
In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of β=0 (without the effect of growth rate) and u+=0. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:
Um−2=(1U)2−m≤Kw(z)≤Cw(z)U,if0<m<2,Um−2≤Lu−≤Cu−U,ifm≥2,
where C=max{K,L}=max{am−a,(m+a)m} for a>0 and m>a, and w(z) is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.
Citation: Mohammad Ghani. Analysis of traveling fronts for chemotaxis model with the nonlinear degenerate viscosity[J]. AIMS Mathematics, 2023, 8(12): 29872-29891. doi: 10.3934/math.20231527
[1] | Muhammad Akram, Uzma Noreen, Mohammed M. Ali Al-Shamiri, Dragan Pamucar . Integrated decision-making methods based on 2-tuple linguistic m-polar fuzzy information. AIMS Mathematics, 2022, 7(8): 14557-14594. doi: 10.3934/math.2022802 |
[2] | Muhammad Riaz, Maryam Saba, Muhammad Abdullah Khokhar, Muhammad Aslam . Novel concepts of m-polar spherical fuzzy sets and new correlation measures with application to pattern recognition and medical diagnosis. AIMS Mathematics, 2021, 6(10): 11346-11379. doi: 10.3934/math.2021659 |
[3] | Jingjie Zhao, Jiale Zhang, Yu Lei, Baolin Yi . Proportional grey picture fuzzy sets and their application in multi-criteria decision-making with high-dimensional data. AIMS Mathematics, 2025, 10(1): 208-233. doi: 10.3934/math.2025011 |
[4] | Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi . Cubic m-polar fuzzy topology with multi-criteria group decision-making. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721 |
[5] | Nasser Aedh Alreshidi, Muhammad Rahim, Fazli Amin, Abdulaziz Alenazi . Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy. AIMS Mathematics, 2023, 8(12): 30462-30486. doi: 10.3934/math.20231556 |
[6] | Anas Al-Masarwah, Abd Ghafur Ahmad . On (complete) normality of m-pF subalgebras in BCK/BCI-algebras. AIMS Mathematics, 2019, 4(3): 740-750. doi: 10.3934/math.2019.3.740 |
[7] | T. M. Athira, Sunil Jacob John, Harish Garg . A novel entropy measure of Pythagorean fuzzy soft sets. AIMS Mathematics, 2020, 5(2): 1050-1061. doi: 10.3934/math.2020073 |
[8] | Ghous Ali, Kholood Alsager . Novel Heronian mean based m-polar fuzzy power geometric aggregation operators and their application to urban transportation management. AIMS Mathematics, 2024, 9(12): 34109-34146. doi: 10.3934/math.20241626 |
[9] | Harish Garg, Rishu Arora . TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS Mathematics, 2020, 5(4): 2944-2966. doi: 10.3934/math.2020190 |
[10] | Muhammad Naeem, Younas Khan, Shahzaib Ashraf, Wajaree Weera, Bushra Batool . A novel picture fuzzy Aczel-Alsina geometric aggregation information: Application to determining the factors affecting mango crops. AIMS Mathematics, 2022, 7(7): 12264-12288. doi: 10.3934/math.2022681 |
In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of β=0 (without the effect of growth rate) and u+=0. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:
Um−2=(1U)2−m≤Kw(z)≤Cw(z)U,if0<m<2,Um−2≤Lu−≤Cu−U,ifm≥2,
where C=max{K,L}=max{am−a,(m+a)m} for a>0 and m>a, and w(z) is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.
Fractional calculus represents a significant extension of classical calculus, enabling the analysis of phenomena that cannot be adequately described by integer-order derivatives and integrals. Over the centuries, mathematicians like Euler, Laplace, Riemann, and Liouville contributed to its development. However, it was not until the 20th century that fractional calculus started gaining significant attention and applications. Fractional calculus often provides more accurate and flexible models for real-world phenomena. It can capture memory effects, non-locality, and complex dynamics that traditional integer-order calculus might miss. It has numerous applications in various fields of science and engineering, including: It is applied in the analysis of electromagnetic fields and waves, where fractional derivatives help model complex behaviors. Fractional calculus is utilized in control systems to model and analyze dynamical systems, enhancing the design of controllers for systems with memory effects. In materials science, fractional calculus models the behavior of viscoelastic materials, which exhibit both viscous and elastic characteristics, allowing for a more accurate representation of their stress-strain relationships. For some other applications in various domains, check [1,2,3,4] and the references therein.
Mathematical inequalities provide a foundational framework for understanding the behavior of functions under integration, leading to significant applications in both theoretical and applied mathematics. Convex integral inequalities are a powerful tool in mathematical analysis, providing relationships between integrals of convex functions and their values at specific points. They find applications in various fields, including probability theory, information theory, and optimization (see [5,6,7,8]). These inequalities are crucial for numerical methods, especially for estimating the error bounds in numerical integration techniques like the trapezoidal rule, Simpson's rule, and others. Several notable integral inequalities have been documented in the literature, including Hermite-Hadamard [9], Newton [10], Simpson [11], Bullen [12], and others.
Through the use of the different classes of generalized convex mappings, authors have interpreted the double Hermite and Hadamard (H-H) inequality in various ways. The double inequality was proposed by Hermite (1822–1901) and Hadamard (1865–1963). In addition to their contributions to number theory, nonlinear analysis, and complex analysis, Hermite and Hadamard have made significant contributions to other fields as well. To learn more about their contributions, see [13]. This inequality is a significant discovery in convex analysis and is widely used in various fields of applied analysis, particularly optimality analysis. Let us describe it as below.
Suppose that ψ:Ω⊆R→R is a convex mapping defined over the interval Ω of real numbers, as well as ω1,ω2∈Ω together with ω1≠ω2. Then one has (see [14]):
ψ(ω1+ω22)≤1ω2−ω1∫ω2ω1ψ(θ)dθ≤ψ(ω1)+ψ(ω2)2. | (1.1) |
This inequality is applied in geometric contexts to determine correlations between a function's value at the midpoint of an interval and its average over that interval. In information theory, the inequality has been used to set boundaries and estimations, especially in relation to quantum integral inequalities and quantum calculus. An effective tool for examining a variety of economic phenomena involving convex functions, such as asset pricing and optimization as well as income distribution and production, is due to Hermite-Hadamard inequality (see [15]).
The bidimensional convex function is primarily used to prove that all convex mappings are convex over their coordinates. Additionally, there are bidimensional convex functions that are not convex (see, for instance, [16]). Hermite-Hadamard type inequality of the following kind was established for convex co-ordinated mappings on R2, that is:
Let a function ψ:[ω1,ω2]×[ω3,ω4]⊆R2→R is convex across its coordinate plane. Then, we have the following double inequalities (see [17]):
4ψ(ω1+ω22,ω3+ω42)≤[1ω2−ω1∫ω2ω1ψ(x,ω3+ω42)dx+1ω4−ω3∫ω4ω3ψ(ω1+ω22,y)dy]≤1(ω2−ω1)(ω4−ω3)∫ω2ω1∫ω4ω3ψ(x,y)dydx≤[1ω2−ω1∫ω2ω1[ψ(x,ω3)+ψ(x,ω4)]dx+1ω4−ω3∫ω4ω3[ψ(ω1,y)+ψ(ω2,y)]dy]≤ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). | (1.2) |
First, the authors in [18] employed inclusion order and interval-valued functions for two-dimensional double inequality and proposed a number of innovative variations of inequalities in terms of inclusions. They further show that when the interval is wrapped, these results generalize many earlier discoveries. In [19], the authors provide several new refinements and reversals for bidimensional double inequality using s-convex mappings on the rectangular plane. Furthermore, this inequality has been investigated using different types of convex mappings as well as integral operators. For example, in [20], the authors used different types of convex, continuous, and differentiable mappings and found various bounds of double inequalities. In [21], the authors define two variable logarithmic convex mappings and develop Hermite-Hadamard inequality with applications. In [22], the authors define two-dimensional preinvex type mappings and develop various types of Hermite-Hadamard inequalities. In [23], the authors exploited the q-jackson quantum double integral on the plane to established the double inequality with its fascinating applications in quantum calculus. Kalsoom et al. [24] used quantum integrals to established the Fejer and Pachapatte type inequalities utilizing two different forms of invex mappings. In [25], authors introduced a new type of fractional integral operators with singular kernels to develop Hermite-Hadamard inequality by employing several types of integral identities. In the realm of interval maps, Shi et al. [26] created multiple new bounds for double Hermite-Hadamard inequality using two types of generalized convex mappings. Zareen et al. [27] exploited generalized double fractional integrals and generated numerous novel Hermite-Hadamard type inequalities with coordinated convex mappings. Saeed et al. [28] employed generalized double fractional integrals to establish numerous novel Hermite-Hadamard type inequalities over convex set relevant to fuzzy-number-valued settings using coordinated convex mappings. In [29], the authors refined the Hadamard inequality for coordinated convex functions and explored their applications. Afzal et al. [30] exploited coordinated convex mappings to produce Hermite-Hadamard, Pachpatte, and Fejer type integral inequalities using innovative fractional integral operators via fully interval-order relations. For some further recent advancements for coordinated convex mappings, we refer to [31,32,33,34] and the references therein.
Since this article mainly deals with a cr-interval order relations, we should recollect recent advancements focusing on center-radius order relations using some other form of convex mapping. The concept of cr-order was introduced for the first time by the authors in [35] in 2014. This relation is more compatible than other order relations and has several additional properties that other interval order relations do not have. Based on their work, authors in [36] defined a new type of convex mapping for convex optimizing problems in the realm of cr-order. Liu et al. [37,38] first created discrete versions of Jensen and Hermite-Hadamard inequalities utilizing two distinct kinds of generalized convex mappings employing cr-order as a result of these discoveries. Khan and Saad [39] created several novel bounds for various kinds of double inequalities by utilizing superquadratic functions in the relam of fractional frame of reference via cr-order relation. Fahad et al. [40] used geometric and arithmetic-cr-convex functions to explore characteristics and several applications related to entropy and means. Using the concepts of cr-order and various classes of convex and Godunova-Levin functions, the authors of [41,42,43,44] generated a number of novel inequalities connected to these findings with applications. For more recent developments on comparable results using different types of related convex classes, see [45,46,47,48,49] and the references therein.
"Order relations" and "convex mappings" are the basic concepts for adjusting inequalities within interval set-valued mappings. Despite that, authors have extensively used the interval partial order relation "⊆p" to develop different types of inequalities and analyze that this type of order relation though it is not very suitable for adjusting inequalities in interval maps because there are some inequalities that are not adjusted under the same assumptions. For instance, please see reference [50] in which several major results are not developed in interval maps. To overcome this limitation, the authors established a new sort of order relation known as cr-order, whose definition is now standard. This is considered a natural generalization of all recently developed order relations such as inclusion, left-right, pseudo, up and down, and various others. Furthermore, the cr-order is full order, which means it possesses all relational features between intervals, including reflexivity, anti-symmetry, transitivity, and comparability, but the inclusion partial order relation lacks comparability between two intervals.
Inspired by well built appropriate literature, particularly these works [18,24,39,40,41], we derived a novel and improved form of inequalities employing cr-interval order. This paper is organized into five sections, beginning with an introduction and fundamental discussion of the subject connected to preliminary. In Section 3, we first show that double integral preserves cr-order, and then we show that the newly developed mappings after we apply cr-order, including midpoint and center, are both convex in nature. Next, we developed different variants of double inequalities that generalize various previous findings. Finally, in Section 4, we provide a precise conclusion and some future prospects.
In this section, we discuss some basic concepts related to fractional and interval calculus. Further some key concepts are not thoroughly discussed here, thus we refer to [39].
● Ri: intervals in R;
● ψ_=¯ψ: interval maps become dysfunctional;
● ⊆: inclusion interval order;
● ⪯cr: cr-interval order;
● ≤: basic order;
● ivfs: interval-valued functions.
Let R be the one-dimensional Euclidean space, and consider Rc the family of all non-empty compact convex subsets of R, that is
Rc={[ω1,ω2]:ω1,ω2∈Randω1≤ω2}. |
To define the Hausdorff metric in Rc, use this formula:
D(ω1,ω2)=max{d(ω1,ω2),d(ω2,ω1)}, | (2.1) |
where d(ω1,ω2)=supν∈ω1d(ν,ω2), and d(ν,ω2)=minμ∈ω2d(ν,μ)=minμ∈ω2|ν−μ|.
Remark 2.1. The Hausdorff metric described in (2.1) is alternatively represented in the following manner:
H([ω1_,¯ω1],[ω2_,¯ω2])=max{|ω1_−ω2_|,|¯ω1−¯ω2|}. |
In interval space, we call this the Moore metric.
For instance, if H1=[ω1_,¯ω1] and H2=[ω2_,¯ω2] are two closed intervals, then the Minkowski sum, scalar multiplication, and difference are defined as follows:
H1+H2={ω1+ω2∣ω1∈H1,ω2∈H2} andΓH1={Γω1∣ω1∈H1} |
and
H1−H2=[ω1_−¯ω2,¯ω1−ω2_], |
with the product
H1⋅H2=[min{ω1ω2_,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2},sup{ω1ω2_,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2}], |
and the division
H1H2=[min{ω1_ω2_,ω1¯ω2,¯ω1ω2_,¯ω1¯ω2},max{ω1_¯ω2,ω1_¯ω2,¯ω1ω2_,¯ω1¯ω2}], |
where 0∉H2.
The order relation that permeates our primary findings is outlined by Bhunia and Samanta [51]; it is commonly referred to as center-radius order.
Definition 2.1. [41] For any two intervals the center-radius order relation is defined as H1=[ω1_,¯ω2]=⟨ωc,ωr⟩=⟨ω1_+¯ω22,¯ω2−ω1_2⟩, H2=[Ω1_,¯Ω2]=⟨Ωc,Ωr⟩=⟨Ω1_+¯Ω22,¯Ω2−Ω1_2⟩, where
H1⪯crH2⟺{ωc<Ωc,ifωc≠Ωc;ωr≤Ωr,ifωr=Ωr. |
The relation ⪯cr satisfies the following relational properties for any three intervals H1=[ω1_,¯ω2]=⟨ωc,ωr⟩, H2=[Ω1_,¯Ω2]=⟨Ωc,Ωr⟩ and H3=[η1_,¯η2]=⟨ηc,ηr⟩: Reflexivity: H1⪯crH1. Anti-symmetry: H1⪯crH2 and H2⪯crH1. Transitivity: H1⪯crH2 and H2⪯crH3, then H1⪯crH3. Comparability: H2⪯crH3 or H3⪯crH2.
Theorem 2.1. [42] Let ψ:[ω1,ω2]→Rc be an ivfs represented by ψ(ω)=[ψ_(ω),¯ψ(ω)]. ψ∈IR([ω1,ω2]), iff ψ_(ω),¯ψ(ω)∈R([ω1,ω2]) and
(I R)∫ω2ω1ψ(ω)dω=[(R)∫ω2ω1ψ_(ω)dω,(R)∫ω2ω1¯ψ(ω)dω]. |
Theorem 2.2. [41] Let ψ,χ:[ω1,ω2]→Rc be an ivfs defined by χ=[χ_,¯χ],ψ=[ψ_,¯ψ]. If ψ(ω)⪯crχ(ω) for all ω∈[ω1,ω2], then
∫ω2ω1ψ(ω)dω⪯cr∫ω2ω1χ(ω)dω. |
Theorem 2.3. [18] Let Δ=[ω1,ω2]×[ω3,ω4]. If ψ:Δ→Rc is UD-integrable over Δ, then we have
(UD)∬Δψ(ω,Ω)dA=(I R)∫ω2ω1(I R)∫ω4ω3ψ(ω,Ω)dωdΩ. |
Using Zhao et al. [18] concept of interval-valued double integrals, we provide the following definitions for Hadamard and Katugampola integrals as follows:
Definition 2.2. Let ψ∈IR([ω1,ω2]×[ω3,ω4]). For bidimensional interval-valued functions, the Hadamard integrals of order θ1,θ2>0 with ω1,ω3≥0 are represented as
Gθ1,θ2ω1+,ω3+ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫xω1∫yω3(lnxt)θ1−1(lnys)θ2−1ψ(t,s)tsdtds,x>ω1,y>ω3,Gθ1,θ2ω1+,ω4−ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫xω1∫ω4y(lnxt)θ1−1(lnsy)θ2−1ψ(t,s)tsdtds,x>ω1,y<ω4,Gθ1,θ2ω2−,ω3+ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫ω2x∫yω3(lntx)θ1−1(lnys)θ2−1ψ(t,s)tsdtds,x<ω2,y>ω3, |
and
Gθ1,θ2ω2−,ω4−ψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫ω2x∫ω4y(lntx)θ1−1(lnys)θ2−1ψ(t,s)tsdtds,x<ω2,y<ω4. |
Definition 2.3. Let ψ∈IR([ω1,ω2]×[ω3,ω4]). For bidimensional interval-valued functions, the Katugampola fractional integrals are defined as
η,σIθ1,θ2ω1+,ω3+ψ(x,y):=η1−θ1σ1−θ2Γ(θ1)Γ(θ2)(I R)∫xω1∫yω3tη−1[xη−tη]1−θ1sσ−1[yσ−sσ]1−θ2ψ(t,s)dtds,x>ω1,y>ω3,η,σIθ1,θ2ω1+,ω4−ψ(x,y):=η1−θ1σ1−θ2Γ(θ1)Γ(θ2)(I R)∫xω1∫ω4ytη−1[xη−tη]1−θ1sσ−1[sσ−yσ]1−θ2ψ(t,s)dtds,x>ω1,y<ω4,η,σIθ1,θ2ω1+,ω3+ψ(x,y):=η1−θ1σ1−θ2Γ(θ1)Γ(θ2)(I R)∫yx∫yω3tη−1[tη−xη]1−θ1sσ−1)[yσ−sσ]1−θ2ψ(t,s)dtds,x<ω2,y>ω3, |
and
η,σIθ1,θ2ω2−,ω4−ψ(x,y):=η1−θ1σ1−θ2Γ(θ1)Γ(θ2)(I R)∫ω2x∫ω4ttη−1[tη−xη]1−θ1sσ−1[sσ−yσ]1−θ2ψ(t,s)dtds,x<ω2,y<ω4. |
We have now established a new type of double fractional integral operators under cr-order that generalize various existing operators by specifying different sorts of functions.
Definition 2.4. Let ζ:[ω1,ω2]→R be a increasing and positive monotone function on (ω1,ω2], having a continuous derivative on (ω1,ω2), and let κ:[ω3,ω4]→R be a increasing and positive monotone function on (ω3,ω4], having a continuous derivative on (ω3,ω4). Let ψ∈IR([ω1,ω2]×[ω3,ω4]). The fractional integral operators for interval-valued functions of two variables are defined by
Jθ1,θ2ω1+,ω3+;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫xω1∫yω3ζ′(t)[ζ(x)−ζ(t)]1−θ1κ′(s)[κ(y)−κ(s)]1−θ2ψ(t,s)dtds,x>ω1,y>ω3,Jθ1,θ2ω1+,ω4−;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫xω1∫ω4yζ′(t)[ζ(x)−ζ(t)]1−θ1κ′(s)[κ(s)−κ(y)]1−θ2ψ(t,s)dtds,x>ω1,y<ω4,Jθ1,θ2ω2−,ω3+;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫ω2x∫yω3ζ′(t)[ζ(t)−ζ(x)]1−θ1κ′(s)[κ(y)−κ(s)]1−θ2ψ(t,s)dtds,x<ω2,y>ω3, |
and
Jθ1,θ2ω2−,ω4−;ζ,κψ(x,y):=1Γ(θ1)Γ(θ2)(I R)∫ω2x∫ω4yζ′(t)[ζ(t)−ζ(x)]1−θ1κ′(s)[κ(s)−κ(y)]1−θ2ψ(t,s)dtds,x<ω2,y<ω4 |
for θ1,θ2>0.
Similar to the preceding definitions, we can provide the following integrals:
Jθ1ω1+;ζψ(x,ω3+ω42):=1Γ(θ1)(I R)∫xω1ζ′(t)[ζ(x)−ζ(t)]1−θ1ψ(t,ω3+ω42)dt,x>ω1,Jθ1ω2−;ζψ(x,ω3+ω42):=1Γ(θ1)(I R)∫ω2xζ′(t)[ζ(t)−ζ(x)]1−θ1ψ(t,ω3+ω42)dt,x<ω2,Jθ2ω3+;κψ(ω1+ω22,y):=1Γ(θ2)(I R)∫yω3κ′(t)[κ(y)−κ(s)]1−θ2ψ(ω1+ω22,s)ds,y>ω3, |
and
Jθ2ω4−;κψ(ω1+ω22,y):=1Γ(θ2)(I R)∫yω3κ′(t)[κ(s)−κ(y)]1−θ2ψ(ω1+ω22,s)ds,y<ω4. |
Next, according to the definition provided by the authors [17,18], we discuss the bidimensional convexity via classical and interval order relation.
Definition 2.5. [17] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→R+ be a two-variable convex function if
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)≤r1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4) |
holds true for every (ω1,ω2),(ω3,ω4)∈Ω along with r1,s1∈[0,1].
Definition 2.6. [18] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two-variable set-valued convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0≤ω1<ω2,0≤ω3<ω4, then we have
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⊇r1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4) |
holds true for every (ω1,ω2),(ω3,ω4)∈Ω along with r1,s1∈[0,1].
Definition 2.7. [52] Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two-variable set-valued strongly convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0≤ω1<ω2,0≤ω3<ω4 and κ1,κ2 are positive real numbers, then we have
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⊇r1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2 |
holds true for every (ω1,ω2),(ω3,ω4)∈Ω along with r1,s1∈[0,1].
Definition 2.8. [46] Let ψ:Ω=[ω1,ω2]→Ri+ be a ivfs defined as ψ=[ψ_(ω),¯ψ(ω)] with 0≤ω1<ω2. Then ψ is cr-convex if
ψ(r1ω1+(1−r1)ω2)⪯crr1ψ(ω1)+(1−r1)ψ(ω2) |
holds true for every (ω1,ω2)∈Ω along with r1∈[0,1].
Motivated by the aforementioned definitions, we now effectively extend Definition 2.8 into R2 by the use of cr-order.
Definition 2.9. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two-variable set-valued cr convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0≤ω1<ω2,0≤ω3<ω4, then we have
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4) |
holds true for every (ω1,ω2),(ω3,ω4)∈Ω along with r1,s1∈[0,1].
Remark 2.2. (1) If ψ_≠¯ψ, we have Definition 2, as stated by Zhao et al. in [18] and Definition 6, as stated by Khan et al. in [53].
(2) If ψ_=¯ψ, we have Definition 2.1, as stated by Silvestru Sever in [17].
Example 2.1. Let ψ:[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two variable set-valued function defined as (see Figure 1)
ψ=[−ω2−Ω2−10e5ωΩ+1−7e4ωΩ+7,2ω2+2Ω2+12e5ωΩ+1+10e4ωΩ+9],(ω,Ω)∈[−1,1]×[−1,1]. | (2.2) |
Then (see Figure 2),
ψc=ω2+Ω2+2e5ωΩ+1+3e4ωΩ+162andψr=3ω2+3Ω2+22e5ωΩ+1+17e4ωΩ+22. | (2.3) |
In this section, we first show that double integral preserves cr-order, and then we show that the newly developed mappings after we apply cr-order, including midpoint and center, are both convex in nature. Finally, we developed different variants of double inequalities that generalize various previous findings.
Theorem 3.1. Let ψ,ϕ:[ω1,ω2]×[ω3,ω4]→Rc given by ϕ=[ϕ_(ω,Ω),¯ϕ(ω,Ω)], and ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)]. If ψ,ϕ∈ IR([ω1,ω2]×[ω3,ω4]), and ψ(ω,Ω)⪯crϕ(ω,Ω) for all ω,Ω∈[ω1,ω2]×[ω3,ω4]→Rc, then
∬Δψ(ω,Ω)dA=∫ω2ω1∫ω4ω3ψ(ω,Ω)dωdΩ⪯cr∫ω2ω1∫ω4ω3ϕ(ω,Ω)dωdΩ. |
Proof. Since ψ(ω,Ω)⪯crϕ(ω,Ω) for all ω,Ω∈[ω1,ω2]×[ω3,ω4]→Rc, then we have
{ψc(ω,Ω)⪯crϕc(ω,Ω), ifψc(ω,Ω)≠ϕc(ω,Ω),ψr(ω,Ω)⪯crϕr(ω,Ω), ifψr(ω,Ω)≠ϕr(ω,Ω). |
Since ψ,ϕ∈ IR([ω1,ω2]×[ω3,ω4]), by Theorem 2.1, we have ψ_(ω,Ω),¯ψ(ω,Ω),ϕ_(ω,Ω),¯ϕ(ω,Ω)∈IR([ω1,ω2]×[ω3,ω4]). When ψc(ω,Ω)≠ϕc(ω,Ω),∀ω,Ω∈[ω1,ω2]×[ω3,ω4], then
∫ω2ω1∫ω4ω3(ψ_(ω,Ω)+¯ψ(ω,Ω))dωdΩ≤∫ω2ω1∫ω4ω3(ϕ_(ω,Ω)+¯ϕ(ω,Ω))dωdΩ. |
That is
∫ω2ω1∫ω4ω3ψ(ω,Ω)dωdΩ⪯cr∫ω2ω1∫ω4ω3ϕ(ω,Ω)dωdΩ. |
When ψc(ω,Ω)=ϕc(ω,Ω),∀ω,Ω∈[ω1,ω2]×[ω3,ω4], then
∫ω2ω1∫ω4ω3(¯ψ(ω,Ω)−ψ_(ω,Ω))dωdΩ≤∫ω2ω1∫ω4ω3(¯ϕ(ω,Ω)−ϕ_(ω,Ω))dωdΩ. |
That is
∫ω2ω1∫ω4ω3ψ(ω,Ω)dωdΩ⪯cr∫ω2ω1∫ω4ω3ϕ(ω,Ω)dωdΩ. |
This completes the proof.
Now, we have defined a coordinated strongly convex mapping utilizing the center-radius ordering relation.
Definition 3.1. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two-variable cr set-valued strongly convex mapping defined as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0≤ω1<ω2,0≤ω3<ω4 and κ1,κ2 are positive real numbers, then we have
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2 |
holds true for every (ω1,ω2),(ω3,ω4)∈Ω along with r1,s1∈[0,1].
Proposition 3.1. Let ψ:Ω=[ω1,ω2]×[ω3,ω4]⊆R2→Ri+ be a two-variable set-valued function represented as ψ=[ψ_(ω,Ω),¯ψ(ω,Ω)] with 0≤ω1<ω2,0≤ω3<ω4 and κ1,κ2. Then ψ is set-valued cr-strongly convex iff ψc and ψr are strongly convex functions.
Proof. As ψc and ψr are strongly coordinated convex in nature, then for all (ω1,ω2),(ω3,ω4)∈[0,1]×[0,1], we have
ψc(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψc(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψc(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2, |
and
ψr(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψr(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψr(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
Now, if
ψc(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)≠r1s1ψc(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψc(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
This implies
ψc(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψc(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψc(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
Otherwise, we have
ψr(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)≤r1s1ψr(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψr(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
This implies
ψr(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψr(ω1,ω3)+s1(1−r1)ψc(ω1,ω4)+r1(1−s1)ψr(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
This can be summed up as follows using the Definition 3.1 and the previously mentioned results:
ψ(s1ω1+(1−s1)ω2,r1ω3+(1−r1)ω4)⪯crr1s1ψ(ω1,ω3)+s1(1−r1)ψ(ω1,ω4)+r1(1−s1)ψ(ω2,ω3)+(1−s1)(1−r1)ψ(ω2,ω4)−κ1s1(1−s1)(ω1−ω2)2−2κ2r1(1−r1)(ω3−ω4)2. |
This concludes the proof.
In this section, we employ coordinated center and radius order relations to create various new bounds for double inequality. Let ψ∈IR([ω1,ω2]×[ω3,ω4]). First, we specify the functions that will be utilized frequently:
ψ1(ω,Ω)=ψ(ω1+ω2−ω,Ω),ψ2(ω,Ω)=ψ(ω,ω3+ω4−Ω),ψ3(ω,Ω)=ψ(ω1+ω2−ω,ω3+ω4−Ω),G(ω,Ω)=ψ(ω,Ω)+ψ2(ω,Ω),H(ω,Ω)=ψ(ω,Ω)+ψ1(ω,Ω),K(ω,Ω)=ψ1(ω,Ω)+ψ3(ω,Ω),L(ω,Ω)=ψ2(ω,Ω)+ψ3(ω,Ω),F(ω,Ω)=ψ1(ω,Ω)+ψ2(ω,Ω)+ψ3(ω,Ω)+ψ(ω,Ω)=G(ω,Ω)+H(ω,Ω)+K(ω,Ω)+L(ω,Ω)2. |
Theorem 3.2. Let ζ:[ω1,ω2]→R be a increasing and positive monotone function on (ω1,ω2], having a continuous derivative on (ω1,ω2), and let κ:[ω3,ω4]→R be a increasing and positive monotone function on (ω3,ω4], having a continuous derivative on (ω3,ω4). Let ψ∈IR([ω1,ω2]×[ω3,ω4]), then for θ1,θ2>0 the following Hermite-Hadamard-type relation hold:
4ψ(ω1+ω22,ω3+ω42)⪯crΓ(θ1+1)Γ(θ2+1)4[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2×[Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)+Jθ1,θ2ω1+,ω4−;ζ,κψ(ω2,ω3)+Jθ1,θ2ω2−,ω3+;ζ,κψ(ω1,ω4)+Jθ1,θ2ω2−,ω4−;ζ,κψ(ω1,ω3)]⪯crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). | (3.1) |
Proof. As ψ represents a set-valued coordinated cr-convex mapping on Δ, we have
ψ(κ1+κ22,κ3+κ42)⪯crψ(κ1,κ3)+ψ(κ1,κ4)+ψ(κ3,κ1)+ψ(κ2,κ4)4, | (3.2) |
for (κ1,κ3),(κ2,κ4)∈Δ. Now, for t,s∈[0,1], let κ1=tω1+(1−t)ω2,κ2=(1−t)ω1+tω2,κ3=ω3s+(1−s)ω4, and κ4=(1−s)ω3+sω4. Then, we have
4ψ(ω1+ω22,ω3+ω42)⪯crψ(tω1+(1−t)ω2,sω3+(1−s)ω4)+ψ(tω1+(1−t)ω2,(1−s)ω3+sω4)+ψ((1−t)ω1+tω2,sω3+(1−s)ω4)+ψ((1−t)ω1+tω2,(1−s)ω3+sω4). | (3.3) |
Multiply the above relation by ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2, then integrate the resulting relation with respect to t,s over [0,1]×[0,1], we get
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ψ(ω1+ω22,ω3+ω42)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2]dtds⪯cr(ω2−ω1)(ω4−ω3)4Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ(tω1+(1−t)ω2,sω3+(1−s)ω4)]dtds+(ω2−ω1)(ω4−ω3)4Γ(θ1)Γ(θ2)( IR)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ(tω1+(1−t)ω2,(1−s)ω3+sω4)]dtds+(ω2−ω1)(ω4−ω3)4Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ((1−t)ω1+tω2,sω3+(1−s)ω4)]dtds+(ω2−ω1)(ω4−ω3)4Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ((1−t)ω1+tω2,(1−s)ω3+sω4)]dtds. |
Using basic computation, we have
(I R)∫10∫10ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2dtds=[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2θ1θ2(ω2−ω1)(ω4−ω3). |
Making use of the variable change τ=(1−t)ω1+tω2 and η=(1−s)ω3+sω4, we obtain
[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)⪯cr14Γ(θ1)Γ(θ2)(I R)∫ω2ω1∫ω4ω3ζ′(τ)[ζ(ω2)−ζ(τ)]1−θ1κ′(η)[κ(ω4)−κ(η)]1−θ2ψ(ω1+ω2−τ,ω3+ω4−η)dηdτ+14Γ(θ1)Γ(θ2)(I R)∫ω2ω1∫ω4ω3ζ′(τ)[ζ(ω2)−ζ(τ)]1−θ1κ′(η)[κ(ω4)−κ(η)]1−θ2ψ(ω1+ω2−τ,η)dηdτ+14Γ(θ1)Γ(θ2)(I R)∫ω2ω1∫ω4ω3ζ′(τ)[ζ(ω2)−ζ(τ)]1−θ1κ′(η)[κ(ω4)−κ(η)]1−θ2ψ(τ,ω3+ω4−η)dηdτ+14Γ(θ1)Γ(θ2)(I R)∫ω4ω1∫ω4ω3ζ′(τ)[ζ(ω2)−ζ(τ)]1−θ1κ′(η)[κ(ω4)−κ(η)]1−θ2ψ(τ,η)dηdτ=14[Jθ1,θ2ω1+,ω3+;ζ,κψ3(ω2.ω4)+Jθ1,θ2ω1+,ω3+:ζ,κψ1(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ2(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)]=14Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4). | (3.4) |
That is, we have
[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)⪯cr14Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4). | (3.5) |
In a similar manner, multiplying (3.3) on both sides by
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ((1−s)ω3+sω4)−κ(ω3)]1−θ2, |
and by integrating the above relation across [0,1]×[0,1], we get
[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)⪯cr14Jθ1,θ2ω1+,ω4−;ζ,κψ(ω2,ω3). | (3.6) |
Moreover, multiplying both sides of (3.3) by
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ((1−t)ω1+tω2)−ζ(ω1)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2, |
and
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ((1−t)ω1+tω2)−ζ(ω1)]1−θ1κ′((1−s)ω3+sω4)[κ((1−s)ω3+sω4)−κ(ω3)]1−θ2, |
then incorporating the aforementioned relation with reference to t,s across [0,1]×[0,1], we get
[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)⪯cr14Jθ1,θ2ω2−,ω3+;ζ,κψ(ω1,ω4), | (3.7) |
and
[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1)ψ(ω1+ω22,ω3+ω42)⪯cr14Jθ1,θ2ω2−,ω4−;ζ,κψ(ω1,ω3), | (3.8) |
respectively.
Summing the relations (3.5) to (3.8), we have
ψ(ω1+ω22,ω3+ω42)⪯crΓ(θ1+1)Γ(θ2+1)16[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2×[Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)+Jθ1,θ2ω2−,ω3+;ζ,κψ(ω1,ω3)+Jθ1,θ2ω2−,ω3+;ζ,κψ(ω1,ω4)+Jθ1,θ2ω2−,ω4−;ζ,κψ(ω1,ω3)]. | (3.9) |
This concludes the demonstration of the first part of relation in (3.1). To prove the second part in (3.1), again taking into account bidimensional convex mappings, we have
ψ(tω1+(1−t)ω2,sω3+(1−s)ω4)+ψ(tω1+(1−t)ω2,(1−s)ω3+sω4)+ψ((1−t)ω1+tω2,sω3+(1−s)ω4)+ψ((1−t)ω1+tω2,(1−s)ω3+sω4)⪯crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). | (3.10) |
Multiplying both sides of (3.10) by
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2, |
then incorporating the aforementioned relation with reference to t,s across [0,1]×[0,1], we get
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ(tω1+(1−t)ω2,sω3+(1−s)ω4)]dtds+(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ(tω1+(1−t)ω2,(1−s)ω3+sω4)]dtds+(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)(I R)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ((1−t)ω1+tω2,sω3+(1−s)ω4)]dtds+(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)∫10∫10[ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2ψ((1−t)ω1+tω2,(1−s)ω3+sω4)]dtds2(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)[ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4)]×(I R)∫10ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2dtds. |
Then, we get
Jθ1,θ2ω1+,ω3+;ζ,κψ3(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ1(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ2(ω2.ω4)+Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)⪯cr[ψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4)][ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Γ(θ1+1)Γ(θ2+1), | (3.11) |
that is,
Γ(θ1+1)Γ(θ2+1)[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Jθ1,θ2ω1+,ω3+;ζ,κψ(ω2,ω4)⪯crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4). | (3.12) |
Similarly, multiplying both sides of (3.10) by
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ(ω2)−ζ((1−t)ω1+tω2)]1−θ1κ′((1−s)ω3+sω4)[κ((1−s)ω3+sω4)−κ(ω3)]1−θ2,(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ((1−t)ω1+tω2)−ζ(ω1)]1−θ1κ′((1−s)ω3+sω4)[κ(ω4)−κ((1−s)ω3+sω4)]1−θ2, |
and
(ω2−ω1)(ω4−ω3)Γ(θ1)Γ(θ2)ζ′((1−t)ω1+tω2)[ζ((1−t)ω1+tω2)−ζ(ω1)]1−θ1κ′((1−s)ω3+sω4)[κ((1−s)ω3+sω4)−κ(ω3)]1−θ2, |
and then incorporating the aforementioned relation with reference to t,s across [0,1]×[0,1], we get
Γ(θ1+1)Γ(θ2+1)[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Jθ1,θ2ω1+,ω4−;ζ,κψ(ω2,ω3)⪯crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4),Γ(θ1+1)Γ(θ2+1)[ζ(ω2)−ζ(ω1)]θ1[κ(ω4)−κ(ω3)]θ2Jθ1,θ2ω2−,ω3+;ζ,κψ(ω1,ω4)⪯crψ(ω1,ω3)+ψ(ω1,ω4)+ψ(ω2,ω3)+ψ(ω2,ω4), | (3.13) |
and
\begin{align} &\quad\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_2}-, {\omega_3}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\\ & \preceq_{\mathtt{\mathtt{cr}}} \psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4). \end{align} | (3.14) |
By adding the relations (3.12) to (3.14), we have
\begin{align} &\quad \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} 4[\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)] . \end{align} | (3.15) |
Dividing both sides of relation (3.15) by 16 yields the second relation in (3.1). This concludes the proof.
Remark 3.1. The relationship for set-valued Riemann-Liouville integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega with \underline{\psi}\neq \overline{\psi} in Theorem 3.2:
\begin{align*} & 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ \supseteq&\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ \supseteq&{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}, \end{align*} |
which was proved by the authors in [54].
Remark 3.2. The relationship for Riemann integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega, \, {{{{\theta_1}}}} = {{{{\theta_2}}}} = 1 with \underline{\psi}\neq \overline{\psi} in Theorem 3.2:
\begin{align*} & 4{{\psi}}\left(\frac{{{\omega_1}}+{{\omega_2}}}{2}, \frac{{{\omega_3}}+{{\omega_4}}}{2}\right) \\ \supseteq & \frac{4}{({{\omega_2}}-{{\omega_1}})({{\omega_4}}-{{\omega_3}})} \int_{{\omega_1}}^{{\omega_2}} \int_{{\omega_3}}^{{\omega_4}} {{\psi}}(\omega, \Omega) \mathrm{d} \Omega \mathrm{d} \omega \\ \supseteq &{{{\psi}}({{\omega_1}}, {{\omega_3}})+{{\psi}}({{\omega_2}}, {{\omega_3}})+{{\psi}}({{\omega_1}}, {{\omega_4}})+{{\psi}}({{\omega_2}}, {{\omega_4}})}, \end{align*} |
which was proved by the authors in [18].
Remark 3.3. The relationship for Riemann-Liouville integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega with \underline{\psi} = \overline{\psi} in Theorem 3.2:
\begin{align*} & \quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \leq \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\quad\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \leq{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}, \end{align*} |
which was proved by the authors in [55].
Remark 3.4. The relationship for fractional integrals is as follows if we take into account \underline{\psi} = \overline{\psi} in Theorem 3.2:
\begin{align*} \label{f990} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \nonumber\\ & \leq\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \nonumber\\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \nonumber\\ & \leq{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align*} |
which was proved by the authors in [34].
Remark 3.5. The relationship for Riemann integrals is as follows if we take into account \zeta(\omega) = \omega and \kappa(\Omega) = \Omega, \, {{{{\theta_1}}}} = {{{{\theta_2}}}} = 1 with \underline{\psi}\neq \overline{\psi} in Theorem 3.2, which was proved by the authors in [53].
Corollary 3.1. The relationship for Hadamard fractional integrals is as follows if we take into account \zeta(\omega) = \ln\omega and \kappa(\Omega) = \ln\Omega in Theorem 3.2:
\begin{align*} & \quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{cr}}\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4\left[\ln \omega_2- \ln \omega_1 \right]^{{\theta_1}} \left[\ln \omega_4-\ln \omega_3 \right]^{{\theta_2}}}\\ &\quad\left[\mathfrak{G}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathfrak{G}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right. \left.+\mathfrak{G}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathfrak{G}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{cr}}{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*} |
Corollary 3.2. The relationship for Katugampola fractional integrals is as follows if we take into account \zeta(\omega) = \frac{{\omega}^\mathtt{p}}{\eta} and \kappa(\Omega) = \frac{{\Omega}^\sigma}{\sigma}, \eta, \sigma > 0 in Theorem 3.2:
\begin{align*} & 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{cr}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\nonumber\\& \quad\left[{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right.\left.+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{cr}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*} |
Example 3.1. Let \psi(\omega, \Omega) = \left[24e^{ \omega}+24e^{ \Omega}+4e^{{ \Omega} { \omega}}+ 144, 216e^{ \omega}+216e^{ \Omega}+36e^{{ \Omega} { \omega}}+ 1296\right], [\omega_1, \omega_2] = [0, 1], [\omega_3, \omega_4] = [0, 1], \theta_1 = \theta_2 = 1 , \zeta(\omega) = \ln\omega and \kappa(\Omega) = \ln\Omega , then we have
\begin{align*} & \quad \psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \approx[88.4109, 351.0176], \\ & \quad\frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{16[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \nonumber\\ & \quad\times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right. \left.+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right]\nonumber\\ & \approx[117.4421, 557.1243], \\ &\quad \frac{\psi(\omega_2, \omega_3)+\psi(\omega_1, \omega_3)+\psi(\omega_2, \omega_4)+\psi(\omega_1, \omega_4)}{4} \approx[123.5321, 741.1931] . \end{align*} |
Thus,
[88.4109, 351.0176] \preceq_{\mathtt{cr}}[117.4421, 557.1243] \preceq_{\mathtt{cr}}[123.5321, 741.1931]. |
As a result, Theorem 3.2 holds true.
Theorem 3.3. Considering the same hypotheses that were considered in Theorem 3.2, we get the following center-radius order relationships:
\begin{align} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ & \quad\times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align} | (3.16) |
Proof. As \psi is a bidimesional convex on \Delta , if we have the mapping \sigma_{\mathtt{x}}^1:[\omega_3, \omega_4] \rightarrow \mathsf{R}, \sigma_{\mathtt{x}}^1(\mathtt{y}) = \psi(\mathtt{x}, \mathtt{y}) , then \sigma_{\mathtt{x}}^1(\mathtt{y}) is convex \forall x \in[\omega_1, \omega_2] and \mathcal{H}_{\mathtt{x}}^1(\mathtt{y}) = \sigma_{\mathtt{x}}^1(\mathtt{y})+\widetilde{\sigma_{\mathtt{x}}^1}(\mathtt{y}) = \psi(\mathtt{x}, \mathtt{y})+\psi_2(\mathtt{x}, \mathtt{y}) = \mathcal{G}(\mathtt{x}, \mathtt{y}), then for the convex mapping \sigma_{\mathtt{x}}^1(\mathtt{y}) , we have
\begin{align*} & \quad\sigma_{\mathtt{x}}^1\left(\frac{\omega_3+\omega_4}{2}\right)\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{H}_{\mathtt{x}}^1(\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{H}_{\mathtt{x}}^1(\omega_3)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\sigma_{\mathtt{x}}^1(\omega_3)+\sigma_{\mathtt{x}}^1(\omega_4)}{2}, \end{align*} |
that is,
\begin{align} &\quad \psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_2}}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad\left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}} \mathcal{C}(\mathtt{x}, \mathtt{y}) \mathtt{d y}+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}} \mathcal{C}(\mathtt{x}, \mathtt{y}) \mathtt{dy}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\mathtt{x}, \omega_3)+\psi(\mathtt{x}, \omega_4)}{2} . \end{align} | (3.17) |
Multiplying the relation (3.17) by
\frac{{{\theta_1}}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}}, |
and
\frac{{{\theta_1}}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}}. |
Next, we obtain by integrating the given results from \omega_1 to \omega_2 with regard to \mathtt{x} .
\begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{C}(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi(\omega_2, \omega_4)\right], \end{align} | (3.18) |
and
\begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{G}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi(\omega_1, \omega_4)\right], \end{align} | (3.19) |
respectively.
Also, if we define another mapping \sigma_{\mathtt{x}}^2:[\omega_3, \omega_4] \rightarrow \mathsf{R}, \sigma_{\mathtt{x}}^2(\mathtt{y}) = \psi_1(\mathtt{x, y}) , then \sigma_{\mathtt{x}}^2(\mathtt{y}) is convex \forall x \in[\omega_1, \omega_2] and \mathcal{H}_\mathtt{x}^2(\mathtt{y}) = \psi_1(\mathtt{x, y})+\psi_3(\mathtt{x, y}) = \mathcal{K}(\mathtt{x, y}) , then for the convex function \sigma_{\mathtt{x}}^2(\mathtt{y}) , we have
\begin{align*} &\quad\sigma_{\mathtt{x}}^2\left(\frac{\omega_3+\omega_4}{2}\right) \\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_2+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_3}+; \kappa} \mathcal{H}_\mathtt{x}^2( \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa} \mathcal{H}_\mathtt{x}^2( \omega_3)\right]\\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{\sigma_{\mathtt{x}}^2( \omega_3)+\sigma_{\mathtt{x}}^2( \omega_4)}{2}, \end{align*} |
that is,
\begin{align} &\quad \psi_1\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\theta_2}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-w(\mathtt{y})]^{1-{\theta_2}}} \mathcal{K}(\mathtt{x, y}) \mathtt{y}+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[w(\mathtt{y})-\kappa(\omega_3)]^{1-{\theta_2}}} \mathcal{K}(\mathtt{x, y}) \mathtt{dy}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_1(\mathtt{x}, \omega_3)+\psi_1(\mathtt{x}, \omega_4)}{2} . \end{align} | (3.20) |
Similarly, multiplying the relation (3.20) by
\frac{{\theta_1}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{\theta_1}}}, |
and
\frac{{\theta_1}}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{\theta_1}}}. |
Therefore, from \omega_1 to \omega_2 , integrating the acquired output with reference to \mathtt{x} , we obtain
\begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_1}+, , {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \psi_1(\omega_2, \omega_4)\right], \end{align} | (3.21) |
and
\begin{align} & \quad\frac{\Gamma(\theta_1+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}} \mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1) \Gamma(\theta_2+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}}\left[\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{\theta_1, {\theta_2}} \mathcal{K}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{\theta_1} \psi_1(\omega_1, \omega_4)\right], \end{align} | (3.22) |
respectively.
Moreover, if we have mapping {\sigma_{\mathtt{y}}}^1:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^1(\mathtt{x}) = \psi(\mathtt{x, y}) , then {\sigma_{\mathtt{y}}}^1(\mathtt{x}) is convex for all \forall \mathtt{y}\in[\omega_3, \omega_4] and \mathcal{H}_y^1(\mathtt{x}) = {\sigma_{\mathtt{y}}}^1(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^1}(\mathtt{x}) = \psi(\mathtt{x, y})+\psi_1(\mathtt{x, y}) = \mathcal{H}(\mathtt{x, y}) , then for the convex function {\sigma_{\mathtt{y}}}^1(\mathtt{x}) , we have
\begin{align*} & \quad{\sigma_{\mathtt{y}}}^1\left(\frac{\omega_1+\omega_2}{2}\right)\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma(\theta_1+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{\theta_1} \mathcal{H}_y^1(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{\theta_1} \mathcal{H}_y^1(\omega_1)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^1(\omega_1)+{\sigma_{\mathtt{y}}}^1(\omega_2)}{2}, \end{align*} |
that is,
\begin{align} &\quad \psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{\theta_1}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{\theta_1}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\omega_1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}} \mathcal{H}(\mathtt{x, y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{\theta_1}}} \mathcal{H}(\mathtt{x, y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \mathtt{y})+\psi(\omega_2, \mathtt{y})}{2} . \end{align} | (3.23) |
Multiplying the relation (3.23) by
\begin{align} \frac{{\theta_2}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-w(\mathtt{y})]^{1-{\theta_2}}}, \end{align} | (3.24) |
and
\begin{align} \frac{{\theta_2}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{\theta_2}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[w(\mathtt{y})-\kappa(\omega_3)]^{1-{\theta_2}}}. \end{align} | (3.25) |
Next, by integrating the known findings from \omega_3 to \omega_4 with respect to \mathtt{y} , we derive the subsequent relation:
\begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, , {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)\right], \end{align} | (3.26) |
and
\begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right], \end{align} | (3.27) |
respectively.
Furthermore, if we have mapping {\sigma_{\mathtt{y}}}^2:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^2(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y}) , then {\sigma_{\mathtt{y}}}^2(\mathtt{x}) is convex for all \mathtt{y}\in[\omega_3, \omega_4] and \mathcal{H}_{\mathtt{y}}^2(\mathtt{x}) = {\sigma_{\mathtt{y}}}^2(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^2}(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y})+\psi_3(\mathtt{x}, \mathtt{y}) = \mathcal{L}(\mathtt{x}, \mathtt{y}) , the for the convex mapping {\sigma_{\mathtt{y}}}^2(\mathtt{x}) , we have
{\sigma_{\mathtt{y}}}^2\left(\frac{\omega_1+\omega_2}{2}\right) \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_1)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^2(\omega_1)+{\sigma_{\mathtt{y}}}^2(\omega_2)}{2}, |
that is,
\begin{align} & \quad\psi_2\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_2(\omega_1, \mathtt{y})+\psi_2(\omega_2, \mathtt{y})}{2} . \end{align} | (3.28) |
Multiplying the relations (3.28) by
\frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}}, |
and
\frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}}, |
subsequently integrating the established findings from \omega_3 to \omega_4 with respect to \mathtt{y} , we derive the following relations:
\begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)\right], \end{align} | (3.29) |
and
\begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right], \end{align} | (3.30) |
respectively.
Again, if we define the mapping {\sigma_{\mathtt{y}}}^2:[\omega_1, \omega_2] \rightarrow \mathsf{R}, {\sigma_{\mathtt{y}}}^2(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y}) , then {\sigma_{\mathtt{y}}}^2(\mathtt{x}) is convex \forall \mathtt{y} \in[\omega_3, \omega_4] and \mathcal{H}_{\mathtt{y}}^2(\mathtt{x}) = {\sigma_{\mathtt{y}}}^2(\mathtt{x})+\widetilde{{\sigma_{\mathtt{y}}}^2}(\mathtt{x}) = \psi_2(\mathtt{x}, \mathtt{y})+\psi_3(\mathtt{x}, \mathtt{y}) = \mathcal{L}(\mathtt{x}, \mathtt{y}) , then for the convex mapping {\sigma_{\mathtt{y}}}^2(\mathtt{x}) , we have
\begin{align*} {\sigma_{\mathtt{y}}}^2\left(\frac{\omega_1+\omega_2}{2}\right) &\preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_2)+\mathsf{J}_{{\omega_2}-; \kappa}^{{\theta_1}} \mathcal{H}_{\mathtt{y}}^2(\omega_1)\right] \\ &\preceq_{\mathtt{\mathtt{cr}}} \frac{{\sigma_{\mathtt{y}}}^2(\omega_1)+{\sigma_{\mathtt{y}}}^2(\omega_2)}{2}, \end{align*} |
that is,
\begin{align} &\quad \psi_2\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\\ &\quad \left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{1-{{\theta_1}}}} \mathcal{L}(\mathtt{x}, \mathtt{y}) \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi_2(\omega_1, \mathtt{y})+\psi_2(\omega_2, \mathtt{y})}{2} . \end{align} | (3.31) |
Similarly, multiplying the relations (3.31) by
\frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{1-{{\theta_2}}}}, |
and
\frac{{{\theta_2}}}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{1-{{\theta_2}}}}, |
upon integrating the acquired outcomes concerning \mathtt{y} between \omega_3 and \omega_4 , we derive the subsequent relationships:
\begin{align} & \quad\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_4)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_2.\omega_4)\right], \end{align} | (3.32) |
and
\begin{align} &\quad \frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-; \zeta \cdot \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_2, \omega_3)\right], \end{align} | (3.33) |
respectively.
Summing the relations (3.18), (3.19), (3.21), (3.22), (3.26), (3.27)–(3.30) and (3.33), we have the following result:
\begin{align*} &\quad \frac{\Gamma({{\theta_1}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right. \\ & \quad\left.+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi_1\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi_1\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right. \\ & \quad\left.+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{G}(\omega_1, \omega_3)\right. \\ &\quad +\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{K}(\omega_1, \omega_3) \\ & \quad+\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{H}(\omega_1, \omega_3) \\ &\quad \left.+\mathsf{J}_{{\omega_1}+, {\omega_3}+; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_3}+: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_4}-: \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \mathcal{L}(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi(\omega_2, \omega_3)+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi(\omega_2, \omega_4)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi(\omega_1, \omega_3)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi(\omega_1, \omega_4)\right. \\ &\quad \left.+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \psi_1(\omega_2, \omega_3)+\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \psi_1(\omega_2.\omega_4)+\mathsf{J}_{\omega_2- \zeta}^{{\theta_1}} \psi_1(\omega_1, \omega_3)+\mathsf{J}_{\omega_2-\zeta}^{{\theta_1}} \psi_1(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi(\omega_2, \omega_3)\right. \\ & \quad\left.+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \psi_2(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_1, \omega_3)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \psi_2(\omega_2, \omega_3)\right] . \end{align*} |
That is, we have
\begin{align*} & \quad\frac{\Gamma({{\theta_1}}+1)}{[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-;, \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}} \\ &\quad \times\left[\mathsf{J}_{{\omega_1}+, {\omega_3}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathsf{J}_{{\omega_1}+, {\omega_4}-; \zeta, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-, {\omega_3}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathsf{J}_{{\omega_2}-, {\omega_4}+;, \kappa}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{2[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+;, \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_3}+;, \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathsf{J}_{\omega_4-\kappa;, }^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right]. \end{align*} |
This concludes the verification of relations second and third in (3.16). On the other hand, for symmetric function, we have the following relation:
\begin{align} \psi\left(\frac{\omega_1+\omega_2}{2}\right) & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right. \\ & \quad\left.+\int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right] . \end{align} | (3.34) |
As \psi is set-valued bidimensional convex on \Delta , by using relation (3.34), we obtain
\begin{align} &\quad\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}\left[\psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)+\psi\left(\omega_1+\omega_2-\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)\right] \mathtt{dx}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}\left[\psi\left(\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)+\psi\left(\omega_1+\omega_2-\mathtt{x}, \frac{\omega_3+\omega_4}{2}\right)\right] \mathtt{dx}\right] \\ & = \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{\omega_1+\zeta}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right], \end{align} | (3.35) |
and similarly, we have
\begin{align} & \quad\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{{{\theta_2}}}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\omega_4)-\kappa(\mathtt{y})]^{{\theta_1}}}\left[\psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right)+\psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3+\omega_4-\mathtt{y}\right)\right] \mathtt{dy}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_3}^{\omega_4} \frac{{\kappa}^{\prime}(\mathtt{y})}{[\kappa(\mathtt{y})-\kappa(\omega_3)]^{{\theta_1}}}\left[\psi\left(\frac{\omega_1+\omega_2}{2}, \mathtt{y}\right)+\psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3+\omega_4-\mathtt{y}\right)\right] \mathtt{dy}\right] \\ & = \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] . \end{align} | (3.36) |
Combining the relations (3.35) and (3.36), we obtain the first relation in (3.16). For the second relation, we following double relation:
\begin{align} & \quad\frac{{{\theta_1}}}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\omega_2)-\zeta(\mathtt{x})]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right. \\ & \quad\left.+(\operatorname{I R}) \int_{\omega_1}^{\omega_2} \frac{{\zeta}^{\prime}(\mathtt{x})}{[\zeta(\mathtt{x})-\zeta(\omega_1)]^{{\theta_1}}}[\psi(\mathtt{x})+\psi(\omega_1+\omega_2-\mathtt{x})] \mathtt{dx}\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1)+\psi(\omega_2)}{2} . \end{align} | (3.37) |
By using relation (3.37), we obtain the following relations:
\begin{align} & \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_3)+\psi(\omega_2, \omega_3)}{2}, \\ & \frac{\Gamma({{\theta_1}}+1)}{4[\zeta(\omega_2)-\zeta(\omega_1)]^{{\theta_1}}}\left[\mathsf{J}_{{\omega_1}+; \zeta}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_2}-; \zeta}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_4)}{2}, \\ & \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)}{2}, \end{align} | (3.38) |
and
\begin{align} \frac{\Gamma({{\theta_2}}+1)}{4[\kappa(\omega_4)-\kappa(\omega_3)]^{{\theta_2}}}\left[\mathsf{J}_{{\omega_3}+; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathsf{J}_{{\omega_4}-; \kappa}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \preceq_{\mathtt{\mathtt{cr}}} \frac{\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}{2} . \end{align} | (3.39) |
Combining the relations (3.38) to (3.39), we obtain the last relation in (3.16). This completes the proof.
Remark 3.6. If we consider \zeta(\mathtt{t}) = \mathtt{t} and \kappa(\mathtt{s}) = \mathtt{s} in Theorem 3.3, then we obtain the following relationship for Riemann-Liouville integrals:
\begin{align*} & \quad4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{(\omega_2-\omega_1)^{{\theta_1}}}\left[\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1)}{(\omega_4-\omega_3)^{{\theta_2}}}\left[\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4(\omega_2-\omega_1)^{{\theta_1}}(\omega_4-\omega_3)^{{\theta_2}}}\\ &\quad\left[\mathcal{J}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathcal{J}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\mathcal{J}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathcal{J}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2(\omega_2-\omega_1)^{{\theta_1}}}\left[\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi(\omega_2, \omega_3)+\mathcal{J}_{\omega_1+}^{{\theta_1}} \psi(\omega_2, \omega_4)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi(\omega_1, \omega_3)+\mathcal{J}_{\omega_2-}^{{\theta_1}} \psi(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2(\omega_4-\omega_3)^{{\theta_2}}}\left[\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi(\omega_1, \omega_4)+\mathcal{J}_{\omega_3+}^{{\theta_2}} \psi(\omega_2, \omega_4)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi(\omega_1, \omega_3)+\mathcal{J}_{\omega_4-}^{{\theta_2}} \psi(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)}. \end{align*} |
Corollary 3.3. If we consider \zeta(\mathtt{t}) = \mathtt{t} and \kappa(\mathtt{s}) = \mathtt{s} in Theorem 3.3, then we obtain the following relationship for Hadamard integrals:
\begin{align*} &\quad 4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{2\left[\ln\omega_2-\ln\omega_1\right]^{{\theta_1}}}\left[\mathfrak{G}_{\omega_1+}^{{\theta_1}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{2\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\left[\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right]\\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1)}{4\left[\ln\omega_2-\ln\omega_1 \right]^{{\theta_1}}\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\\ &\quad\left[\mathfrak{G}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+\mathfrak{G}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)+\right. \left.\mathfrak{G}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+\mathfrak{G}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1)}{4\left[\ln\omega_2-\ln\omega_1 \right]^{{\theta_1}}}\left[\mathfrak{T}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+\mathfrak{G}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+\mathfrak{G}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1)}{4\left[\ln\omega_4-\ln\omega_3 \right]^{{\theta_2}}}\left[\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+\mathfrak{G}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+\mathfrak{G}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*} |
Corollary 3.4. If we consider \zeta(\mathtt{t}) = \frac{{\mathtt{t}}^\eta}{\eta} and \kappa(\mathtt{s}) = \frac{{\mathtt{s}}^\sigma}{\sigma} in Theorem 3.3, then we obtain the following relationship for Katugampola integrals:
\begin{align*} & \quad4\psi\left(\frac{\omega_1+\omega_2}{2}, \frac{\omega_3+\omega_4}{2}\right) \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \eta^{{\theta_1}}}{2\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}}\left[{}_{\mathsf{I}_{\omega_1+}^{{\theta_1}}} \mathcal{H}\left(\omega_2, \frac{\omega_3+\omega_4}{2}\right)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}\left(\omega_1, \frac{\omega_3+\omega_4}{2}\right)\right] \\ & \quad+\frac{\Gamma({{\theta_2}}+1) \sigma^{{\theta_2}}}{2\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\left[{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_4\right)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}\left(\frac{\omega_1+\omega_2}{2}, \omega_3\right)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \Gamma({{\theta_2}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[{\omega_2}^\eta-{\omega_1}^\eta\right]^{{\theta_1}}\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\\ &\quad \left[{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_1}+, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_2, \omega_3)\right.\left.+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_3}+}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_4)+{}^{\eta, \sigma} \mathsf{I}_{{\omega_2}-, {\omega_4}-}^{{{\theta_1}}, {{\theta_2}}} \psi(\omega_1, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} \frac{\Gamma({{\theta_1}}+1) \eta^{{\theta_1}} \sigma^{{\theta_2}}}{4\left[b^\eta-a^\eta\right]^{{\theta_1}}}\left[{}^\eta \mathsf{I}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2, \omega_3)+{}^\eta \mathsf{I}_{\omega_1+}^{{\theta_1}} \mathcal{H}(\omega_2.\omega_4)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_3)+{}^\eta \mathsf{I}_{\omega_2-}^{{\theta_1}} \mathcal{H}(\omega_1, \omega_4)\right] \\ &\quad +\frac{\Gamma({{\theta_2}}+1) \sigma^{{\theta_2}}}{4\left[{\omega_4}^\sigma-{\omega_3}^\sigma\right]^{{\theta_2}}}\left[{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_4)+{}^\sigma \mathsf{I}_{\omega_3+}^{{\theta_2}} \mathcal{G}(\omega_2.\omega_4)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_1, \omega_3)+{}^\sigma \mathsf{I}_{\omega_4-}^{{\theta_2}} \mathcal{G}(\omega_2, \omega_3)\right] \\ & \preceq_{\mathtt{\mathtt{cr}}} {\psi(\omega_1, \omega_3)+\psi(\omega_1, \omega_4)+\psi(\omega_2, \omega_3)+\psi(\omega_2, \omega_4)} . \end{align*} |
Coordinated convex functions apply the concept of convexity to functions defined as a product of intervals, allowing for more detailed analysis in multivariable settings. The conclusion of these functions focuses on their integral inequalities and applications in mathematical analysis. These functions enable the application of mathematical inequalities that are essential for analyzing and ensuring the stability, optimality, and control of complex systems. In this paper, we develop various novel bounds and refinements for weighted Hermite-Hadamard inequalities as well as their product form by employing new types of fractional integral operators under a cr-order relation. Additionally, we demonstrate that by means of coordinated center-radius order relations for these integral operators, various new findings can be obtained for Katugampola and Hadamard integrals operators. Furthermore, we show that this type of order relation preserves the integral structure. In addition, as a distinct characteristic from pictorial view, we show that this order is convex in nature, whereas inclusion order is non-convex. A number of interesting examples are presented in support of the major findings. It will be interesting in the future if readers take motivation from these findings and construct results using Itô's lemma as well as quantum calculas, multiplicative calculas, fuzzy order relations, and various other fractional integrals.
Additionally, in a very recent study, Afzal et al. [56,57] developed results using a new approach; more specifically, they used tensor Hilbert spaces and variable exponent spaces, which is an extremely new approach to Hermite-Hadamard inequality and its related results. We also suggest readers extend these results in the sense of these spaces that utilize a variety of convex mappings under norm structures and modular function spaces that have not been initiated yet for coordinated convexity of any kind.
W. Afzal: Conceptualization, Data curation, Writing-original draft, Funding acquisition, Investigation, Visualization; M. Abbas: Conceptualization, Formal analysis, Writing-original draft, Supervision, Validation, Writing-review & editing; J. Ro: Investigation, Project administration, Visualization; K. H. Hakami: Data curation, Formal analysis, Methodology; H. Zogan: Methodology, Project administration, Software. All authors have read and approved the final version of the manuscript for publication.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C2004874), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000280).
The authors declare that they have no competing interests.
[1] |
M. Burger, M. Di Francesco, Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288–1315. http://dx.doi.org/10.1137/050637923 doi: 10.1137/050637923
![]() |
[2] |
S. Choi, Y. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090. http://dx.doi.org/10.1016/j.jmaa.2020.124090 doi: 10.1016/j.jmaa.2020.124090
![]() |
[3] |
C. Deng, T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differ. Equations, 257 (2014), 1311–1332. http://dx.doi.org/10.1016/j.jde.2014.05.014 doi: 10.1016/j.jde.2014.05.014
![]() |
[4] |
M. Ghani, Analysis of degenerate Burgers' equations involving small perturbation and large wave amplitude, Math. Method. Appl. Sci., 46 (2023), 13781–13796. http://dx.doi.org/10.1002/mma.9289 doi: 10.1002/mma.9289
![]() |
[5] | M. Ghani, Asymptotic stability of singular traveling waves to degenerate advection-diffusion equations under small perturbation, Differ. Equ. Dyn. Syst., in press. http://dx.doi.org/10.1007/s12591-022-00602-1 |
[6] |
M. Ghani, J. Li, K. Zhang, Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion, Discrete Cont. Dyn. Syst.-B, 26 (2021), 6253–6265. http://dx.doi.org/10.3934/dcdsb.2021017 doi: 10.3934/dcdsb.2021017
![]() |
[7] | M. Ghani, Nurwidiyanto, Traveling fronts of viscous Burgers' equations with the nonlinear degenerate viscosity, Math. Sci., in press. http://dx.doi.org/10.1007/s40096-023-00519-y |
[8] |
T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. http://dx.doi.org/10.1006/aama.2001.0721 doi: 10.1006/aama.2001.0721
![]() |
[9] | D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165. |
[10] |
H. Jin, J. Li, Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differ. Equations, 255 (2013) 193–219. http://dx.doi.org/10.1016/j.jde.2013.04.002 doi: 10.1016/j.jde.2013.04.002
![]() |
[11] |
Y. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439–2448. http://dx.doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027
![]() |
[12] |
S. Kawashima, A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Commun. Pur. Appl. Math., 47 (1994), 1547–1569. http://dx.doi.org/10.1002/cpa.3160471202 doi: 10.1002/cpa.3160471202
![]() |
[13] |
E. Keller, L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. http://dx.doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
![]() |
[14] |
D. Li, R. Pan, K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181. http://dx.doi.org/10.1088/0951-7715/28/7/2181 doi: 10.1088/0951-7715/28/7/2181
![]() |
[15] |
J. Li, Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differ. Equations, 268 (2020), 6940–6970. http://dx.doi.org/10.1016/j.jde.2019.11.076 doi: 10.1016/j.jde.2019.11.076
![]() |
[16] |
T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. http://dx.doi.org/10.1137/110829453 doi: 10.1137/110829453
![]() |
[17] |
T. Li, Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522–1541. http://dx.doi.org/10.1137/09075161X doi: 10.1137/09075161X
![]() |
[18] |
V. Martinez, Z. Wang, K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. http://dx.doi.org/10.1512/iumj.2018.67.7394 doi: 10.1512/iumj.2018.67.7394
![]() |
[19] |
A. Matsumura, K. Nishihara, On the stability of travelling wave solutions of a one dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17–25. http://dx.doi.org/10.1007/BF03167036 doi: 10.1007/BF03167036
![]() |
[20] | T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. D'Orsay, 78 (1978), 46–53. |
[21] |
M. Olson, R. Ford, J. Smith, E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864–3870. http://dx.doi.org/10.1021/es035236s doi: 10.1021/es035236s
![]() |
[22] |
H. Othmer, A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. http://dx.doi.org/10.1137/S0036139995288976 doi: 10.1137/S0036139995288976
![]() |
[23] |
B. Sleeman, H. Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. http://dx.doi.org/10.1137/S0036139995291106 doi: 10.1137/S0036139995291106
![]() |
[24] |
Y. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn.-A, 32 (2012), 1901–1914. http://dx.doi.org/10.3934/dcds.2012.32.1901 doi: 10.3934/dcds.2012.32.1901
![]() |
[25] |
F. Valdaes-Parada, M. Porter, K. Narayanaswamy, R. Ford, B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413–1428. http://dx.doi.org/10.1016/j.advwatres.2009.06.010 doi: 10.1016/j.advwatres.2009.06.010
![]() |
[26] |
Z. Wang, Mathematics of traveling waves in chemotaxis: a review paper, Discrete Cont. Dyn. Syst.-B, 18 (2013), 601–641. http://dx.doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601
![]() |
[27] |
Z. Wang, T. Hillen, Shock formation in a chemotaxis model, Math. Method. Appl. Sci., 31 (2008), 45–70. http://dx.doi.org/10.1002/mma.898 doi: 10.1002/mma.898
![]() |
[28] |
Z. Wang, Z. Xiang, P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equations, 260 (2016), 2225–2258. http://dx.doi.org/10.1016/j.jde.2015.09.063 doi: 10.1016/j.jde.2015.09.063
![]() |
[29] |
Y. Yang, H. Chen, W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763–785. http://dx.doi.org/10.1137/S0036141000337796 doi: 10.1137/S0036141000337796
![]() |
[30] |
Y. Yang, H. Chen, W. Liu, B. Sleeman, The solvability of some chemotaxis systems, J. Differ. Equations, 212 (2005), 432–451. http://dx.doi.org/10.1016/j.jde.2005.01.002 doi: 10.1016/j.jde.2005.01.002
![]() |
[31] | M. Zhang, C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017–1027. |
1. | Ya Qin, Siti Rahayu Mohd. Hashim, Jumat Sulaiman, A new distance measure and corresponding TOPSIS method for interval-valued intuitionistic fuzzy sets in multi-attribute decision-making, 2023, 8, 2473-6988, 26459, 10.3934/math.20231351 | |
2. | Ghous Ali, Kholood Alsager, Asad Ali, Novel linguistic q -rung orthopair fuzzy Aczel-Alsina aggregation operators for group decision-making with applications, 2024, 9, 2473-6988, 32328, 10.3934/math.20241551 | |
3. | Adeel Farooq, Muhammad Nabeel, Ghous Ali, New MCDM applications using cubic bipolar fuzzy model in medicine and engineering, 2023, 1432-7643, 10.1007/s00500-023-09256-9 | |
4. | Ghous Ali, Muhammad Nabeel, Adeel Farooq, Extended ELECTRE method for multi-criteria group decision-making with spherical cubic fuzzy sets, 2024, 66, 0219-1377, 6269, 10.1007/s10115-024-02132-4 | |
5. | Ghous Ali, Kholood Alsager, Novel Heronian mean based m -polar fuzzy power geometric aggregation operators and their application to urban transportation management, 2024, 9, 2473-6988, 34109, 10.3934/math.20241626 | |
6. | Ghous Ali, Muhammad Anwar, Bander Almutairi, Muhammad Faheem, Sabeeha Kanwal, Novel Wind Power Station Site Selection Framework Based on Multipolar Fuzzy Schweizer-Sklar Aggregation Operators, 2024, 12, 2169-3536, 194030, 10.1109/ACCESS.2024.3516825 |