Research article

A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $

  • Received: 03 July 2021 Accepted: 08 September 2021 Published: 29 September 2021
  • MSC : 53C40, 53C42

  • A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1]: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.

    Citation: Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu. A class of hypersurfaces in $ \mathbb{E}^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda\vec{H} $[J]. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003

    Related Papers:

  • A nondegenerate hypersurface in a pseudo-Euclidean space $ \mathbb{E}^{n+1}_{s} $ is called to have proper mean curvature vector if its mean curvature $ \vec{H} $ satisfies $ \Delta \vec{H} = \lambda \vec{H} $ for a constant $ \lambda $. In 2013, Arvanitoyeorgos and Kaimakamis conjectured [1]: any hypersurface satisfying $ \Delta \vec{H} = \lambda \vec{H} $ in pseudo-Euclidean space $ \mathbb E_{s}^{n+1} $ has constant mean curvature. This paper will give further support evidences to this conjecture by proving that a linear Weingarten hypersurface $ M^{n}_{r} $ in $ \mathbb E^{n+1}_{s} $ satisfying $ \Delta \vec{H} = \lambda \vec{H} $ has constant mean curvature if $ M^{n}_{r} $ has diagonalizable shape operator with less than seven distinct principal curvatures.



    加载中


    [1] A. Arvanitoyeorgos, G. Kaimakamis, Hypersurfaces of type $M_{2}^{3}$ in $E_{2}^{4}$ with proper mean curvature vector, J. Geom. Phys., 63 (2013), 99–106. doi: 10.1016/j.geomphys.2012.09.011. doi: 10.1016/j.geomphys.2012.09.011
    [2] A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, Hypersurfaces of $E^{4}_{s}$ with proper mean curvature vector, J. Math. Soc. Japan, 59 (2007), 797–809. doi: 10.2969/jmsj/05930797. doi: 10.2969/jmsj/05930797
    [3] A. Arvanitoyeorgos, G. Kaimakamis, M. Magid, Lorentz hypersurfaces in $E_{1}^{4}$ satisfying $\Delta \vec{H} = \alpha \vec{H}$, Illinois J. Math., 53 (2009), 581–590. doi: 10.1215/ijm/1266934794. doi: 10.1215/ijm/1266934794
    [4] B. Y. Chen, Null two-type surfaces in $\mathbb E^{3}$ are circular cylinders, Kodai Math. J., 11 (1988), 295–299. doi: 10.2996/kmj/1138038880. doi: 10.2996/kmj/1138038880
    [5] B. Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 45 (1991), 323–347. doi: 10.2206/kyushumfs.45.323. doi: 10.2206/kyushumfs.45.323
    [6] B. Y. Chen, Null two-type surfaces in Euclidean space, In: Proceedings of the symposium in honor of Cheng-Sung Hsu and Kung-Sing Shih: Algebra, analysis, and geometry (National Taiwan Univ. 1988), Teaneck, NJ: World Scientific, Publ., 1988, 1–18.
    [7] B. Y. Chen, Submanifolds of Euclinean spaces satisfying $\Delta H = \lambda H$, Tamkang J. Math., 25 (1994), 71–81. doi: 10.5556/j.tkjm.25.1994.4427. doi: 10.5556/j.tkjm.25.1994.4427
    [8] B. Y. Chen, Submanifolds in De Sitter space-time satisfying $\Delta H = \lambda H$, Isr. J. Math., 91 (1995), 373–391. doi: 10.1007/bf02761657. doi: 10.1007/bf02761657
    [9] B. Y. Chen, Total mean curvature and submanifolds of finite type, 2 Eds., Hackensack, NJ: World Scientific, 2014. doi: 10.1142/9237.
    [10] F. Defever, Hypersurfaces of $E^{4}$ satisfying $\Delta H = \lambda H$, Michigan Math. J., 44 (1997), 355–363. doi: 10.1307/mmj/1029005710. doi: 10.1307/mmj/1029005710
    [11] A. Ferr$\acute{a}$ndez, P. Lucas, On surfaces in the 3-dimensional Lorentz-Minkowski space, Pac. J. Math., 152 (1992), 93–100. doi: 10.2140/pjm.1992.152.93. doi: 10.2140/pjm.1992.152.93
    [12] Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space, Tohoku Math. J., 67 (2015), 465–479. doi: 10.2748/tmj/1446818561. doi: 10.2748/tmj/1446818561
    [13] Y. Fu, M. C. Hong, Biharmonic hypersurfaces with constant scalar curvature in space forms, Pac. J. Math., 294 (2018), 329–350. doi: 10.2140/pjm.2018.294.329. doi: 10.2140/pjm.2018.294.329
    [14] Y. Fu, Null 2-type hypersurfaces with at most three distinct principal curvatures in Euclidean space, Taiwan. J. Math., 19 (2015), 519–533. doi: 10.11650/tjm.19.2015.4847. doi: 10.11650/tjm.19.2015.4847
    [15] R. S. Gupta, Hypersurfaces in Pseudo-Euclidean space with Condition $\triangle H = \lambda H$, Bull. Malays. Math. Sci. Soc., 44 (2021), 3019–3042. doi: 10.1007/s40840-021-01098-8. doi: 10.1007/s40840-021-01098-8
    [16] J. C. Liu, C. Yang, Hypersurfaces in $\mathbb{E}_{s}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most three distinct principal curvatures, J. Math. Anal. Appl., 419 (2014), 562–573. doi: 10.1016/j.jmaa.2014.04.066. doi: 10.1016/j.jmaa.2014.04.066
    [17] J. C. Liu, C. Yang, Lorentz hypersurfaces in $\mathbb{E}_{1}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most three distinct principal curvatures, J. Math. Anal. Appl., 434 (2016), 222–240. doi: 10.1016/j.jmaa.2015.09.017. doi: 10.1016/j.jmaa.2015.09.017
    [18] J. C. Liu, C. Yang, Hypersurfaces in $\mathbb{E}_{s}^{n+1}$ satisfying $\Delta \vec{H} = \lambda \vec{H}$ with at most two distinct principal curvatures, J. Math. Anal. Appl., 451 (2017), 14–33. doi: 10.1016/j.jmaa.2017.01.090. doi: 10.1016/j.jmaa.2017.01.090
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2193) PDF downloads(128) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog