Research article

Analysis of traveling fronts for chemotaxis model with the nonlinear degenerate viscosity

  • Received: 19 August 2023 Revised: 30 October 2023 Accepted: 01 November 2023 Published: 03 November 2023
  • MSC : 35A01, 35B40, 35Q92, 92C17

  • In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of $ \beta = 0 $ (without the effect of growth rate) and $ u_+ = 0 $. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:

    $ \begin{equation*} \begin{split} &U^{m-2} = \left( \frac{1}{U} \right)^{2-m}\leq Kw(z)\leq \frac{Cw(z)}{U}, \;\text{if}\;0<m<2, \\ &U^{m-2}\leq Lu_-\leq\frac{Cu_-}{U}, \;\text{if}\;m\geq 2, \end{split} \end{equation*} $

    where $ C = max\left\{ K, L \right\} = max\left\{ \frac{a}{m-a}, (m+a)^m \right\} $ for $ a > 0 $ and $ m > a $, and $ w(z) $ is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.

    Citation: Mohammad Ghani. Analysis of traveling fronts for chemotaxis model with the nonlinear degenerate viscosity[J]. AIMS Mathematics, 2023, 8(12): 29872-29891. doi: 10.3934/math.20231527

    Related Papers:

  • In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity under the assumptions of $ \beta = 0 $ (without the effect of growth rate) and $ u_+ = 0 $. We need the weighted function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate is introduced to handle the energy estimate:

    $ \begin{equation*} \begin{split} &U^{m-2} = \left( \frac{1}{U} \right)^{2-m}\leq Kw(z)\leq \frac{Cw(z)}{U}, \;\text{if}\;0<m<2, \\ &U^{m-2}\leq Lu_-\leq\frac{Cu_-}{U}, \;\text{if}\;m\geq 2, \end{split} \end{equation*} $

    where $ C = max\left\{ K, L \right\} = max\left\{ \frac{a}{m-a}, (m+a)^m \right\} $ for $ a > 0 $ and $ m > a $, and $ w(z) $ is the weighted function. Then we show that the traveling waves are stable under the appropriate perturbations. The proof is based on a Cole-Hopf transformation and weighted energy estimates.



    加载中


    [1] M. Burger, M. Di Francesco, Y. Dolak-Strub, The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion, SIAM J. Math. Anal., 38 (2006), 1288–1315. http://dx.doi.org/10.1137/050637923 doi: 10.1137/050637923
    [2] S. Choi, Y. Kim, Chemotactic traveling waves with compact support, J. Math. Anal. Appl., 488 (2020), 124090. http://dx.doi.org/10.1016/j.jmaa.2020.124090 doi: 10.1016/j.jmaa.2020.124090
    [3] C. Deng, T. Li, Well-posedness of a 3D parabolic-hyperbolic Keller-Segel system in the Sobolev space framework, J. Differ. Equations, 257 (2014), 1311–1332. http://dx.doi.org/10.1016/j.jde.2014.05.014 doi: 10.1016/j.jde.2014.05.014
    [4] M. Ghani, Analysis of degenerate Burgers' equations involving small perturbation and large wave amplitude, Math. Method. Appl. Sci., 46 (2023), 13781–13796. http://dx.doi.org/10.1002/mma.9289 doi: 10.1002/mma.9289
    [5] M. Ghani, Asymptotic stability of singular traveling waves to degenerate advection-diffusion equations under small perturbation, Differ. Equ. Dyn. Syst., in press. http://dx.doi.org/10.1007/s12591-022-00602-1
    [6] M. Ghani, J. Li, K. Zhang, Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion, Discrete Cont. Dyn. Syst.-B, 26 (2021), 6253–6265. http://dx.doi.org/10.3934/dcdsb.2021017 doi: 10.3934/dcdsb.2021017
    [7] M. Ghani, Nurwidiyanto, Traveling fronts of viscous Burgers' equations with the nonlinear degenerate viscosity, Math. Sci., in press. http://dx.doi.org/10.1007/s40096-023-00519-y
    [8] T. Hillen, K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280–301. http://dx.doi.org/10.1006/aama.2001.0721 doi: 10.1006/aama.2001.0721
    [9] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences: Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165.
    [10] H. Jin, J. Li, Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity, J. Differ. Equations, 255 (2013) 193–219. http://dx.doi.org/10.1016/j.jde.2013.04.002 doi: 10.1016/j.jde.2013.04.002
    [11] Y. Kalinin, L. Jiang, Y. Tu, M. Wu, Logarithmic sensing in Escherichia coli bacterial chemotaxis, Biophys. J., 96 (2009), 2439–2448. http://dx.doi.org/10.1016/j.bpj.2008.10.027 doi: 10.1016/j.bpj.2008.10.027
    [12] S. Kawashima, A. Matsumura, Stability of shock profiles in viscoelasticity with non-convex constitutive relations, Commun. Pur. Appl. Math., 47 (1994), 1547–1569. http://dx.doi.org/10.1002/cpa.3160471202 doi: 10.1002/cpa.3160471202
    [13] E. Keller, L. Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, J. Theor. Biol., 30 (1971), 235–248. http://dx.doi.org/10.1016/0022-5193(71)90051-8 doi: 10.1016/0022-5193(71)90051-8
    [14] D. Li, R. Pan, K. Zhao, Quantitative decay of a hybrid type chemotaxis model with large data, Nonlinearity, 28 (2015), 2181. http://dx.doi.org/10.1088/0951-7715/28/7/2181 doi: 10.1088/0951-7715/28/7/2181
    [15] J. Li, Z. Wang, Convergence to traveling waves of a singular PDE-ODE hybrid chemotaxis system in the half space, J. Differ. Equations, 268 (2020), 6940–6970. http://dx.doi.org/10.1016/j.jde.2019.11.076 doi: 10.1016/j.jde.2019.11.076
    [16] T. Li, R. Pan, K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417–443. http://dx.doi.org/10.1137/110829453 doi: 10.1137/110829453
    [17] T. Li, Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis, SIAM J. Appl. Math., 70 (2010), 1522–1541. http://dx.doi.org/10.1137/09075161X doi: 10.1137/09075161X
    [18] V. Martinez, Z. Wang, K. Zhao, Asymptotic and viscous stability of large-amplitude solutions of a hyperbolic system arising from biology, Indiana Univ. Math. J., 67 (2018), 1383–1424. http://dx.doi.org/10.1512/iumj.2018.67.7394 doi: 10.1512/iumj.2018.67.7394
    [19] A. Matsumura, K. Nishihara, On the stability of travelling wave solutions of a one dimensional model system for compressible viscous gas, Japan J. Appl. Math., 2 (1985), 17–25. http://dx.doi.org/10.1007/BF03167036 doi: 10.1007/BF03167036
    [20] T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics, Publ. Math. D'Orsay, 78 (1978), 46–53.
    [21] M. Olson, R. Ford, J. Smith, E. Fernandez, Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging, Environ. Sci. Technol., 38 (2004), 3864–3870. http://dx.doi.org/10.1021/es035236s doi: 10.1021/es035236s
    [22] H. Othmer, A. Stevens, Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks, SIAM J. Appl. Math., 57 (1997), 1044–1081. http://dx.doi.org/10.1137/S0036139995288976 doi: 10.1137/S0036139995288976
    [23] B. Sleeman, H. Levine, A system of reaction diffusion equations arising in the theory of reinforced random walks, SIAM J. Appl. Math., 57 (1997), 683–730. http://dx.doi.org/10.1137/S0036139995291106 doi: 10.1137/S0036139995291106
    [24] Y. Tao, M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Cont. Dyn.-A, 32 (2012), 1901–1914. http://dx.doi.org/10.3934/dcds.2012.32.1901 doi: 10.3934/dcds.2012.32.1901
    [25] F. Valdaes-Parada, M. Porter, K. Narayanaswamy, R. Ford, B. Wood, Upscaling microbial chemotaxis in porous media, Adv. Water Resour., 32 (2009), 1413–1428. http://dx.doi.org/10.1016/j.advwatres.2009.06.010 doi: 10.1016/j.advwatres.2009.06.010
    [26] Z. Wang, Mathematics of traveling waves in chemotaxis: a review paper, Discrete Cont. Dyn. Syst.-B, 18 (2013), 601–641. http://dx.doi.org/10.3934/dcdsb.2013.18.601 doi: 10.3934/dcdsb.2013.18.601
    [27] Z. Wang, T. Hillen, Shock formation in a chemotaxis model, Math. Method. Appl. Sci., 31 (2008), 45–70. http://dx.doi.org/10.1002/mma.898 doi: 10.1002/mma.898
    [28] Z. Wang, Z. Xiang, P. Yu, Asymptotic dynamics on a singular chemotaxis system modeling onset of tumor angiogenesis, J. Differ. Equations, 260 (2016), 2225–2258. http://dx.doi.org/10.1016/j.jde.2015.09.063 doi: 10.1016/j.jde.2015.09.063
    [29] Y. Yang, H. Chen, W. Liu, On existence of global solutions and blow-up to a system of the reaction-diffusion equations modelling chemotaxis, SIAM J. Math. Anal., 33 (2001), 763–785. http://dx.doi.org/10.1137/S0036141000337796 doi: 10.1137/S0036141000337796
    [30] Y. Yang, H. Chen, W. Liu, B. Sleeman, The solvability of some chemotaxis systems, J. Differ. Equations, 212 (2005), 432–451. http://dx.doi.org/10.1016/j.jde.2005.01.002 doi: 10.1016/j.jde.2005.01.002
    [31] M. Zhang, C. Zhu, Global existence of solutions to a hyperbolic-parabolic system, Proc. Amer. Math. Soc., 135 (2007), 1017–1027.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1389) PDF downloads(113) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog