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1. Introduction

In this paper, we consider the following p(x)-biharmonic problem with weight function
(
a − b

∫
Ω

1
p(x)
|∆u|p(x)dx

)
∆2

p(x)u = λV(x)|u|q(x)−2u, in Ω,

u = ∆u = 0, on ∂Ω,

(1.1)

where a ≥ b > 0 are constants, Ω ⊂ RN(N ≥ 3) is a bounded domain with smooth boundary ∂Ω, p,
q∈ C(Ω) with 1 < p− := inf

x∈Ω
p(x) ≤ p+ := sup

x∈Ω

p(x) < N, λ > 0 is a real parameter, and ∆2
p(x)u =

∆(|∆u|p(x)−2∆u) is called the p(x)-biharmonic operator of fourth order.
Recently, the problems of variable exponent growth have been extensively studied, we can refer

to [1, 5, 7, 10, 11, 14, 16, 25]. Literature [41] and [36] are the two closest in time, in literature [41], the
authors studied the regularity for minimizers for functionals of double phase with variable exponents,
the main purpose of this paper is to provide a regularity theorem for minimizers of a class of integral
functionals of the calculus of variations called of double phase type with variable exponents, and
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authors also proved the existence of a local minimum value of the problem. It is worth mentioning
that the existence and multiplicity results of solutions for many problems with variable exponents
can be found in [36]. In particular, variable exponent space plays an important role in the studies of
electrorheological fluids [42, 43], thermotropic fluids [8], and image processing [2, 12]. The major
difference with the constant exponent is that the p(x)-biharmonic operator has inhomogeneity, it brings
a lot of difficulties, such as many classical theorems, like the Lagrange multiplier theorem, can’t be
used. The study of variable exponent problems can be traced back to the article published by Orlic in
1931 [40]. However, after this article, the authors did not go further. During this period, many authors
carried out a series of research work [38, 39], such as module space [37], etc., and obtained many
important properties. Until the 1990s, a lot of work on variable exponent space was carried out on the
basis of an article published by two authors, O. Kovacik and J. Rakosnik in 1991, in which the basic
theory of variable exponent Lebesgue space and Sobolev space [27] is established. Later, authors such
as Fan and Zhao [21] further promoted it. Up to now, more and more people have studied it. In addition,
Kirchhoff differential equation, as a typical partial differential equation, has been extensively studied,
and its source can be traced back to 1883 [30]. Kirchhoff type differential equation, a special partial
differential equation, is a mathematical model proposed by Kirchhoff in 1883 when he studied the free
vibration of elastic string. Such model was used to study the variation rule of transverse vibration
of telescopic steel wire rope. It is well known that Kirchhoff have created the following model and
generalized the d ’Alembert wave equation

ρ
∂2u
∂t2 −

(ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2dx
)∂2u
∂x2 = 0, (1.2)

where ρ, ρ0, h, E, L are constants, the problem (1.1) is related to the stationary problem of Kirchhoff’s
model. Its theoretical and practical applications are very broad, such as Non-Newtonian mechanics,
medicine, economics, ecology and other fields are involved. The original Kirchhoff’s model was
utilized to study the problems in one-dimensional case. In 1955, Berger [9] studied the following
von Karman plate equation in two-dimensional case

∂2u
∂t2 + ∆2u +

(
Q +

∫
Ω

|∇u|2dx
)
∆u = f (u, ut, x),

where ∆2 is called the biharmonic operator. It also plays an important role in engineering, physics
and material mechanics. Therefore, in recent decades, researchers have also done a lot of researches
on the existence and properties of solutions of biharmonic equations, for example, in [4], the authors
used Nehari manifold method and fiber mapping to obtain the existence of two solutions. Furthermore,
many authors have extended the p-biharmonic problems to the p(x)-biharmonic problems, we refer
to [3, 6, 17, 24, 28, 29, 31, 35].

In [17], the author considered the following problemM(
∫

Ω

1
p(x)
|∆u|p(x)dx)∆(|∆u|p(x)−2∆u) = f (x, u), in Ω,

u = ∆u = 0, on ∂Ω,
(1.3)

where Ω ∈ R(N ≥ 2) is a bounded domain with a smooth boundary ∂Ω, p is a continuous function
on Ω such that 1 < p− := inf

x∈Ω
p(x) ≤ p+ := sup

x∈Ω

p(x) < +∞, the continuous function M : R+ → R+
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and the Carathédory function f : Ω × R satisfy some conditions. They established the existence and
multiplicity of solutions for problem (1.3) by using variational method and the theory of the variable
exponent Sobolev spaces.

Replacing
(
a − b

∫
Ω

1
p(x) |∆u|p(x)dx

)
∆2

p(x)u with (∆(|x|p(x)|∆u|p(x)−2∆u) on the left-hand side of
problem (1.1), in [35], existence results for the following perturbed weighted p(x)-biharmonic problem
with Navier boundary conditions were considered. The author proved the problem has an eigenvalue
when there exists λ∗ > 0 such that λ ∈ (0, λ∗) and some other hypotheses are satisfied. The other main
result of this problem is at least two non-trivial non-negative weak solutions were obtained provided
|V |L∞(Ω) < M.

In [29], the author considered a class of p(x)-biharmonic operators with weights
(∆(|∆u|p1(x)−2∆u + ∆(|∆u|p2(x)−2∆u)

= λV1(x)|u|q(x)−2u − µV2(x)|u|α(x)−2u, in Ω,

u = ∆u = 0, on ∂Ω,

where λ, µ are positive real numbers, p1, p2, q and α are continuous functions on Ω, V1 and V2 are
weight functions in generalized Lebesgue spaces Ls1(x)(Ω) and Ls2(x)(Ω) such that V1 may change sign
in Ω and V2 > 0 on Ω, respectively. The author established the existence results by using variational
approaches and Ekeland’s variational principle.

In 2020, a class of new problems with nonlocal term were considered in [26]
−

(
a − b

∫
Ω

1
p(x)
|∇u|p(x)dx

)
div

(
|∇u|p(x)−2∇u

)
= λ|u|p(x)−2u + g(x, u), in Ω,

u = 0, on ∂Ω,

where the nonlocal term is a − b
∫

Ω

1
p(x) |∇u|2dx. The key point in the main results of this literature is

to show that the energy functional J has a Mountain Pass energy c. For this type of problems, they
have been extensively studied as constant exponent case when p(x) = 2, we can refer to [13, 32, 33].
It is worth mentioning that concerning the Kirchhoff type problem, the authors studied the a + b type
problem in literature [44, 45]. Precisely, Tang and Cheng in [44] proposed a new approach to recover
the compactness for the Palais-Smale sequences; Moreover, Tang and Chen in [45] proposed a new
approach to recover the compactness for the minimizing sequences.

Inspired by the above literature [17,26,29,35], in this paper, we study the existence and multiplicity
of solutions for a class of p(x)-biharmonic problems with weight function and negative nonlocal term.

To prove our first main result, as shown below, we assume the following assumptions:
(M0) There exists a function s ∈ C(Ω) for all x ∈ Ω, then 1 < q(x) < α(x) < p(x) ≤ N

2 < s(x) hold.
(M) V ∈ Ls(x)(Ω), and V > 0 in Ω0 ⊂⊂ Ω, with |Ω0| > 0.
(M1) Assume that 1 < α < min{ n

p+ ,
np−

p+(n−p−) } and V : Ω→ [0,∞) belongs to L∞(Ω), denote

p− := min
x∈Ω

p(x), and p+ = max
x∈Ω

p(x).

(M2) For some x0 ∈ Ω and 0 < r < R < ∞ with BR(x0) ⊂ Ω we have

V vanish in BR(x0) \ Br(x0) and V(x) > 0 for x ∈ Ω \ BR(x0) \ Br(x0).
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(M3) q ∈ C+(Ω) is such that 1 < q(x) < p∗(x) ∀x ∈ Ω and

max
x∈Br(x0)

q(x) < p−α ≤ p+α < min
x∈Ω\BR(x0)

q(x).

The theorem to be proved is as follows:
Theorem 1.1. Assume that a ≥ b > 0, p, q∈ C(Ω), (M) and (M1)–(M3) are satisfied and

1 < q− < q(x) < p− < p(x) < p+ <
√

2p− < N. (1.4)

Then there exist constants λ∗, ζ > 0, such that for any λ ∈ (0, λ∗), problem (1.1) has at least three
non-trivial solutions provided |V |L∞(Ω) < ζ.
Remark 1.2. Compared with the most of existing work involving p(x)-biharmonic operaters, the main
difference between them and our problem is that the equation in the present paper contains negative
nonlocal term and weight function. In addition, different from other papers [3, 24, 28, 31, 35] dealing
with p(x)-biharmonic operators, the present paper gives the existence of three nontrivial solutions.

Theorem 1.1 cannot be completed without the proof of the (PS )c condition, and since problem (1.1)
contains a negative nonlocal term, the general method cannot be adopted. Therefore, to complete the
proof and solve this difficulty, we use the method in [35]. In addition, a class of problems (4.1), with
nonlinear terms and negative nonlocal terms are considered, which is a supplement to problem (1.1).

In Section 2, we introduce the preliminary knowledge that will be involved later, and prove the
(PS )c condition. In Section 3, Theorem 1.1 is proved by proving some lemmas. In Section 4, we
supplement the problem (1.1), and an infinite number of solutions are obtained by using the symmetric
mountain pass theorem.

2. Preliminaries and functional framework

In order to investigate Eq (1.1) we first review some conclusions about the generalized Lebesgue-
Sobolev spaces W1,p(x)(Ω) and L1,p(x)(Ω). Let Ω be a bounded domain of RN , denote C+(Ω) = {p(x) :
p(x) ∈ C(Ω), p(x) > 1, for all x ∈ Ω} and p− = infΩ p(x) ≤ p(x) ≤ p+ = supΩ p(x) < N.

For any p ∈ C+(Ω), we introduce the Lebesgue space of variable exponent endowed with the
Luxembourg norm

Lp(·)(Ω) =

{
u : Ω→ R measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}
.

The Luxembourg norm is as follows

||u||Lp(x)(Ω) = |u|p(·) = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
,

which is a separable and reflexive Banach space. We can refer to [21] for more relevant knowledge.
No doubt, when p(x) ≡ p, the space Lp(x)(Ω) is reduced to the classical Lebesgue space Lp(Ω) and

the norm |u|p(x) reduces to the standard norm in Lp(Ω)

||u||Lp =

(∫
Ω

|u|pdx
) 1

p

.
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For any positive integer k and a given multi-index α = (α1, α1, ..., αn), we define the generalized
Sobolev space as

Wk,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where |α| = Σn
i=1αi and Dαu = ∂|α|u/∂α1 x1 · · · ∂

αN xN .
Endowed with the following norm

||u||k,p(x) = Σ|α|≤k|Dαu|p(x).

We define the space Wk,p(x)
0 (Ω) as the closure of C∞0 (Ω) in Wk,p(x)(Ω), with respect to the norm

|| · ||k,p(x). They are separable and reflexive Banach spaces, in addition, we also have similar properties,
and the following are some propositions concerning these properties, we refer the reader to [22,27,40].
Proposition 2.1. (See [21], Pages 430–431) The space (Lp(x)(Ω), |.|p(x)) is separable, uniformly convex,
reflexive, and its conjugate space is (Lp′(x)(Ω), |.|p′(x)), where p′(x) is the conjugate function of p(x), i.e,

1
p(x)

+
1

p′(x)
= 1, f or all x ∈ Ω.

For all u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω), the Hölder type inequality∣∣∣∣∣∫
Ω

uvdx
∣∣∣∣∣ ≤ (

1
p−

+
1
q−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x) (2.1)

holds.
Proposition 2.2. (See [27], Theorem 2.1) Let p, q, s : Ω→ [1,∞] be measurable functions such that

1
s(x)

=
1

p(x)
+

1
q(x)

, f or a.e. x ∈ Ω.

Let f ∈ Lp(x)(Ω), g ∈ Lq(x)(Ω). Then, f g ∈ Ls(x)(Ω) with

| f g|s(x) ≤

((
s
p

)+

+

(
s
q

)+)
| f |p|g|q. (2.2)

Proposition 2.3. (See [20], Proposition 2.5) Let h1, h2 and h3 : Ω → (1,∞) be Lipschitz continuous
functions such that 1/h1(x) + 1/h2(x) + 1/h3(x) = 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω) and
w ∈ Lh3(x)(Ω) the following inequality holds∣∣∣∣∣∫

Ω

uvwdx
∣∣∣∣∣ ≤ (

1
h−1

+
1
h−2

+
1
h−3

)
|u|h1(x)|v|h2(x)|w|h3(x). (2.3)

Proposition 2.4. (See [21], Theorem 1.11) Let r, s : Ω → [1,∞) be measurable functions such that
r(x) ≤ s(x), then the embedding Ls(x)(Ω) ↪→ Lr(x)(Ω)is continuous.
Proposition 2.5. (See [21], Theorem 2.3) For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for all x ∈ Ω, there
is a continuous embedding

Wk,p(x)(Ω) ↪→ Lr(x)(Ω).
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If we replace ≤ with <, the embedding is compact.
Proposition 2.6. (See [18], Lemma 2.1) Let p and q be measuable functions such that p ∈ L∞(Ω),
and 1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u 6, 0. Then

min(|u|p
+

p(x)q(x), |u|
p−

p(x)q(x)) ≤
∣∣∣|u|p(x)

∣∣∣
q(x)
≤ max(|u|p

+

p(x)q(x), |u|
p−

p(x)q(x)).

Definition 2.1. (See [28], Definition 2.3) Assume that spaces E, F are Banach spaces, we define the
norm on the space X := E

⋂
F as ||u||X = ||u||E + ||u||F , X∗ its dual space and < ·, · > denote the duality

product.
We also need some properties about the space X := W1,p(x)

0 (Ω)
⋂

W2,p(x)(Ω). Denote by Wk,p(x)
0 (Ω)

the closure of C∞0 (Ω) in Wk,p(x)(Ω). Note that the weak solutions of problem (1.1) are considered in the
generalized Sobolev space X endowed with the norm

||u|| = inf
{
µ > 0 :

∫
Ω

∣∣∣∣∣ |∆u(x)|
µ

∣∣∣∣∣p(x)

dx ≤ 1
}
.

According to [23], the norm ||u||2,p(x) is equivalent to the norm |∆u|p(x) in the space X. Consequently,
the norm ||u||2,p(x), |∆u|p(x) and ||u|| are equivalent.

We define the relevant modular on the space Lp(x)(Ω) and give the basic properties needed in this
paper as following

ρp(·)(u) :=
∫

Ω

|∆u|p(x)dx.

Proposition 2.7. (See [6], Proposition 3.2) Suppose that un, u ∈ X and p+ < ∞. Then the following
properties hold:

(1) ||u|| < 1(= 1, > 1)⇔ ρ(u) < 1(= 1. > 1);
(2) ||u|| > 1⇒ ||u||p

−

≤ ρ(u) ≤ ||u||p
+

;
(3) ||u|| < 1⇒ ||u||p

+

≤ ρ(u) ≤ ||u||p
−

;
(4) ||u|| → 0(→ ∞)⇔ ρ(u)→ 0(→ ∞).
Moreover, we define

p∗k(x) =

 N p(x)
N−kp(x) , if kp(x) < N,

+∞, if kp(x) ≥ N.

Let for any u ∈ X, L(u) =
∫

Ω

1
p(x) |∆u|p(x)dx, and A := L′ : X → X∗, then

〈A(u), v〉 =

∫
Ω

|∆u|p(x)−2∆u∆vdx, for all u, v ∈ X.

Lemma 2.1. (See [6], Theorem 3.4)
(1) L′ : X → X∗ is a bounded homeomorphism and strictly monotone operator.
(2) L′ is a mapping of type S +, namely, if un ⇀ u and lim sup〈L(un)−L(u), un−u〉 ≤ 0, imply un → u

(strongly) in X.
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Remark 2.1. (See [28], Remark 3.2) We denote by s′(x) the conjugate of the functions s(x), r(x) :=
s(x)q(x)

s(x)−q(x) . Then the following embedding properties hold.

Under assumption (M0) and (M), we have max(r(x), s′(x)q(x)) < p∗(x), for all x ∈ Ω. It follows
that the embeddings X ↪→ Ls′(x)q(x)(Ω) and X ↪→ Lr(x)(Ω) are compact and continuous.

Under Remark 2.1, we have for all u ∈ X∫
Ω

V(x)
q(x)
|u|q(x)dx ≤

1
q−
|V |s(x)||u|q(x)|s′(x) ≤

 1
q− |V |s(x)|u|

q−

s′(x)q(x), if |u|s’(x)q(x) ≤ 1,
1

q− |V |s(x)|u|
q+

s′(x)q(x), if |u|s’(x)q(x) > 1.

and
|u|s′(x)q(x) ≤ C||u||, for all u ∈ X.

A function u ∈ X is a weak solution of (1.1), if(
a − b

∫
Ω

1
p(x)
|∆u|p(x)dx

) ∫
Ω

|∆u|p(x)−2∆u∆ϕdx = λ

∫
Ω

V(x)|u|q(x)−2uϕdx,

where ϕ ∈ X.

Next, we will prove Theorem 1.1 using the variational method. Define the energy functional J :
X → R associated with problem (1.1) by

J(u) = a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λ

∫
Ω

V(x)
q(x)
|u|q(x)dx, (2.4)

for all u ∈ X is well defined and of C1 class on X. Also, we have

〈J′(u), v〉 =

(
a − b

∫
Ω

1
p(x)
|∆u|p(x)dx

) ∫
Ω

|∆u|p(x)−2∆u∆vdx

− λ

∫
Ω

V(x)|u|q(x)−2uvdx,
(2.5)

for all u, v ∈ X. Therefore, we can find the weak solutions of problem (1.1) as the critical points of
functional J. To simplify the notation, we are going to represent the norm X by ||.|| instead of ||.||X.

Related definitions of (PS )c have been given in Definition 3.1 of literature [26], where if any
sequence un ∈ X satisfying:

J(un)→ c and J′(un)→ 0 in X∗ as n→ ∞, (2.6)

has a convergent subsequence, it is said to satisfy the (PS )c condition.
Next, we prove that the functional J satisfies the compactness condition.

Lemma 2.2. Assume that a ≥ b > 0, p, q ∈ C(Ω), then the functional J(u) satisfies the (PS )c

condition at the level c < a2

2b .

Proof. The proof we’re going to do is divided into two steps.
Step 1. We prove that {un} is bounded in X. Let {un} ⊂ X be a (PS )c sequence for J such that c < a2

2b .
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Our main tool in this step is based on proving by contradiction, we assume that, passing eventually
to a subsequence, still denote by {un}, we have ||un|| → ∞ as n → ∞. By (2.4), for n large enough, we
can get

C + ||un||

≥
2p−2

− (p+)2

2p+
J(un)− < J′(un), un >

≥ a
(
2p−2

− (p+)2

2(p+)2 − 1
)
||un||

p− + b

−
2p−2

−(p+)2

2p+

2(p−)2 +
1
p+

 ||un||
2p−

− λ

(
2p−2

− (p+)2

2p+q−
− 1

) ∫
Ω

V(x)|un|
q(x)dx

≥ a
(
2p−2

− (p+)2

2(p+)2 − 1
)
||un||

p− + b

−
2p−2

−(p+)2

2p+

2(p−)2 +
1
p+

 ||un||
2p−

− λ

(
2p−2

− (p+)2

2p+q−
− 1

)
|V |s(x)||un|

q(x)|s′(x)

≥ a
(
2p−2

− (p+)2

2(p+)2 − 1
)
||un||

p− + b

−
2p−2

−(p+)2

2p+

2(p−)2 +
1
p+

 ||un||
2p−

− λ

(
2p−2

− (p+)2

2p+q−
− 1

)
|V |s(x) min(|un|

q+

s′(x)q(x), |un|
q−

s′(x)q(x))

≥ a
(
2p−2

− (p+)2

2(p+)2 − 1
)
||un||

p− + b

−
2p−2

−(p+)2

2p+

2(p−)2 +
1
p+

 ||un||
2p−

− λ

(
2p−2

− (p+)2

2p+q−
− 1

)
|V |s(x) min(Cq+

||un||
q+

,Cq− ||un||
q−).

By the above last inequality, we have

C + ||un||+λ

(
2p−2

− (p+)2

2p+q−
− 1

)
|V |s(x) min

(
Cq+

||un||
q+

,Cq− ||un||
q−
)

≥ a
(
2p−2

− (p+)2

2(p+)2 − 1
)
||un||

p− + b

−
2p−2

−(p+)2

2p+

2(p−)2 +
1
p+

 ||un||
2p− .

Dividing the above inequality by ||un||
2p−

, and since (1.4) holds, passing to the limit as n → ∞, we get
a contradiction. Thus, {un} is bounded in X.
Step 2. In the second part, we will show that {un} has a convergent subsequence in X. According to
Proposition 2.5, the embedding

X ↪→ Lh(x)(Ω)

is compact, where 1 ≤ h(x) < p∗(x). Passing, if necessary, to a subsequence, there exists u ∈ X such
that

un ⇀ u in X, un → u in Lh(x)(Ω), un(x)→ u(x) a.e. in Ω. (2.7)
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From Hölder’s inequality and (2.7), we can inferred that∣∣∣∣∣∫
Ω

V(x)|un|
q(x)−2un(un − u)dx

∣∣∣∣∣ ≤ |V |s(x)||un|
q(x)−2un(un − u)|s′(x)

≤
∣∣∣V |s(x)||un|

q(x)−2un

∣∣∣ q(x)
q(x)−1
|un − u| s(x)q(x)

s(x)−q(x)

→ 0 as n→ ∞.

Thus,

lim
n→∞

∫
Ω

V(x)|un|
q(x)−2un(un − u)dx = 0. (2.8)

Due to (2.6), we have
〈J′(un), un − u〉 → 0.

Therefore

〈J′(u), un − u〉 =

(
a − b

∫
Ω

1
p(x)
|∆un|

p(x)dx
) ∫

Ω

|∆un|
p(x)−2∆un(∆un − ∆u)dx

− λ

∫
Ω

V(x)|un|
q(x)−2un(un − u)dx→ 0.

Hence, we can infer from (2.8) that(
a − b

∫
Ω

1
p(x)
|∆un|

p(x)dx
) ∫

Ω

|∆un|
p(x)−2∆un(∆un − ∆u)dx→ 0. (2.9)

Since {un} is bounded in X, passing to a subsequence, if necessary, we may assume that∫
Ω

1
p(x)
|∆un|

p(x)dx→ t0 ≥ 0 as n→ ∞.

If t0 = 0, then {un} strongly converges to u = 0 in X and the proof is finished. If t0 > 0, we will
discuss the following two cases respectively:
Case 1. If t0 ,

a
b then a − b

∫
Ω

1
p(x) |∆un|

p(x)dx → 0 is not true and no subsequence of {a −

b
∫

Ω

1
p(x) |∆un|

p(x)dx} converges to zero. Therefore, there exists δ > 0 such that
∣∣∣∣a − b

∫
Ω

1
p(x) |∆un|

p(x)dx
∣∣∣∣ >

δ > 0 when n is large enough. Obviously it is concluded that{
a − b

∫
Ω

1
p(x)
|∆un|

p(x)dx
}

is bounded. (2.10)

Case 2. If t0 = a
b then a − b

∫
Ω

1
p(x) |∆un|

p(x)dx→ 0.
Set

ϕ(u) = λ

∫
Ω

V(x)
q(x)
|u|q(x)dx, for all u ∈ X.

Then
〈ϕ′(u), v〉 = λ

∫
Ω

V(x)|u|q(x)−2vdx, for all u, v ∈ X.
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From the above equation, we have

〈ϕ′(un) − ϕ′(u), v〉 = λ

∫
Ω

V(x)(|un|
q(x)−2un − |u|q(x)−2u)vdx.

We complete the proof with such a lemma:
Lemma 2.3. Let un, u ∈ X such that (2.7) holds. Then, passing to a subsequence, if necessary, the
following properties hold:

(i)
∫

Ω
V(x)(|un|

q(x)−2un − |u|q(x)−2u)vdx→ 0 (n→ ∞);
(ii)〈ϕ′(un) − ϕ′(u), v〉 → 0, (n→ ∞) v ∈ X.

Proof. Due to (2.7), we have un → u in Lq(x)(Ω). Then we get

|un|
q(x)−2un → |u|q(x)−2u in L

q(x)
q(x)−1 (Ω). (2.11)

So from the Hölder inequality, we have∣∣∣∣∣∫
Ω

V(x)(|un|
q(x)−2un − |u|q(x)−2u)vdx

∣∣∣∣∣ ≤ |V |s(x)

∣∣∣|un|
q(x)−2un − |u|q(x)−2u

∣∣∣ q(x)
q(x)−1
|v| s(x)a(x)

s(x)−q(x)

≤ C|V |s(x)

∣∣∣|un|
q(x)−2un − |u|q(x)−2u

∣∣∣ q(x)
q(x)−1
||v||

→ 0.

(2.12)

The proof of (ii) can also be obtained by slightly modifying the proof above. So we will not prove it
in detail here. So we end up with both ||ϕ′(un) − ϕ′(u)||X∗ → 0 and ϕ′(un)→ ϕ′(u).

Next, we will make the proof for Case 2:
According to Lemma 2.3 and since

〈J′(u), v〉 = (a − b
∫

Ω

1
p(x)
|∆u|p(x)dx)

∫
Ω

|∆u|p(x)−2∆u∆vdx − 〈ϕ′(u), v〉,

〈J′(un), v〉 → 0

and
a − b

∫
Ω

1
p(x)
|∆un|

p(x)dx→ 0,

so there are ϕ′(un)→ 0 (n→ ∞), i.e.,

〈ϕ′(u), v〉 = λ

∫
Ω

V(x)|u|q(x)−2uvdx, for all v ∈ X,

and so
λV(x)|u(x)|q(x)−2u(x) = 0, for a.e. x ∈ Ω,

by the fundamental lemma of the variational method (see [47]). It follows that u = 0. So

ϕ(un) = λ

∫
Ω

V(x)
q(x)
|un|

q(x)dx→ λ

∫
Ω

V(x)
q(x)
|u|q(x)dx = 0.
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So when t0 = a
b , we have

J(un) = a
∫

Ω

1
p(x)
|∆un|

p(x)dx −
b
2

(∫
Ω

1
p(x)
|∆un|

p(x)dx
)2

− λ

∫
Ω

V(x)
q(x)
|un|

q(x)dx

→
a2

2b
.

(2.13)

This is a contradiction since J(un) → c < a2

2b , then a − b
∫

Ω

1
p(x) |∆un|

p(x)dx → 0 is not true. And it’s
similar to Case 1, we have that {

a − b
∫

Ω

1
p(x)
|∆un|

p(x)dx
}

is bounded. (2.14)

From what has been discussed above, it can be inferred that∫
Ω

|∆un|
p(x)−2∆un(∆un − ∆u)dx→ 0.

Thus, from Lemma 2.1, we can deduce that un → u strongly in X as n → ∞, which implied that J
satisfies the (PS )c condition.

3. Proof of Theorem 1.1

We prove the conditions for satisfying the Mountain Pass theorem (see [47]) by proving the
following lemma.
Lemma 3.1. The following assertions hold:
(i) There exists ζ > 0 such that for any |V |L∞(Ω) < ζ, there exist ρ, γ > 0 such that J(u) ≥ γ,∀u ∈ X with
||u|| = ρ;
(ii) There exists ψ ∈ X, ψ > 0 such that lim

t→∞
J(tψ) = −∞;

(iii) There exists ω ∈ X, ω > 0 such that J(tω) < 0 for all t > 0 small enough.

Proof. (i) Define the function q1 : Br(x0) → (1,+∞) by q1(x) = q(x) ∀x ∈ Br(x0) and the
function q2 : Ω \ BR(x0)→ (1,∞) by q2(x) = q(x) ∀x ∈ Ω \ BR(x0).

Set q−1 = min
x∈Br(x0)

q1(x), q+
1 = max

x∈Br(x0)
q1(x), q−2 = min

x∈Ω\BR(x0)
q2(x) and q+

2 = min
x∈Ω\BR(x0)

q2(x). Due to the

condition (M), we have

1 < q−1 ≤ q+
1 < p−α ≤ p+α < q−2 ≤ q+

2 < p∗(x) ∀x ∈ Ω.

Thus, X is continuously embedded in Lq±i (i = 1, 2).
Then, there exist two positive constants C1,C2 such that∫

Br(x0)
|u|q1(x)dx ≤ C1(||u||q

−
1 + ||u||q

+
1 ), ∀u ∈ X; (3.1)
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and ∫
Ω\BR(x0)

|u|q2(x)dx ≤ C2(||u||q
−
2 + ||u||q

+
2 ), ∀u ∈ X. (3.2)

The inequalities (3.1) and (3.2) have been proved in [15].
Applying the inequalities and Propositions described above, we obtain

J(u) = a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λ

∫
Ω

V(x)
q(x)
|u|q(x)dx

≥
a
p+
||u||αp− −

b
2(p−)2 ||u||

2αp+

− λ

[∫
Br(x0)

V(x)
q(x)
|u|q(x)dx +

∫
Ω\BR(x0)

V(x)
q(x)
|u|q(x)dx

]
≥

a
p+
||u||αp− −

b
2(p−)2 ||u||

2αp+

− λ
C3|V |L∞(Ω)

q−
(
||u||q

−
1 + ||u||q

+
1 + ||u||q

−
2 + ||u||q

+
2

)
≥

a
p+
ραp− −

b
2(p−)2ρ

2αp+

− λ
C3|V |L∞(Ω)

q−
(
ρq−1 + ρq+

1 + ρq−2 + ρq+
2

)
.

for all u ∈ X with ||u|| < 1. Therefore, we infer that any ζ satisfies

ζ ≥

(
aραp−

p+ −
bρ2αp+

2(p−)2 − γ
)
· q−

λC3(ρq−1 + ρq+
1 + ρq−2 + ρq+

2 )
.

(ii) Let ψ ∈ C∞0 (Ω), ψ ≥ 0 and let x1 ∈ Ω \ BR(x0) and ε > 0 such that ψ(x) > 0 for any x ∈ Bε(x1) ⊂
Ω \ BR(x0). For any t > 1, we have

J(tψ) = a
∫

Ω

tp(x)

p(x)
|∆ψ|p(x)dx −

b
2

(∫
Ω

tp(x)

p(x)
|∆ψ|p(x)dx

)2

− λ

∫
Ω

V(x)tq(x)

q(x)
|ψ|q(x)dx

≤
atαp+

p−

∫
Ω

|∆ψ|p(x)dx −
bt2αp−

2(p+)2

(∫
Ω

|∆ψ|p(x)dx
)2

− λtq−2

∫
Ω\BR(x0)

V(x)
q(x)
|ψ|q(x)dx.

