In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of $ \beta = 0 $ (without the effect of growth rate) and $ u_+ = 0 $. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:
$ \begin{equation*} \begin{split} &U^{m-2} = \left( \frac{1}{U} \right)^{2-m}\leq Kw(z)\leq \frac{Cw(z)}{U}, \;\text{if}\;0<m<2, \\ &U^{m-2}\leq Lu_-\leq\frac{Cu_-}{U}, \;\text{if}\;m\geq 2, \end{split} \end{equation*} $
where $ C = max\left\{ K, L \right\} = max\left\{ \frac{a}{m-a}, (m+a)^m \right\} $ for $ a > 0 $ and $ m > a $, and $ w(z) $ is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.
Citation: Mohammad Ghani. Analysis of traveling fronts for chemotaxis model with the nonlinear degenerate viscosity[J]. AIMS Mathematics, 2023, 8(12): 29872-29891. doi: 10.3934/math.20231527
In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of $ \beta = 0 $ (without the effect of growth rate) and $ u_+ = 0 $. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:
$ \begin{equation*} \begin{split} &U^{m-2} = \left( \frac{1}{U} \right)^{2-m}\leq Kw(z)\leq \frac{Cw(z)}{U}, \;\text{if}\;0<m<2, \\ &U^{m-2}\leq Lu_-\leq\frac{Cu_-}{U}, \;\text{if}\;m\geq 2, \end{split} \end{equation*} $
where $ C = max\left\{ K, L \right\} = max\left\{ \frac{a}{m-a}, (m+a)^m \right\} $ for $ a > 0 $ and $ m > a $, and $ w(z) $ is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.
[1] | M. Burger, M. Di Francesco, Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288–1315. http://dx.doi.org/10.1137/050637923 doi: 10.1137/050637923 |
[2] | S. Choi, Y. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090. http://dx.doi.org/10.1016/j.jmaa.2020.124090 doi: 10.1016/j.jmaa.2020.124090 |
[3] | C. Deng, T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differ. Equations, 257 (2014), 1311–1332. http://dx.doi.org/10.1016/j.jde.2014.05.014 doi: 10.1016/j.jde.2014.05.014 |
[4] | M. Ghani, Analysis of degenerate Burgers' equations involving small perturbation and large wave amplitude, Math. Method. Appl. Sci., 46 (2023), 13781–13796. http://dx.doi.org/10.1002/mma.9289 doi: 10.1002/mma.9289 |
[5] | M. Ghani, Asymptotic stability of singular traveling waves to degenerate advection-diffusion equations under small perturbation, Differ. Equ. Dyn. Syst., in press. http://dx.doi.org/10.1007/s12591-022-00602-1 |
[6] | M. Ghani, J. Li, K. Zhang, Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion, Discrete Cont. Dyn. Syst.-B, 26 (2021), 6253–6265. http://dx.doi.org/10.3934/dcdsb.2021017 doi: 10.3934/dcdsb.2021017 |
[7] | M. Ghani, Nurwidiyanto, Traveling fronts of viscous Burgers' equations with the nonlinear degenerate viscosity, Math. Sci., in press. http://dx.doi.org/10.1007/s40096-023-00519-y |
[8] | T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. http://dx.doi.org/10.1006/aama.2001.0721 doi: 10.1006/aama.2001.0721 |
[9] | D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165. |
[10] | H. Jin, J. Li, Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differ. Equations, 255 (2013) 193–219. http://dx.doi.org/10.1016/j.jde.2013.04.002 doi: 10.1016/j.jde.2013.04.002 |
[11] | Y. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439–2448. http://dx.doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027 |
[12] | S. Kawashima, A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Commun. Pur. Appl. Math., 47 (1994), 1547–1569. http://dx.doi.org/10.1002/cpa.3160471202 doi: 10.1002/cpa.3160471202 |
[13] | E. Keller, L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. http://dx.doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8 |
[14] | D. Li, R. Pan, K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181. http://dx.doi.org/10.1088/0951-7715/28/7/2181 doi: 10.1088/0951-7715/28/7/2181 |
[15] | J. Li, Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differ. Equations, 268 (2020), 6940–6970. http://dx.doi.org/10.1016/j.jde.2019.11.076 doi: 10.1016/j.jde.2019.11.076 |
[16] | T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. http://dx.doi.org/10.1137/110829453 doi: 10.1137/110829453 |
[17] | T. Li, Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522–1541. http://dx.doi.org/10.1137/09075161X doi: 10.1137/09075161X |
[18] | V. Martinez, Z. Wang, K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. http://dx.doi.org/10.1512/iumj.2018.67.7394 doi: 10.1512/iumj.2018.67.7394 |
[19] | A. Matsumura, K. Nishihara, On the stability of travelling wave solutions of a one dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17–25. http://dx.doi.org/10.1007/BF03167036 doi: 10.1007/BF03167036 |
[20] | T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. D'Orsay, 78 (1978), 46–53. |
[21] | M. Olson, R. Ford, J. Smith, E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864–3870. http://dx.doi.org/10.1021/es035236s doi: 10.1021/es035236s |
[22] | H. Othmer, A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. http://dx.doi.org/10.1137/S0036139995288976 doi: 10.1137/S0036139995288976 |
[23] | B. Sleeman, H. Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. http://dx.doi.org/10.1137/S0036139995291106 doi: 10.1137/S0036139995291106 |
[24] | Y. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn.-A, 32 (2012), 1901–1914. http://dx.doi.org/10.3934/dcds.2012.32.1901 doi: 10.3934/dcds.2012.32.1901 |
[25] | F. Valdaes-Parada, M. Porter, K. Narayanaswamy, R. Ford, B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413–1428. http://dx.doi.org/10.1016/j.advwatres.2009.06.010 doi: 10.1016/j.advwatres.2009.06.010 |
[26] | Z. Wang, Mathematics of traveling waves in chemotaxis: a review paper, Discrete Cont. Dyn. Syst.-B, 18 (2013), 601–641. http://dx.doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601 |
[27] | Z. Wang, T. Hillen, Shock formation in a chemotaxis model, Math. Method. Appl. Sci., 31 (2008), 45–70. http://dx.doi.org/10.1002/mma.898 doi: 10.1002/mma.898 |
[28] | Z. Wang, Z. Xiang, P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equations, 260 (2016), 2225–2258. http://dx.doi.org/10.1016/j.jde.2015.09.063 doi: 10.1016/j.jde.2015.09.063 |
[29] | Y. Yang, H. Chen, W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763–785. http://dx.doi.org/10.1137/S0036141000337796 doi: 10.1137/S0036141000337796 |
[30] | Y. Yang, H. Chen, W. Liu, B. Sleeman, The solvability of some chemotaxis systems, J. Differ. Equations, 212 (2005), 432–451. http://dx.doi.org/10.1016/j.jde.2005.01.002 doi: 10.1016/j.jde.2005.01.002 |
[31] | M. Zhang, C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017–1027. |