A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [
Citation: Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu. A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $[J]. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003
A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [
[1] | A. Arvanitoyeorgos, G. Kaimakamis, Hypersurfaces of type $M_{2}^{3}$ in $E_{2}^{4}$ with proper mean curvature vector, J. Geom. Phys., 63 (2013), 99–106. doi: 10.1016/j.geomphys.2012.09.011. doi: 10.1016/j.geomphys.2012.09.011 |
[2] | A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, Hypersurfaces of $E^{4}_{s}$ with proper mean curvature vector, J. Math. Soc. Japan, 59 (2007), 797–809. doi: 10.2969/jmsj/05930797. doi: 10.2969/jmsj/05930797 |
[3] | A. Arvanitoyeorgos, G. Kaimakamis, M. Magid, Lorentz hypersurfaces in $E_{1}^{4}$ satisfying $\Delta \vec{H} = \alpha \vec{H}$, Illinois J. Math., 53 (2009), 581–590. doi: 10.1215/ijm/1266934794. doi: 10.1215/ijm/1266934794 |
[4] | B. Y. Chen, Null two-type surfaces in $\mathbb E^{3}$ are circular cylinders, Kodai Math. J., 11 (1988), 295–299. doi: 10.2996/kmj/1138038880. doi: 10.2996/kmj/1138038880 |
[5] | B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (1991), 323–347. doi: 10.2206/kyushumfs.45.323. doi: 10.2206/kyushumfs.45.323 |
[6] | B. Y. Chen, Null two-type surfaces in Euclidean space, In: Proceedings of the symposium in honor of Cheng-Sung Hsu and Kung-Sing Shih: Algebra, analysis, and geometry (National Taiwan Univ. 1988), Teaneck, NJ: World Scientific, Publ., 1988, 1–18. |
[7] | B. Y. Chen, Submanifolds of Euclinean spaces satisfying $\Delta H = \lambda H$, Tamkang J. Math., 25 (1994), 71–81. doi: 10.5556/j.tkjm.25.1994.4427. doi: 10.5556/j.tkjm.25.1994.4427 |
[8] | B. Y. Chen, Submanifolds in De Sitter space-time satisfying $\Delta H = \lambda H$, Isr. J. Math., 91 (1995), 373–391. doi: 10.1007/bf02761657. doi: 10.1007/bf02761657 |
[9] | B. Y. Chen, Total mean curvature and submanifolds of finite type, 2 Eds., Hackensack, NJ: World Scientific, 2014. doi: 10.1142/9237. |
[10] | F. Defever, Hypersurfaces of $E^{4}$ satisfying $\Delta H = \lambda H$, Michigan Math. J., 44 (1997), 355–363. doi: 10.1307/mmj/1029005710. doi: 10.1307/mmj/1029005710 |
[11] | A. Ferr$\acute{a}$ndez, P. Lucas, On surfaces in the 3-dimensional Lorentz-Minkowski space, Pac. J. Math., 152 (1992), 93–100. doi: 10.2140/pjm.1992.152.93. doi: 10.2140/pjm.1992.152.93 |
[12] | Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 67 (2015), 465–479. doi: 10.2748/tmj/1446818561. doi: 10.2748/tmj/1446818561 |
[13] | Y. Fu, M. C. Hong, Biharmonic hypersurfaces with constant scalar curvature in space forms, Pac. J. Math., 294 (2018), 329–350. doi: 10.2140/pjm.2018.294.329. doi: 10.2140/pjm.2018.294.329 |
[14] | Y. Fu, Null 2-type hypersurfaces with at most three distinct principal curvatures in Euclidean space, Taiwan. J. Math., 19 (2015), 519–533. doi: 10.11650/tjm.19.2015.4847. doi: 10.11650/tjm.19.2015.4847 |
[15] | R. S. Gupta, Hypersurfaces in Pseudo-Euclidean space with Condition $\triangle H = \lambda H$, Bull. Malays. Math. Sci. Soc., 44 (2021), 3019–3042. doi: 10.1007/s40840-021-01098-8. doi: 10.1007/s40840-021-01098-8 |
[16] | J. C. Liu, C. Yang, Hypersurfaces in $\mathbb{E}_{s}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most three distinct principal curvatures, J. Math. Anal. Appl., 419 (2014), 562–573. doi: 10.1016/j.jmaa.2014.04.066. doi: 10.1016/j.jmaa.2014.04.066 |
[17] | J. C. Liu, C. Yang, Lorentz hypersurfaces in $\mathbb{E}_{1}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most three distinct principal curvatures, J. Math. Anal. Appl., 434 (2016), 222–240. doi: 10.1016/j.jmaa.2015.09.017. doi: 10.1016/j.jmaa.2015.09.017 |
[18] | J. C. Liu, C. Yang, Hypersurfaces in $\mathbb{E}_{s}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most two distinct principal curvatures, J. Math. Anal. Appl., 451 (2017), 14–33. doi: 10.1016/j.jmaa.2017.01.090. doi: 10.1016/j.jmaa.2017.01.090 |