] S. I. Butt, J. Pečarič, A. U. Rehman, Exponential convexity of Petrovíc and related functions, J. Inequal. Appl., 2011 (2011), 89. doi: 10.1186/1029-242X-2011-89
    [23] S. I. Butt, R. Jaksic, L. Kvesic, J. Pečarič, $n$-Exponential convexity of weighted Hermite-Hadamard's Inequality, J. Math. Inequal., 8 (2014), 299-311.
    [24] S. I. Butt, M. Nadeem, G. Farid, On Caputo fractional derivatives via exponential (s, m)-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 32-39.
    [25] S. Mehmood, G. Farid, K. A. Khan, M. Yussouf, New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially $(h, m)$-convex functions, Eng. Appl. Sci. Lett., 3 (2020), 9-18.
    [26] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1-9. doi: 10.1186/s13660-019-2265-6
    [27] B. Sroysang, Generalizations on some Hermite-Hadamard type inequalities for differential convex function with applications to weighted means, Sci. World J., 2014 (2014), 717164.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2519) PDF downloads(199) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog