In this paper, we proved the existence and the multiplicity of solutions for some $ p(x) $-biharmonic problems involving singular nonlinearity and a Hardy potential. More precisely, by the use of the min-max method, we proved the existence of a nontrivial solution for such a problem. Next, diversions of the mountain pass theorem were used to prove the multiplicity of solutions.
Citation: Abdeljabbar Ghanmi, Abdelhakim Sahbani. Existence results for $ p(x) $-biharmonic problems involving a singular and a Hardy type nonlinearities[J]. AIMS Mathematics, 2023, 8(12): 29892-29909. doi: 10.3934/math.20231528
In this paper, we proved the existence and the multiplicity of solutions for some $ p(x) $-biharmonic problems involving singular nonlinearity and a Hardy potential. More precisely, by the use of the min-max method, we proved the existence of a nontrivial solution for such a problem. Next, diversions of the mountain pass theorem were used to prove the multiplicity of solutions.
[1] | R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017 |
[2] | R. Alsaedi, A. Dhifli, A. Ghanmi, Low perturbations of $p$-biharmonic equations with competing nonlinearities, Complex Var. Elliptic Equ., 66 (2021), 642–657. https://doi.org/10.1080/17476933.2020.1747057 doi: 10.1080/17476933.2020.1747057 |
[3] | S. N. Antontsev, J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, 52 (2006), 19–36. https://doi.org/10.1007/s11565-006-0002-9 doi: 10.1007/s11565-006-0002-9 |
[4] | P. Baroni, Gradient continuity for $p(x)$-Laplacian systems under minimal conditions on the exponent, J. Differ. Equ., 367 (2023), 415–450. https://doi.org/10.1016/j.jde.2023.04.043 doi: 10.1016/j.jde.2023.04.043 |
[5] | K. Ben Ali, A. Ghanmi, K. Kefi, On the Steklov problem involving the $p(x)$-Laplacian with indefinite weight, Opuscula Math., 37 (2017), 779–794. http://dx.doi.org/10.7494/OpMath.2017.37.6.779 doi: 10.7494/OpMath.2017.37.6.779 |
[6] | K. Ben Ali, A. Ghanmi, K. Kefi, Minmax method involving singular $p(x)$-Kirchhoff equation, J. Math. Phys., 58 (2017), 111505. https://doi.org/10.1063/1.5010798 doi: 10.1063/1.5010798 |
[7] | K. Ben Ali, M. Bezzarga, A. Ghanmi, K. Kefi, Existence of positive solution for Kirchhoff problems, Complex Anal. Oper. Theory, 13 (2019), 115–126. https://doi.org/10.1007/s11785-017-0709-x doi: 10.1007/s11785-017-0709-x |
[8] | M. M. Boureanu, V. Rǎdulescu, D. Repovš, On a $p(\cdot)$-biharmonic problem with no-flux boundary condition, Comput. Math. Appl., 72 (2016), 2505–2515. http://dx.doi.org/10.1016/j.camwa.2016.09.017 doi: 10.1016/j.camwa.2016.09.017 |
[9] | A. Crespo-Blanco, L. Gasiňski, P. Harjulehto, P. Winker, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equ., 323 (2022), 182–228. https://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[10] | R. Chammem, A. Ghanm, A. Sahbani, Existence of solution for singular fractional Laplacian problem with variable exponents and indefinite weights, Complex Var. Elliptic Equ., 66 (2021), 1320–1332. https://doi.org/10.1080/17476933.2020.1756270 doi: 10.1080/17476933.2020.1756270 |
[11] | R. Chammem, A. Ghanmi, A. Sahbani, Existence and multiplicity of solutions for some Styklov problem involving $p(x)$-Laplacian operator, Appl. Anal., 101 (2022), 2401–2417. https://doi.org/10.1080/00036811.2020.1807014 doi: 10.1080/00036811.2020.1807014 |
[12] | R. Chammem, A. Sahbani, Existence and multiplicity of solutions for some Styklov problem involving $(p_{1}(x), p_{2}(x))$-Laplacian operator, Appl. Anal., 102 (2023), 709–724. https://doi.org/10.1080/00036811.2021.1961758 doi: 10.1080/00036811.2021.1961758 |
[13] | Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math, 66 (2006), 1383–1406. https://doi.org/10.1137/050624522 doi: 10.1137/050624522 |
[14] | A. Dhifli, R. Alsaedi, Existence and multiplicity of solutions for a singular problem involving the $p$-biharmonic operator in $\mathbb{R}^N$, J. Math. Anal. Appl., 499 (2021), 125049. https://doi.org/10.1016/J.JMAA.2021.125049 doi: 10.1016/J.JMAA.2021.125049 |
[15] | L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[16] | A. Drissi, A. Ghanmi, D. D. Repovš, Singular $p$-biharmonic problems involving the Hardy-Sobolev exponent, Electron. J. Differ. Equ., 2023 (2023), 1–12. https://doi.org/10.58997/ejde.2023.61 doi: 10.58997/ejde.2023.61 |
[17] | A. El Khalil, M. El Moumni, M. D. M. Alaoui, A. Touzani, $p(x)$-biharmonic operator involving $p(x)$-Hardy's inequality, Georgian Math. J., 27 (2020), 233–247. https://doi.org/10.1515/gmj-2018-0013 doi: 10.1515/gmj-2018-0013 |
[18] | A. El Khalil, M. Laghzal, M. D. M. Alaoui, A. Touzani, Eigenvalues for a class of singular problems involving $p(x)$-biharmonic operator and $q(x)$-Hardy potential, Adv. Nonlinear Anal., 9 (2020), 1130–1144. https://doi.org/10.1515/anona-2020-0042 doi: 10.1515/anona-2020-0042 |
[19] | M. E. M. O. El Mokhtar, Existence and nonexistence for boundary problem involving the $p$-biharmonic operator and singular nonlinearities, J. Funct. Spaces, 2023 (2023), 1–6. https://doi.org/10.1155/2023/7311332 doi: 10.1155/2023/7311332 |
[20] | X. L. Fan, D. Zhao, On the spaces $ L^{p}(\Omega) $ and $ W^{m, p(x)}(\Omega) $, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617 |
[21] | X. L. Fan, X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems, J. Math. Anal. Appl., 282 (2003), 453–464. https://doi.org/10.1016/S0022-247X(02)00376-1 doi: 10.1016/S0022-247X(02)00376-1 |
[22] | M. Hsini, N. Irzi, K. Kefi, Existence of solutions for a $p(x)$-biharmonic problem under Neumann boundary conditions, Appl. Anal., 100 (2021), 2188–2199. https://doi.org/10.1080/00036811.2019.1679788 doi: 10.1080/00036811.2019.1679788 |
[23] | M. Jennane, Infinitely many weak solutions for problems involving both $p(x)$-Laplacian and $p(x)$-biharmonic operators, Eur. J. Math. Stat., 3 (2022), 71–80. |
[24] | K. Kefi, K. Saoudi, On the existence of a weak solution for some singular $p(x)$-biharmonic equation with Navier boundary conditions, Adv. Nonlinear Anal., 8 (2019), 1171–1183. https://doi.org/10.1515/anona-2016-0260 doi: 10.1515/anona-2016-0260 |
[25] | M. Laghzal, A. El Khalil, M. D. M. Alaoui, A. Touzani, Eigencurves of the $p(x)$-biharmonic operator with a Hardy-type term, Morrocan J. Pure Appl. Anal., 6 (2020), 198–209. https://doi.org/10.2478/mjpaa-2020-0015 doi: 10.2478/mjpaa-2020-0015 |
[26] | M. Laghzal, A. Touzani, Existence of mountain-pass solutions for $ p(\cdot)$-biharmonic equations with Rellich-type term, Filomat, 37 (2023), 1549–1560. https://doi.org/10.2298/FIL2305549L doi: 10.2298/FIL2305549L |
[27] | M. Mihǎilescu, Existence and multiplicity of solutions for a Neumann problem involving the $p(x)$-Laplace operator, Nonlinear Anal., 67 (2007), 1419–1425. https://doi.org/10.1016/j.na.2006.07.027 doi: 10.1016/j.na.2006.07.027 |
[28] | N. S. Papageorgiou, C. Vetro, F. Vetro, Nonhomogeneous eigenvalue problems with singular and critical terms, Funkcial. Ekvac., 66 (2023), 35–43. https://doi.org/10.1619/fesi.66.35 doi: 10.1619/fesi.66.35 |
[29] | N. S. Papageorgiou, C. Vetro, F. Vetro, Singular anisotropic problems with competition phenomena, J. Geom. Anal., 33 (2023), 173. https://doi.org/10.1007/s12220-023-01227-8 doi: 10.1007/s12220-023-01227-8 |
[30] | M. A. Ragusa, A. Razani, F. Safari, Existence of radial solutions for a $p(x)$-Laplacian Dirichlet problem, Adv. Differ. Equ., 2021 (2021), 215. https://doi.org/10.1186/s13662-021-03369-x doi: 10.1186/s13662-021-03369-x |
[31] | K. R. Rajagopal, M. Růžička, On the modeling of electrorheological materials, Mech. Res. Commun., 23 (1996), 401–407. https://doi.org/10.1016/0093-6413(96)00038-9 doi: 10.1016/0093-6413(96)00038-9 |
[32] | K. R. Rajagopal, M. Růžička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59–78. https://doi.org/10.1007/s001610100034 doi: 10.1007/s001610100034 |
[33] | A. Razani, F. Behboudi, Weak solutions for some fractional singular $(p, q)$-Laplacian nonlocal problems with Hardy potential, Rend. Circ. Mat. Palermo Ser. 2, 72 (2023), 1639–1654. https://doi.org/10.1007/s12215-022-00768-1 doi: 10.1007/s12215-022-00768-1 |
[34] | M. Růžička, Electrorheological fluids: Modeling and mathematical theory, Berlin, Heidelberg: Springer, 2000. https://doi.org/10.1007/BFb0104029 |
[35] | Y. Wang, The third solution for a Kirchhoff-type problem with a critical exponent, J. Math. Anal. Appl., 526 (2023), 127174. https://doi.org/10.1016/j.jmaa.2023.127174 doi: 10.1016/j.jmaa.2023.127174 |
[36] | J. H. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Anal., 68 (2008), 1271–1283. https://doi.org/10.1016/j.na.2006.12.020 doi: 10.1016/j.na.2006.12.020 |
[37] | A. B. Zang, Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal., 69 (2008), 3629–3636. https://doi.org/10.1016/j.na.2007.10.001 doi: 10.1016/j.na.2007.10.001 |
[38] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Iz., 29 (1987), 33–66. https://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958 |