A variational principle is applied to examine a Muckenhoupt weighted $ p(\cdot) $-Laplacian equation on the Heisenberg groups. The existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg-Sobolev spaces is proved.
Citation: Maria Alessandra Ragusa, Abdolrahman Razani, Farzaneh Safari. Existence of positive radial solutions for a problem involving the weighted Heisenberg $ p(\cdot) $-Laplacian operator[J]. AIMS Mathematics, 2023, 8(1): 404-422. doi: 10.3934/math.2023019
A variational principle is applied to examine a Muckenhoupt weighted $ p(\cdot) $-Laplacian equation on the Heisenberg groups. The existence of at least one positive radial solution to the problem under the Dirichlet boundary condition belongs to the first order Heisenberg-Sobolev spaces is proved.
[1] | F. Anceschi, S. Muzzioli, S. Polidoro, Existence of a fundamental solution of partial differential equations associated to Asian options, Nonlinear Anal., 62 (2021), 103373. https://doi.org/10.1016/j.nonrwa.2021.103373 doi: 10.1016/j.nonrwa.2021.103373 |
[2] | M. Badiale, E. Serra, Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach, Springer science and Business Media, 2010. |
[3] | I. Birindelli, F. Ferrari, E. Valdinoci, Semilinear PDEs in the Heisenberg group: The role of the right invariant vector fields, Nonlinear Anal., 72 (2010), 987–997. https://doi.org/10.1016/j.na.2009.07.039 doi: 10.1016/j.na.2009.07.039 |
[4] | G. M. Bisci, P. Pucci, Critical Dirichlet problems on $H$ domains of Carnot groups, Two nonlinear days in Urbino 2017, Electron. J. Diff. Eqns., Special Volume dedicated to the memory of Anna Aloe, Conf., 25 (2018), 179–196. |
[5] | W. L. Chow, Über systeme von liearren partiellen differentialgleichungen erster ordnung, Math. Ann., 117 (1940), 98–105. https://doi.org/10.1007/BF01450011 doi: 10.1007/BF01450011 |
[6] | G. Citti, A. Pascucci, S. Polidoro, On the regularity of solutions to a nonlinear ultraparabolic equation arising in mathematical finance, Differ. Integral Equ., 14 (2001), 701–738. https://doi.org/10.1177/197140090101400616 doi: 10.1177/197140090101400616 |
[7] | L. D'Ambrosio, Some Hardy inequalities on the Heisenberg group, J. Differ. Equ., 40 (2004), 552–564. https://doi.org/10.1023/B:DIEQ.0000035792.47401.2a doi: 10.1023/B:DIEQ.0000035792.47401.2a |
[8] | L. Evans, Partial Differential Equations, Sobolev Spaces, Academic Press, New York, 1998. |
[9] | X. L. Fan, D. Zhao, On the generalized Orlicz-Sobolev space $W^{k, p(x)}(\Omega)$, J. Gansu Educ. College, 12 (1998), 1–6. |
[10] | N. Garofalo, D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Commun Pure Appl. Math., 49 (1996), 1081–1144. https://doi.org/10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A doi: 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO;2-A |
[11] | S. P. Ivanov, D. N. Vassilev, Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem, World Scientific, Publishing Co. Pte. Ltd., Hackensack, N. J., 2011. |
[12] | Y. Karagiorgos, N. Yannakaris, A Neumann problem involving the $p(x)$-Laplacian with $p = \infty$ in a subdomain, Adv. Calc. Var., 9 (2016), 65–76. |
[13] | A. E. Kogoj, Y. Pinchover, S. Polidoro, On Liouville-type theorems and the uniqueness of the positive Cauchy problem for a class of hypoelliptic operators, J. Evol. Equ., 16 (2015), 905–943. |
[14] | H. Y. Lan, J. J. Nieto, Solvability of second-order uniformly elliptic inequalities involving demicontinuous $\psi$-dissipative operators and applications to generalized population models, Eur. Phys. J. Plus, 136 (2021), 1–17. |
[15] | Y. Li, J. Xie, L. Mao, Existence of solutions for the boundary value problem of non-instantaneous impulsive fractional differential equations with $p$-Laplacian operator, AIMS Math., 7 (2022), 17592–17602. https://doi.org/10.3934/math.2022968 doi: 10.3934/math.2022968 |
[16] | A. Moameni, L. Salimi, Existence results for a supercritical Neumann problem with a convex-concave non-linearity, Ann. Mat. Pura Appl., 198 (2019), 1165–1184. https://doi.org/10.1007/s10231-018-0813-1 doi: 10.1007/s10231-018-0813-1 |
[17] | G. Pólya, G. Szegö, Problems and Theorems in Analysis I: Series. Integral Calculus. Theory of Functions, Springer-Verlag Berlin Heidelberg New York, 1978. |
[18] | P. Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst. Ser. S, Special Issue on the occasion of the 60th birthday of Professor Vicentiu D. Radulescu, 12 (2019), 375–400. https://doi.org/10.14225/Joh1634 doi: 10.14225/Joh1634 |
[19] | P. Pucci, Existence of entire solutions for quasilinear equations in the Heisenberg group, Minimax Theory Appl., 4 (2019). |
[20] | P. Pucci, Existence and multiplicity results for quasilinear equations in the Heisenberg group, Opuscula Math., 39 (2019), 247–257. https://doi.org/10.7494/OpMath.2019.39.2.247 doi: 10.7494/OpMath.2019.39.2.247 |
[21] | P. Pucci, L. Temperini, Existence for $(p, q)$ critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9 (2020), 895–922. |
[22] | P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (1978), 215–223. https://doi.org/10.1080/07481187808253308 doi: 10.1080/07481187808253308 |
[23] | M. A. Ragusa, A. Razani, F. Safari, Existence of radial solutions for a $p(x)$-Laplacian Dirichlet problem, Adv. Differ. Equ., 2021 (2021), 1–14. |
[24] | P. K. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math., 2 (1938), 83–94. |
[25] | A. Razani, F. Safari, Existence of radial weak solutions to Steklov problem involving Leray-Lions type operator, J. Nonlinear Math. Phys., (2022), 17. https://doi.org/10.1007/s44198-022-00078-1 doi: 10.1007/s44198-022-00078-1 |
[26] | D. Ricciotti, $p$-Laplace Equation in the Heisenberg Group: Regularity of Solutions, Springer, 2015. https://doi.org/10.1007/978-3-319-23790-9 |
[27] | W. Rudin, Principles of mathematical analysis, Vol. 3. New York: McGraw-hill, 1964. |
[28] | F. Safari, A. Razani, Existence of positive radial solutions for Neumann problem on the Heisenberg group, Bound. Value Probl., 1 (2020), 1–14. https://doi.org/10.1186/s13661-020-01386-5 doi: 10.1186/s13661-020-01386-5 |
[29] | F. Safari, A. Razani, Nonlinear nonhomogeneous Neumann problem on the Heisenberg group, Appl. Anal., (2020), 1–14. https://doi.org/10.1080/00036811.2020.1807013 doi: 10.1080/00036811.2020.1807013 |
[30] | F. Safari, A. Razani, Existence of radial solutions of the Kohn-Laplacian problem, Complex Var. Elliptic Equ., (2020), 1–15. https://doi.org/10.1080/17476933.2020.1818733 doi: 10.1080/17476933.2020.1818733 |
[31] | F. Safari, A. Razani, Positive weak solutions of a generalized supercritical Neumann problem, Iran J. Sci. Technol. Trans. Sci., 44 (2020), 1891–1898. https://doi.org/10.1007/s40995-020-00996-z doi: 10.1007/s40995-020-00996-z |
[32] | F. Safari, A. Razani, Radial solutions for a general form of a $p$-Laplace equation involving nonlinearity terms, Complex Var. Elliptic Equ., (2021), 1–11. https://doi.org/10.1080/17476933.2021.1991331 doi: 10.1080/17476933.2021.1991331 |
[33] | F. Safari, A. Razani, Existence of radial solutions for a weighted $p$-biharmonic problem with Navier boundary condition on the Heisenberg group, Math. Slovaca, 72 (2022), 677–692. https://doi.org/10.1515/ms-2022-0046 doi: 10.1515/ms-2022-0046 |
[34] | A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1986), 77–109. https://doi.org/10.1016/S0022-3476(86)80576-5 doi: 10.1016/S0022-3476(86)80576-5 |
[35] | F. J. Torres, Existence of positive solutions for boundary value problems with $p$-Laplacian operator, Math. Slovaca, 72 (2022), 1091–1109. https://doi.org/10.1515/ms-2022-0075 doi: 10.1515/ms-2022-0075 |