Since αp+ < q−2 we infer that lim
t→∞

J(tψ) = −∞.
(iii) Let ω ∈ C∞0 (Ω), ω ≥ 0 and there exist x2 ∈ Br(x0) and ε > 0 such that for any x ∈ Bε(x2) ⊂ Br(x0)
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we have ω(x) > 0. Let 0 < t < 1, we obtain

J(tω) = a
∫

Ω

tp(x)

p(x)
|∆ω|p(x)dx −

b
2

(∫
Ω

tp(x)

p(x)
|∆ω|p(x)dx

)2

− λ

∫
Ω

V(x)tq(x)

q(x)
|ω|q(x)dx

≤
atαp−

p−

∫
Ω

|∆ω|p(x)dx −
bt2αp+

2(p+)2

(∫
Ω

|∆ω|p(x)dx
)2

− λtq+
1

∫
Br(x0)

V(x)
q(x)
|ω|q(x)dx.

≤
atαp−

p−

∫
Ω

|∆ω|p(x)dx − λtq+
1

∫
Br(x0)

V(x)
q(x)
|ω|q(x)dx.

Thus, we have J(tω) < 0 for any 0 < t < δ
1

αp−−q+
1 ; where

0 < δ < min

1,
p−λ

∫
Br(x0)

V(x)
q(x) |ω|

q(x)dx

a
∫

Ω
|∆ω|p(x)dx

 .
By using Ekeland variational principle in reference [19], we can similarly reach the following

conclusions:
There exists a sequence {un} ⊂ Bρ(0) such that

J(u0)→ c = inf
u∈Bρ(0)

J(u) < 0 and J′(un)→ 0 in X∗ as n→ ∞. (3.3)

It has been proved by Lemma 2.2, the sequence {un} converges strongly to some u2 as n → ∞.
Moreover, since J ∈ C1(X,R), by (3.3) it follows that J′(u2) = 0. Thus, u2 is a non-trivial weak
solution of problem (1.1) with negative energy J(u2) = c < 0.

Finally, since J(u1) = c > 0 > c = J(u2), we can point out the fact that u1 , u2.

Let

M = sup
u∈X

J(u),

then M < +∞, hence

−M = inf
u∈X
−J(u).

Applying Ekland’s variational principle on space X for −J(u), there exists the (PS )−M sequence of
−J(u), so there is the (PS )M sequence of J(u).

Since there is a global minimum, we can define a minimization sequence and prove its convergence.
And then we get our third solution.
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4. Final comments

When λV(x)|u|q(x)−2u is replaced by λ f (x, u), the problem (1.1) becomes
(
a − b

∫
Ω

1
p(x)
|∆u|p(x)dx

)
∆2

p(x)u = λ f (x, u), in Ω,

u = ∆u = 0, on ∂Ω,

(4.1)

where f satisfies the following properties:
( f1) f : Ω × R→ R satisfies the Carathédory condition and there exists a constant C1 ≥ 0 such that

| f (x, t)| ≤ C1(1 + |t|q(x)−1)

for all (x, t) ∈ Ω × R with q(x) ∈ C+(Ω) and q(x) < p∗2(x) for all x ∈ Ω where p∗2(x) := N p(x)
N−2p(x) if

p(x) < N
2 , p∗2(x) = ∞ if p(x) ≥ N

2 .
( f2) There exists k > 0, θ > 2(p+)2

p− such that for all x ∈ Ω and all t ∈ R with |t| ≥ k,

0 < θF(x, t) ≤ t f (x, t),

where F(x, t) =
∫ t

0
f (x, s)ds.

( f3) f (x, t) = o(|t|2p+−1) as t → 0 uniformly with respect to x ∈ Ω, with q− > 2(p+)2.
( f4) f (x,−t) = − f (x, t) for all x ∈ Ω and t ∈ R.
Theorem 4.1. When λV(x)|u|q(x)−2u is replaced by λ f (x, u), if ( f1),( f2),( f4) hold, and q− > 2(p+)2 >

2p+, then problem (4.1) has a sequence of weak solutions {±uk} such that I(±uk)→ −∞ as k → +∞.
By referring to the methods and conditions in [17], we can obtain the existence of two related

theorems for this problem, the main conclusion is that by using the symmetric mountain pass theorem,
we can conclude that there are a series of weak solutions for the problem (4.1). The method of proving
(PS )c condition is similar to Lemma 2.2.
Definition 4.1. A function u ∈ X is a weak solution of (4.1), if(

a − b
∫

Ω

1
p(x)
|∆u|p(x)dx

) ∫
Ω

|∆u|p(x)−2∆u∆ϕdx = λ

∫
Ω

f (x, u)ϕdx,

where ϕ ∈ X.
Define the energy functional I : X → R associated with problem (4.1) by

I(u) = a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λ

∫
Ω

F(x, u)dx, (4.2)

for all u ∈ X, I(u) is well defined and of C1 class on X. Moreover, we have

〈I′(u), v〉 =

(
a − b

∫
Ω

1
p(x)
|∆u|p(x)dx

) ∫
Ω

|∆u|p(x)−2∆u∆vdx

− λ

∫
Ω

f (x, u)vdx,
(4.3)

for all u, v ∈ X.
Lemma A. (Symmetric mountain pass theorem, See [47]) Let X = Y

⊕
Z be an infinite dimensional
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Banach space, where Y is finite dimensional, and I ∈ C1(X,R) satisfies the (PS )c condition as well as
the following properties:
(i) I(u) = 0 and there exist two constants r, α > 0 such that I|∂Br ≥ α.
(ii) I is even.
(iii) for all finite dimensional subspace X̃ ⊂ X there exists R = R(X̃) > 0 such that I(u) ≤ 0 for all
u ∈ X \ BR(X̃), where BR(X̃) = {u ∈ X̃ : ||u|| < R}.
Then I has an unbounded sequence of critical points.

Proof of Theorem 4.1. The method and steps of proving that problem (4.1) satisfies the condition of
(PS )c are consistent with Lemma 2.2, from ( f1), Propositions 2.1 and 2.5, we deduce easily that∫

Ω

f (x, un)(u − un)dx→ 0 as n→ ∞.

Hence, we can deduce that I satisfies the (PS )c condition.
Due to ( f4), and I is an even functional and satisfies the (PS )c condition. We will show that I

satisfies the conditions of Lemma A.

(i) Obviously, I(0) = 0. Since p+ < (p+)2 < q− < q(x) < p∗2(x), X ↪→ L2p+

(Ω), X ↪→ Lq(x)(Ω) and
then there exist C3,C4 > 0 such that

|u|2p+ ≤ C3||u||, |u|q(x) ≤ C4||u||.

By ( f1) and ( f3), we have

|F(x, u)| ≤ ε|u|2p+

+ Cε|u|q(x), for all (x, u) ∈ Ω × R. (4.4)

Let r ∈ (0, 1) and u ∈ X be such that ||u|| = r. Thus, by considering (4.4), Propositions 2.5 and 2.7,
hypothesis that 1 < p− < p(x) < p+ < 2p− < q− < q(x) < p∗(x), we have

I(u) = a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λ

∫
Ω

F(x, u)dx

≥ a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λε

∫
Ω

|u|2p+

dx − λCε

∫
Ω

|u|q(x)dx

≥ a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λεC2p+

3 ||u||
2p+

− λCεC4||u||q
−

≥
a
p+
||u||p

+

−
b

2(p−)2 ||u||
2p− − λεC2p+

3 ||u||
2p+

− λCεC4||u||q
−

= ||u||p
+

(
a
p+
−

b
2(p−)2 ||u||

2p−−p+

− λεC2p+

3 ||u||
2p+−p+

− λCεC4||u||q
−−p+

)
= rp+

(
a
p+
−

b
2(p−)2 r2p−−p+

− λεC2p+

3 rp+

− λCεC4rq−−p+

)
.
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Set

λ∗ =

a
p+ −

b
2(p−)2 r2p−−p+

2
(
εC2p+

3 rp+
−CεC4rq−−p+

) and α = λ∗rp+

,

so for any λ ∈ (0, λ∗), there exists α > 0 such that u ∈ X with ||u|| = r, we have I(u) ≥ α > 0.

(ii) It is clear that I is even.

(iii) By( f2), we have that
F(x, t) ≥ C|t|θ −C. (4.5)

Let R = R(X̃) > 1, for all u ∈ X̃ with ||u|| > R. By (4.5), we have

I(u) = a
∫

Ω

1
p(x)
|∆u|p(x)dx −

b
2

(∫
Ω

1
p(x)
|∆u|p(x)dx

)2

− λ

∫
Ω

F(x, u)dx

≤
a
p−

∫
Ω

|∆u|p(x)dx −
b

2(p+)2

(∫
Ω

|∆u|p(x)dx
)2

− λC
∫

Ω

|u|θdx + λC
∫

Ω

dx

=
a
p−

∫
Ω

|∆u|p(x)dx −
b

2(p+)2

(∫
Ω

|∆u|p(x)dx
)2

− λC
∫

Ω

|u|θdx + λC|Ω|.

Thus, all norms on the finite dimensional space X̃ are equivalent, so there exists CW > 0 such that∫
Ω

|u|θdx ≥ CW ||u||θ.

Therefore, we obtain

I(u) ≤
a
p−
||u||p

+

−
b

2(p+)2 ||u||
2p− − λCCW ||u||θ + λC|Ω|.

Due to θ > p+, it follows that for some ||u|| > R large enough, we can infer that I(u) ≤ 0. Therefore,
the conclusion of Theorem 4.1 can be obtained by using the symmetric mountain pass theorem.

This paper can be regarded as an extension of literature [26]. In addition, for this kind of negative
nonlocal term problem, in recent literature [46], the author studied a class of variable exponent p(x)-
Kirchhoff type problem with convection. In this paper, Galerkin method, pseudomonotone operators
and a fixed-point argument were used to study the existence of the solution to this problem. In [34],
the author studied the multiplicity results of a class of p(x)-Choquard equations with nonlocal and
nondegenerate Kirchhoff terms by using truncation argument and Krasnoselskiis genus method.

5. Conclusions

In this paper, we study a class of p(x)-biharmonic problems with negative nonlocal terms and
weight function. Using the mountain pass theorem and the Ekeland’s variational principle, we proved
the existence of at least three solutions. We also proved the existence of infinite solutions when the
nonlinear term is a general function.
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