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1. Introduction

Among the integral inequalities, Hermite-Hadamard inequality is one of the elegant inequalities
involving convex functions, which discloses the relation among the integral mean of a convex function,
both the arithmetic mean of the images and the image of the arithmetic mean of the integral limits. Its
origin goes back to the studies of Hermite that is published in Mathesis 3 (1883, p.82) and, ten years
later, by Hadamard. After it has been called Hadamard’s inequality for a long time, the Hermite-
Hadamard inequality is commonly used. This inequality asserts that for a convex function defined on
the interval [a, b],

f
(
a + b

2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2
. (1.1)

This inequality implies that the mean value of the integral of the convex function f on [a, b] interpolates
between the image of the arithmetic mean of the endpoints of [a, b] and the arithmetic mean of the
images of the endpoints of [a, b].
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This inequality attracts special interests of many researchers. They presented various refinements,
extensions, generalizations, extensions for differents function types (see [1, 2, 8, 12, 13, 15, 16, 22, 24,
27–31] and the references therein). Especially, many of the extension studies relates with the new type
of convexities. s-convexity, which originates from the studies on modular spaces [6], is one of them
and has some applications, especially, in fractal theory [21]. Let us recall the definition of classical
convex function for a clear understanding of s-convexity.

Let U be a convex set in a vector space X and f : U → R. f is said to be convex function, if the
inequality

f (λx + µy) ≤ λ f (x) + µ f (y) (1.2)

holds for all x, y ∈ U and the positive numbers λ, µ with λ + µ = 1.
s-Convexity is obtained either by replacing λ, µwith λs, µs in the condition λ+µ = 1 or by replacing

λ, µ with λs, µs or λ
1
s , µ

1
s in right handside of (1.2) or by making both properly. According to these

replacements, different types of s-convexity are defined. The first sense, the second sense are well-
known ones and given as follows:

Let U ⊆ Rn and 0 < s ≤ 1. If for each x, y ∈ U, λ, µ ≥ 0 such that λs + µs = 1, λx + µy ∈ U, then
U is called an s-convex set in Rn. This definition is the same as the definition of p-convex set given in
article [5]. Therefore, when s-convex set is mentioned in this article, p-convex set will be understood.

Let U ⊆ Rn be an s-convex set such that s ∈ (0, 1]. A function f : U → R is said to be s-convex in
the first sense if the inequality

f (λx + µy) ≤ λs f (x) + µs f (y) (1.3)

holds for all x, y ∈ U and λ, µ ≥ 0 with λs + µs = 1.
Let U ⊆ Rn be a convex set and s ∈ (0, 1]. A function f : U → R is said to be s-convex in the

second sense if the inequality
f (λx + µy) ≤ λs f (x) + µs f (y) (1.4)

holds for all x, y ∈ U and λ, µ ≥ 0 with λ + µ = 1.
Also the third sense s-convexity is introduced [26]. In the literature, there are quite a number of

studies on Hermite-Hadamard inequality and extensions for s-convex functions in the first and
especially, second sense [3, 7, 9, 10, 14, 18–20, 23, 25].

In this study, we present the Hermite-Hadamard inequality for the s-convex functions in the third
sense. Also some integral inequalities are given.

2. Preliminaries

Throughout this paper, R+ and Z++ denote the set of nonnegative real numbers and the set of positive
integers, respectively. Let us express a proposition that will be needed hereafter:

Proposition 1. [4] For a > 0, [0, a) is an s-convex set.

Definition 2. [17] Let s ∈ (0, 1], U ⊆ Rn be an s-convex set and f : U → R. If for all x, y ∈ U and
t, v ≥ 0 such that ts + vs = 1,

f (tx + vy) ≤ t
1
s f (x) + v

1
s f (y), (2.1)

then f is said to be s-convex function in the third sense. The class of these functions are denoted by K3
s .
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It is clear that, we obtain classical convexity of a function for s = 1 in (2.1).
Inequality (2.1) can be expressed in terms of one parameter in two ways: Firstly, since ts + vs = 1,

hence, v = (1 − ts)
1
s , we can write

f (tx + (1 − ts)
1
s y) ≤ t

1
s f (x) + (1 − ts)

1
s2 f (y).

Secondly, replacing the condition ts + vs = 1 with
(
t

1
s

)s
+

(
v

1
s

)s
= 1, we have

f (t
1
s x + (1 − t)

1
s y) ≤ t

1
s2 f (x) + (1 − t)

1
s2 f (y).

Gamma, beta functions and some relations used in some of the results are below. These functions
are defined as follows, respectively: For x, y > 0,

Γ(x) =

∞∫
0

e−ttx−1dt and B(x, y) =

1∫
0

tx−1(1 − t)y−1dt.

Beta and gamma functions have the following properties:
For x, y > 0 and n ∈ Z++,

B(x, y) = B(y, x) , B(x + 1, y) =
x

x + y
B(x, y) , B(x, y) =

Γ(x)Γ(y)
Γ(x + y)

, Γ(n) = (n − 1)!.

Now, let us give an inequality on beta function we will use later:

Theorem 3. [11] Let p, q > 0. Then∣∣∣∣∣B(p + 1, q + 1) −
1

(1 + p)(1 + q)

∣∣∣∣∣ ≤ 1
4
. (2.2)

3. Main results

Throughout this paper, the set U will be taken as an s-convex subset of R.

Theorem 4. Let U ⊆ R+ and f : U → R+ be an integrable s-convex function in the third sense. For
a, b ∈ U with a < b, the following inequality holds

2
1
s2 −1 f (

a + b

2
1
s

)(b − a) 6

b∫
a

f (x)dx 6
1

s + 1

(
1
s
[
f (a)b + f (b)a

]
B(

1
s2 ,

1
s

) + s
[
f (b)b + f (a)a

])
.

Proof. To show the right part of the inequality, we change variable x = t
1
s b + (1 − t)

1
s a, then we have

b∫
a

f (x)dx =
1
s

1∫
0

f (t
1
s b + (1 − t)

1
s a)(bt

1
s−1 − a (1 − t)

1
s−1)dt.
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Using the s-convexity of f , we can write

b∫
a

f (x)dx ≤ 1
s

1∫
0

([
t

1
s2 f (b) + (1 − t)

1
s2 f (a)

] [
bt

1
s−1 + a (1 − t)

1
s−1

])
dt

= 1
s

1∫
0

(
f (a)

[
bt

1
s−1 (1 − t)

1
s2 + a (1 − t)

1
s2 + 1

s−1
]

+ f (b)
[
at

1
s2 (1 − t)

1
s−1 + bt

1
s2 + 1

s−1
])

dt

= 1
s

 f (a)

1∫
0

[
bt

1
s−1 (1 − t)

1
s2 + a (1 − t)

1
s2 + 1

s−1
]

dt + f (b)

1∫
0

[
at

1
s2 (1 − t)

1
s−1 + bt

1
s2 + 1

s−1
]

dt


= 1

s

 f (a)b
Γ

(
1+ 1

s2

)
Γ( 1

s )
Γ

(
1+ 1

s + 1
s2

) + f (a)a s2

s+1 + f (b)a
Γ

(
1+ 1

s2

)
Γ( 1

s )
Γ

(
1+ 1

s + 1
s2

) + f (b)b s2

s+1


= 1

s

[
f (a)b + f (b)a

] Γ

(
1+ 1

s2

)
Γ( 1

s )
Γ

(
1+ 1

s + 1
s2

) +
[
f (b)b + f (a)a

] s
s+1

= 1
s(s+1)

[
f (a)b + f (b)a

]
B( 1

s2 ,
1
s ) +

[
f (b)b + f (a)a

] s
s+1

= 1
s+1

(
1
s

[
f (a)b + f (b)a

]
B( 1

s2 ,
1
s ) + s

[
f (b)b + f (a)a

])
.

For the first part of the inequality, since f ∈ K3
s , we have

f (
x + y

2
1
s

) 6
f (x) + f (y)

2
1
s2

for all x, y > 0. Let x = ta + (1 − t)b and y = tb + (1 − t)a for t ∈ (0, 1]. Then

f (
a + b

2
1
s

) 6
f (ta + (1 − t)b) + f ((1 − t)a + tb)

2
1
s2

.

Integrating both side and using the fact that

1∫
0

f (ta + (1 − t) b) dt =

1∫
0

f (tb + (1 − t) a) dt,

one can have

2
1
s2 −1 f (

a + b

2
1
s

) 6
1

b − a

b∫
a

f (x)dx.

�

Corollary 5. It is obtained a Hermite-Hadamard type inequality for the convex functions in case s = 1
in Theorem 4.
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Theorem 6. Let f : U → R be an integrable s-convex function in the third sense. For a, b ∈ U with
a < b, the following inequality holds∫ 1

0
f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt ≤

1
s + 1

(
s +

1
s

B(
1
s2 ,

1
s

)
) [

f (a) + f (b)
]
. (3.1)

Proof. Using the s-convexity in the third sense of f , for t ∈ [0, 1] and a, b ∈ U with a < b, we have

f
(
ta + (1 − ts)

1
s b

)
≤ t

1
s f (a) + (1 − ts)

1
s2 f (b)

and
f
(
(1 − ts)

1
s a + tb

)
≤ (1 − ts)

1
s2 f (a) + t

1
s f (b).

By summing these inequalities side by side, it is derived that

f
(
ta + (1 − ts)

1
s b

)
+ f

(
(1 − ts)

1
s a + tb

)
≤

[
f (a) + f (b)

] [
(1 − ts)

1
s2 + t

1
s

]
.

Using the definite integration on [0, 1] yields∫ 1

0
f
(
ta + (1 − ts)

1
s b

)
dt +

∫ 1

0
f
(
(1 − ts)

1
s a + tb

)
dt ≤

[
f (a) + f (b)

] 1∫
0

[
(1 − ts)

1
s2 + t

1
s

]
dt. (3.2)

By changing variable v = (1 − ts)
1
s at first integral of left side of the inequality above, ts = 1 − vs,

v ∈ [0, 1] and ts−1dt = −vs−1dv, hence
1∫

0

f
(
ta + (1 − ts)

1
s b

)
dt = −

0∫
1

f
(
(1 − vs)

1
s a + vb

) [ v

(1 − vs)
1
s

]s−1

dv

=

1∫
0

f
(
(1 − ts)

1
s a + tb

)
(1 − ts)

1
s−1ts−1dt.

Using this equality,
1∫

0

f
(
ta + (1 − ts)

1
s b

)
dt +

1∫
0

f
(
(1 − ts)

1
s a + tb

)
dt =

1∫
0

f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt.

Using the equality
1∫

0
(1 − ts)

1
s2 dt = 1

s(s+1) B( 1
s2 ,

1
s ) related on beta function, we have

1∫
0

[
(1 − ts)

1
s2 + t

1
s

]
dt =

1
s + 1

(
s +

1
s

B(
1
s2 ,

1
s

)
)
.

From the inequality (3.2), we obtain
1∫

0

f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt ≤

1
s + 1

(
s +

1
s

B(
1
s2 ,

1
s

)
) [

f (a) + f (b)
]
.

�
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The upper bound for the integral at the left side of (3.1) is given in terms of beta function, which is
also another integral. We can find the upper bound without beta function.

Theorem 7. Let f : U → R be an integrable s-convex function in the third sense. For a, b ∈ U with
a < b, the following inequality holds∫ 1

0
f
(
(1 − ts)

1
s a + t b

) [
1 + (1 − ts)

1
s−1ts−1

]
dt ≤

(
s +

1
4s

) [
f (a) + f (b)

]
.

Proof. From (2.2), we obtain

B(
1
s2 ,

1
s

) ≤
1
4

+ s3.

Using this inequality in Theorem 6, we can write∫ 1

0
f
(
(1 − ts)

1
s a + t b

) [
1 + (1 − ts)

1
s−1ts−1

]
dt ≤

1
s + 1

(
s + s2 +

1
4s

) [
f (a) + f (b)

]
≤

(
s +

1
4s(s + 1)

) [
f (a) + f (b)

]
≤

(
s +

1
4s

) [
f (a) + f (b)

]
.

�

Theorem 8. Let U ⊆ R+ and f : U → R be a nondecreasing s-convex function in the third sense. For
a, b ∈ U with a < b, the following inequality holds:

f
(

a+b

2
2
s −1

)
≤

1∫
0

f
(

a+b

2
1
s

[
t + (1 − ts)

1
s
])

dt ≤ 1

2
1
s2

1∫
0

f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt. (3.3)

Proof. Since h(x) = x
1
s is a convex function on [0,∞) for 0 < s < 1, we know that

h
( x + y

2

)
≤

h(x) + h(y)
2

.

Writing x = ts and y = 1 − ts, we have(
ts + 1 − ts

2

) 1
s

=
1

2
1
s

≤
(ts)

1
s + (1 − ts)

1
s

2

a + b

2
1
s

·
1

2
1
s

≤
a + b

2
1
s

·
t + (1 − ts)

1
s

2
hence,

a + b

2
2
s−1
≤

a + b

2
1
s

·
[
t + (1 − ts)

1
s
]
.

Using the fact that f is nondecreasing on (0,∞), we obtain

f
(
a + b

2
2
s−1

)
≤ f

(
a + b

2
1
s

[
t + (1 − ts)

1
s
])

for all t ∈ [0, 1].
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Integration on [0, 1] yields to the upper inequality in (3.3). From f being s-convex, it is known that for
all x, y ∈ [0,∞),

f
(

x + y

2
1
s

)
≤

f (x) + f (y)

2
1
s2

(3.4)

Putting x = ta + (1 − ts)
1
s b and y = (1 − ts)

1
s a + tb with t ∈ [0, 1] above, we deduce

f
(
a + b

2
1
s

[
t + (1 − ts)

1
s
])
≤

1

2
1
s2

[
f
(
ta + (1 − ts)

1
s b

)
+ f

(
(1 − ts)

1
s a + tb

)]
.

If each side of inequality is integrated on [0,1] over t, then

1∫
0

f
(
a + b

2
1
s

[
t + (1 − ts)

1
s
])

dt ≤
1

2
1
s2


1∫

0

f
(
ta + (1 − ts)

1
s b

)
dt +

1∫
0

f
(
(1 − ts)

1
s a + tb

)
dt

 . (3.5)

By changing variable v = (1 − ts)
1
s as indicated in the proof of Theorem 6 we have,

1

2
1
s2


1∫

0

f
(
ta + (1 − ts)

1
s b

)
dt +

1∫
0

f
(
(1 − ts)

1
s a + tb

)
dt

 =
1

2
1
s2

1∫
0

f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt.

Thus
1∫

0

f
(
a + b

2
1
s

[
t + (1 − ts)

1
s
])

dt ≤
1

2
1
s2

1∫
0

f
(
(1 − ts)

1
s a + tb

) [
1 + (1 − ts)

1
s−1ts−1

]
dt

is obtained. �

Combining Theorem 6 with Theorem 8 and Theorem 7, we conclude the following result.

Corollary 9. Let U ⊆ R+ and f : U → R be a nondecreasing s-convex function in the third sense. For
a, b ∈ U with a < b, the following inequality holds:

2
1
s2 f

(
a + b

2
2
s−1

)
≤

1
s + 1

(
s +

1
s

B(
1
s2 ,

1
s

)
) [

f (a) + f (b)
]
≤

(
s +

1
4s

) [
f (a) + f (b)

]
.

Theorem 10. Let f : U → R+ be an s-convex function in the third sense. If a, b ∈ U with a < b, then

1∫
0

f (t
1
s a + (1 − t)

1
s b)dt ≤

f (a) + f (b)
2

.

Proof. Using s-convexity in the third sense of f , for all x, y ∈ U and t ∈ [0, 1],

f (t
1
s a + (1 − t)

1
s b) ≤ t

1
s2 f (a) + (1 − t)

1
s2 f (b).

Since t
1
s2 ≤ t and (1 − t)

1
s2 ≤ 1 − t, we have

f (t
1
s a + (1 − t)

1
s b) ≤ t f (a) + (1 − t) f (b).
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Integration on t gives
1∫

0

f (t
1
s a + (1 − t)

1
s b)dt ≤

f (a) + f (b)
2

.

�

Theorem 11. Let U ⊆ R+ and f : U → R be an increasing s-convex function in the third sense. If
a, b ∈ U with a < b, then the following inequalities holds:

f
(
a + b

2
2
s−1

)
≤

∫ 1

0
f
(
a + b

2
1
s

[
t

1
s + (1 − t)

1
s
])

dt ≤ 21− 1
s2

∫ 1

0
f
(
at

1
s + b(1 − t)

1
s
)

dt ≤
2s2

2
1
s2 (s2 + 1)

[ f (a)+ f (b)].

Proof. The fact that h(x) = x
1
s is a convex function for s ∈ (0, 1] on [0,∞) implies

1

2
1
s

≤
t

1
s + (1 − t)

1
s

2

for all t ∈ [0, 1]. From the monotonicity of f , one can get

f
(
a + b

2
1
s

·
2

2
1
s

)
= f

(
a + b

2
2
s−1

)
≤ f

(
a + b

2
1
s

[
t

1
s + (1 − t)

1
s
])

for all t ∈ [0, 1]. Thus the first inequality (from left to right) is obtained.
By using the s-convexity of f , we have

f
(
a + b

2
1
s

[
t

1
s + (1 − t)

1
s
])
≤

1

2
1
s2

[
f
(
at

1
s + b(1 − t)

1
s
)

+ f
(
a(1 − t)

1
s + bt

1
s
)]
. (3.6)

From the changing of variables, it is clear that∫ 1

0
f
(
a(1 − t)

1
s + bt

1
s
)

dt =

∫ 1

0
f
(
at

1
s + b(1 − t)

1
s
)

dt.

So (3.6) yields to the second inequality (from left to right). On the other hand, the s-convexity of f on
[0,∞) implies

f
(
t

1
s a + (1 − t)

1
s b

)
≤ t

1
s2 f (a) + (1 − t)

1
s2 f (b)

for all t ∈ [0, 1]. By integrating this inequality over t in [0, 1], one can have that∫ 1

0
f
(
t

1
s a + (1 − t)

1
s b

)
dt ≤

s2

s2 + 1
[ f (a) + f (b)].

By multiplying each side with 21− 1
s2 , we get the last part of the inequality. �

Theorem 12. Let U ⊆ R+ and f : U → R+ be an integrable s-convex function in the third sense and
let 0 < a < b. If

∞∫
a

x
s+1

s(s−1) f (x)dx

AIMS Mathematics Volume 6, Issue 7, 7719–7732.
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is finite, then

1
b − a

b∫
a

f (x)dx ≤
s

1 − s

[
a

1+s2
s(1−s)

∫ ∞

a
x

s+1
s(s−1) f (x)dx + b

1+s2
s(1−s)

∫ ∞

b
x

s+1
s(s−1) f (x)dx

]
.

Proof. Using the s-convexity of f on U for any z, y ∈ U and u ∈ [0, 1], we have

f
(
u

1
s z + (1 − u)

1
s y

)
≤ u

1
s2 f (z) + (1 − u)

1
s2 f (y).

By making substitutions z = u1− 1
s a, u ∈ (0, 1] and y = (1 − u)1− 1

s b, u ∈ [0, 1), the following is obtained:

f (ua + (1 − u)b) ≤ u
1
s2 f

(
u1− 1

s a
)

+ (1 − u)
1
s2 f

(
(1 − u)1− 1

s b
)

(3.7)

for all u ∈ (0, 1). To show the validity of the inequality above, first, let us testify that
∫ 1

0
u

1
s2 f

(
u1− 1

s a
)

du

is finite. The change of the variable x = u1− 1
s a, u ∈ (0, 1] yields

u =

( x
a

) 1
1− 1

s =

( x
a

) s
s−1

=
x

s
s−1

a
s

s−1

and
du =

s
s − 1

·
1

a
s

s−1
x

s
s−1−1dx =

s
s − 1

·
1

a
s

s−1
x

1
s−1 dx.

Thus,

1∫
0

u
1
s2 f

(
u1− 1

s a
)

du =

a∫
∞

 x
1

s(s−1)

a
1

s(s−1)

·
s

s − 1
·

x
1

s−1

a
s

s−1
f (x)

 dx =
s

1 − s
· a

1+s2
s(1−s)

∞∫
a

x
s+1

s(s−1) f (x)dx < ∞.

For the integral
1∫

0

(1 − u)
1
s2 f

(
(1 − u)1− 1

s b
)

du,

the change of variable t = 1 − u, u ∈ [0, 1) yields to∫ 1

0
t

1
s2 f

(
t1− 1

s b
)

dt.

In a similar way above, by the substitution x = t1− 1
s b, t ∈ (0, 1],∫ 1

0
t

1
s2 f

(
t1− 1

s b
)

dt =
s

1 − s
· b

1+s2
s(1−s)

∫ ∞

b
x

s+1
s(s−1) f (x)dx < ∞

is deduced. Integrating the inequality (3.7) on (0,1) over u, taking into account that

∫ 1

0
f (ua + (1 − u)b)du =

1
b − a

b∫
a

f (x)dx
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and ∫ 1

0
u

1
s2 f

(
u1− 1

s a
)

du =
s

1 − s
· a

1+s2
s(1−s)

∫ ∞

a
x

s+1
s(s−1) f (x)dx,∫ 1

0
(1 − u)

1
s2 f

(
(1 − u)1− 1

s b
)

du =
s

1 − s
· b

1+s2
s(1−s)

∫ ∞

b
x

s+1
s(s−1) f (x)dx

respectively, one can obtain the desired inequality. �

Theorem 13. Let U ⊆ R+ and f : U → R+ be an s-convex function in the third sense and let 0 < a < b.
Then

(i) Let g : [0, 1]→ R be a function defined as follows

g(t) =
1

b − a

b∫
a

f (tx + (1 − t)
a + b

2
)dx.

If f is decreasing (or noninreasing) function then g ∈ K3
s .

(ii) If f is integrable on [a, b], then the following inequality holds for t ∈ (0, 1], g(t) ≥ 2
1
s2 −1 f

(
a+b

2
1
s

)
.

Proof. (i) Let x, y ∈ [0, 1] and λ, µ ≥ 0 with λs +µs = 1. Using λ+µ ≤ 1, monotonicity and s-convexity
of f , we can write

g (λt1 + µt2) =
1

b − a

b∫
a

f
(
(λt1 + µt2) x +

[
1 − (λt1 + µt2)

] a + b
2

)
dx

=
1

b − a

b∫
a

f
(
λt1x − λt1

a + b
2

+ µt2x − µt2
a + b

2
+

a + b
2

)
dx

≤
1

b − a

b∫
a

f
(
λt1x − λt1

a + b
2

+ µt2x − µt2
a + b

2
+ (λ + µ)

a + b
2

)
dx

=
1

b − a

b∫
a

f
(
λ

(
t1x + (1 − t1)

a + b
2

)
+ µ

(
t2x + (1 − t2)

a + b
2

))
dx

≤
1

b − a

b∫
a

[
λ

1
s f

(
t1x + (1 − t1)

a + b
2

)
+ µ

1
s f

(
t2x + (1 − t2)

a + b
2

)]
dx

= λ
1
s g (t1) + µ

1
s g (t2) .

(ii) Assume that t ∈ (0, 1]. By changing variable u = tx + (1 − t) a+b
2 , we have

g(t) =
1

t(b − a)

∫ tb+(1−t) a+b
2

ta+(1−t) a+b
2

f (u)du =
1

m − n

∫ m

n
f (u)du
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where m = tb + (1 − t) a+b
2 and n = ta + (1 − t) a+b

2 . The left part of the Hermite-Hadamard inequality
gives

1
m − n

∫ m

n
f (u)du ≥ 2

1
s2 −1 f

(
m + n

2
1
s

)
= 2

1
s2 −1 f

(
a + b

2
1
s

)
hence, we get the required inequality. �

Theorem 14. Let f : U → R+ be an s-convex function in the third sense. Let a, b ∈ U with a < b.
Consider the function

h(t) =
1

(b − a)2

b∫
a

b∫
a

f (tx + (1 − t)y)dxdy, t ∈ [0, 1].

(i) If f is decreasing function, then h is also s-convex function in the third sense on [0, 1].
(ii) If f is integrable on [a, b], then the following inequality holds:

21− 1
s2 h(t) ≥

1
(b − a)2

b∫
a

b∫
a

f
(

x + y

2
1
s

)
dxdy, t ∈ [0, 1].

Proof. (i) Let x, y ∈ [0, 1] and λ, µ ≥ 0 with λs + µs = 1. Taking into account that λs−1 − t1 ≥ 1 − t1 for
t1, λ ∈ [0, 1] and µs−1 − t2 ≥ 1 − t2 for t2, µ ∈ [0, 1], then using the monotonicity and s-convexity of f ,
respectively, we have

h (λt1 + µt2) =
1

(b − a)2

b∫
a

b∫
a

f ((λt1 + µt2) x + (1 − (λt1 + µt2))y)dxdy

=
1

(b − a)2

b∫
a

b∫
a

f
(
λ
[
t1x +

(
λs−1 − t1

)
y
]

+ µ
[
t2x +

(
µs−1 − t2

)
y
])

dxdy

≤
1

(b − a)2

b∫
a

b∫
a

f
(
λ
[
t1x + (1 − t1) y

]
+ µ

[
t2x + (1 − t2) y

])
dxdy

≤
1

(b − a)2

b∫
a

b∫
a

{λ
1
s f

([
t1x + (1 − t1) y

]
) + µ

1
s f (

[
t2x + (1 − t2) y

])
}dxdy

= λ
1
s h (t1) + µ

1
s h (t2)

(ii) From (3.4), we can write

f
(

x + y

2
1
s

)
≤

f (tx + (1 − t)y) + f (ty + (1 − t)x)

2
1
s2

for all t ∈ [0, 1] and x, y ∈ [a, b]. Integrating this inequality on [a, b]2 we get

1

2
1
s2


b∫

a

b∫
a

f (tx + (1 − t)y)dxdy +

b∫
a

b∫
a

f ((1 − t)x + ty)dxdy

 ≥
b∫

a

b∫
a

f
(

x + y

2
1
s

)
dxdy
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since
b∫

a

b∫
a

f (tx + (1 − t)y)dxdy =

b∫
a

b∫
a

f ((1 − t)x + ty)dxdy

the above inequality gives us the desired result. �
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