Research article

Existence results of nontrivial solutions for a new $ p(x) $-biharmonic problem with weight function

  • Received: 25 October 2021 Revised: 26 January 2022 Accepted: 07 February 2022 Published: 28 February 2022
  • MSC : 35D05, 47J20, 35J50

  • In this paper, we study a class of $ p(x) $-biharmonic problems with negative nonlocal terms and weight function. Using the mountain pass theorem and the Ekeland's variational principle, at least three solutions are obtained. We also give some comments on the existence of infinite many solutions for our problem when the nonlinear term is a general function.

    Citation: Wei Guo, Jinfu Yang, Jiafeng Zhang. Existence results of nontrivial solutions for a new $ p(x) $-biharmonic problem with weight function[J]. AIMS Mathematics, 2022, 7(5): 8491-8509. doi: 10.3934/math.2022473

    Related Papers:

  • In this paper, we study a class of $ p(x) $-biharmonic problems with negative nonlocal terms and weight function. Using the mountain pass theorem and the Ekeland's variational principle, at least three solutions are obtained. We also give some comments on the existence of infinite many solutions for our problem when the nonlinear term is a general function.



    加载中


    [1] E. Acerbi, G. Mingione, Gradient estimates for the $p(x)$-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. http://dx.doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
    [2] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. http://dx.doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017
    [3] G. A. Afrouzi, N. T. Chung, M. Mirzapour, Existence and multiplicity of solutions for Kirchhoff type problems involving $p(x)$-biharmonic operators, J. Anal. Appl., 33 (2014), 289–303. http://dx.doi.org/10.4171/ZAA/3445 doi: 10.4171/ZAA/3445
    [4] R. Alsaedi, A. Dhifli, A. Ghanmi, Low perturbations of $p$-biharmonic equations with competing nonlinearities, Complex Var. Elliptic, 66 (2021), 642–657. http://dx.doi.org/10.1080/17476933.2020.1747057 doi: 10.1080/17476933.2020.1747057
    [5] C. O. Alves, J. P. Barreiro, Multiple solutions for a class of quasilinear problems involving variable exponents, Asymptot. Anal., 96 (2016), 161–184. http://dx.doi.org/10.3233/ASY-151340 doi: 10.3233/ASY-151340
    [6] A. Amrouss, El. F. Moradi, M. Moussaoui, Existence of solutions for fourth-order PDES with variable exponent, Electron. J. Differ. Eq., 153 (2009), 1–13. http://dx.doi.org/10.1016/j.dam.2009.09.005 doi: 10.1016/j.dam.2009.09.005
    [7] S. Antontsev, M. Chipot, Y. Xie, Uniqueness results for equations of the $p(x)$-Laplacian type, Adv. Math. Sci. Appl., 17 (2007), 287–304.
    [8] S. N. Antontsev, J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19–36. http://dx.doi.org/10.1007/s11565-006-0002-9 doi: 10.1007/s11565-006-0002-9
    [9] M. Berger, A new approach to the analysis of large deflection of plate, J. Appl. Mech., 22 (1955), 465–472. http://dx.doi.org/10.1115/1.4011138 doi: 10.1115/1.4011138
    [10] S. S. Byun, O. Jihoon, On $W^{1, q(\cdot)}$-estimates for elliptic equations of $p(x)$-Laplacian type, J. Math. Pures Appl., 106 (2016), 512–545. http://dx.doi.org/10.1016/j.matpur.2016.03.002 doi: 10.1016/j.matpur.2016.03.002
    [11] J. Chabrowski, Y. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005), 604–618. http://dx.doi.org/10.1016/j.jmaa.2004.10.028 doi: 10.1016/j.jmaa.2004.10.028
    [12] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. http://dx.doi.org/10.2307/4096243 doi: 10.2307/4096243
    [13] C. M. Chu, C. Y. Lei, H. M. Suo, Positive solutions for a nonlocal problem with singularity, Electron. J. Differ. Eq., 85 (2017), 1–9.
    [14] N. T. Chung, Multiple solutions for a class of $p(x)$-Laplacian problems involving concave-convex nonlinearities, Electron. J. Qual. Theory Differ. Equ., 26 (2013), 1–17. http://dx.doi.org/10.14232/ejqtde.2013.1.26 doi: 10.14232/ejqtde.2013.1.26
    [15] N. T. Chung, On some $p(x)$-Kirchhoff type equations with weights, J. Appl. Math. Inform., 32 (2014), 113–128. http://dx.doi.org/10.14317/jami.2014.113 doi: 10.14317/jami.2014.113
    [16] F. Colasuonno, P. Pucci, Multiplicity of solutions for $p(x)$-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 74 (2011), 5962–5974. http://dx.doi.org/10.1016/j.na.2011.05.073 doi: 10.1016/j.na.2011.05.073
    [17] O. Darhouche, Existence and multiplicity results for a class of Kirchhoff type problems involving the $p(x)$-biharmonic operator, Bol. Soc. Parana. Mat., 37 (2017), 23–33. http://dx.doi.org/10.5269/bspm.v37i2.32100 doi: 10.5269/bspm.v37i2.32100
    [18] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math., 143 (2000), 267–293. http://dx.doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293
    [19] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. http://dx.doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [20] X. L. Fan, X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb{R}^N$, Nonlinear Anal., 59 (2004), 173–188. http://dx.doi.org/10.1016/j.na.2004.07.009 doi: 10.1016/j.na.2004.07.009
    [21] X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. http://dx.doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [22] A. Ferrero, G. Warnault, On solutions of second and fourth order elliptic equations with power-type nonlinearities, Nonlinear Anal., 70 (2009), 2889–2902. http://dx.doi.org/10.1016/j.na.2008.12.041 doi: 10.1016/j.na.2008.12.041
    [23] Y. Fu, A. Zang, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal., 69 (2008), 3629–3636. http://dx.doi.org/10.1016/j.na.2007.10.001 doi: 10.1016/j.na.2007.10.001
    [24] B. Ge, Y. H. Wu, Q. Zhou, Eigenvalue of the $p(x)$-biharmonic operator with indefinite weight, Z. Angew. Math. Phys., 66 (2014), 1007–1021. http://dx.doi.org/10.1007/s00033-014-0465-y doi: 10.1007/s00033-014-0465-y
    [25] A. Ghanmi, Nontrivial solutions for Kirchhoff-type problems involving the $p(x)$-Laplace operator, Rocky MT J. Math., 48 (2018), 1145–1158. http://dx.doi.org/10.1216/RMJ-2018-48-4-1145 doi: 10.1216/RMJ-2018-48-4-1145
    [26] M. K. Hamdani, A. Harrabi, F. Mtiri, D. D. Repovš, Existence and multiplicity results for a new $p(x)$-Kirchhoff problem, Nonlinear Anal., 190 (2020), 1–15. http://dx.doi.org/10.1016/j.na.2019.111598 doi: 10.1016/j.na.2019.111598
    [27] O. Kavacik, J. Rakosnik, On spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, Czech. Math. J., 41 (1991), 592–618.
    [28] K. Kefi, V. D. Rădulescu, On a $p(x)$-biharmonic problem with singular weights, Z. Angew. Math. Phys., 68 (2017), 1–15. http://dx.doi.org/10.1007/s00033-017-0827-3 doi: 10.1007/s00033-017-0827-3
    [29] K. Khaled, For a class of $p(x)$-biharmonic operators with weights, Rev. Acad. Colombiana Cienc. Exact. Fís. Natur., 113 (2018), 1–16. http://dx.doi.org/10.1007/s13398-018-0567-z doi: 10.1007/s13398-018-0567-z
    [30] G. Kirchhoff, Mechanik, Teubner: Leipzig, Germany, 1883.
    [31] L. Kong, On a fourth order elliptic problem with a $p(x)$-biharmonic operator, Appl. Math. Lett., 27 (2014), 21–25. http://dx.doi.org/10.1016/j.aml.2013.08.007 doi: 10.1016/j.aml.2013.08.007
    [32] C. Y. Lei, J. F. Liao, H. M. Suo, Multiple positive solutions for nonlocal problems involving a sign-changing potential, Electron. J. Differ. Eq., 9 (2017), 1–8.
    [33] C. Y. Lei, H. M. Suo, Y. Wang, Multiple positive solutions for a nonlocal problem involving critical exponent, Electron. J. Differ. Eq., 275 (2017), 1–11.
    [34] B. B. V. Maia, On a class of $p(x)$-Choquard equations with sign-changing potential and upper critical growth, Rend. Circ. Mat. Palerm., 70 (2021), 1175–1199. http://dx.doi.org/10.1007/s12215-020-00553-y doi: 10.1007/s12215-020-00553-y
    [35] L. Mbarki, Existence results for perturbed weighted $p(x)$-biharmonic problem with Navier boundary conditions, Complex Var. Elliptic Equ., 66 (2020), 569–582. http://dx.doi.org/10.1080/17476933.2020.1729140 doi: 10.1080/17476933.2020.1729140
    [36] G. Mingione, V. D. Rădulescu, Recent developments in problems with nonstandard growth andnonuniform elipicity, J. Math. Anal. Appl., 501 (2021), 1–41. http://dx.doi.org/10.1016/j.jmaa.2021.125197 doi: 10.1016/j.jmaa.2021.125197
    [37] J. Musielak, W. Orlicz, On modular spaces, Stud. Math., 18 (1959), 9–65. http://dx.doi.org/10.4064/sm-18-1-49-65 doi: 10.4064/sm-18-1-49-65
    [38] H. Nakano, Modulared semi-ordered linear spaces, Maruzen Co., 1950.
    [39] H. Nakano, Topology and modular spaces, Springer-Verlag, Berlin, 1951, 15–32.
    [40] W. Orlicz, Uber konjugierte exponentenfolgen, Stud. Math., 3 (1931), 200–212. http://dx.doi.org/10.4064/sm-3-1-200-211 doi: 10.4064/sm-3-1-200-211
    [41] M. A. Ragusa, A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal., 9 (2020), 710–728. http://dx.doi.org/10.1515/anona-2020-0022 doi: 10.1515/anona-2020-0022
    [42] K. Rajagopal, M. Rŭzička, On the modeling of electrorheological materials, Mech. Res. Commun., 23 (1996), 401–407. http://dx.doi.org/10.1016/0093-6413(96)00038-9 doi: 10.1016/0093-6413(96)00038-9
    [43] K. Rajagopal, M. Rŭzička, Mathematical modeling of electrorheological materials, Continuum Mech. Therm., 13 (2001), 59–78. http://dx.doi.org/10.1007/s001610100034 doi: 10.1007/s001610100034
    [44] X. H. Tang, B. T. Cheng, Ground state sign-changing solutions for Kirchhoff type problems in bounded domains, J. Differ. Equations, 261 (2016), 2384–2402. http://dx.doi.org/10.1016/j.jde.2016.04.032 doi: 10.1016/j.jde.2016.04.032
    [45] X. H. Tang, S. T. Chen, Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials, Calc. Var. Partial Dif., 56 (2017), 110. http://dx.doi.org/10.1007/s00526-017-1214-9 doi: 10.1007/s00526-017-1214-9
    [46] C. Vetro, Variable exponent $p(x)$-Kirchhoff type problem with convection, J. Math. Anal. Appl., 506 (2022), 1–16. http://dx.doi.org/10.1016/j.jmaa.2021.125721 doi: 10.1016/j.jmaa.2021.125721
    [47] M. Willem, Minimax theorems, progress in nonlinear differential equations and their applications, Birkhauser Boston, Inc., Boston, MA, 1996. http://dx.doi.org/10.1007/978-1-4612-4146-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1645) PDF downloads(121) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog