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Abstract: In this paper, we are interested in chemotaxis model with nonlinear degenerate viscosity
under the assumptions of β = 0 (without the effect of growth rate) and u+ = 0. We need the weighted
function defined in Remark 1 to handle the singularity problem. The higher-order terms of this paper
are significant due to the nonlinear degenerate viscosity. Therefore, the following higher-order estimate
is introduced to handle the energy estimate:

Um−2 =

(
1
U

)2−m

≤ Kw(z) ≤
Cw(z)

U
, if 0 < m < 2,

Um−2 ≤ Lu− ≤
Cu−
U

, if m ≥ 2,

where C = max {K, L} = max
{

a
m−a , (m + a)m

}
for a > 0 and m > a, and w(z) is the weighted function.

Then we show that the traveling waves are stable under the appropriate perturbations. The proof is
based on a Cole-Hopf transformation and weighted energy estimates.
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1. Introduction

This paper is based on the following chemotaxis system with nonlinear diffusion [6]ut = D(um)xx − χ (u(ln c)x)x ,

ct = −uc + βc,
(1.1)

for m > 0 and the initial data

(u, c)(x, 0) = (u0, c0)(x)→ (u±, c±) as x→ ±∞.
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When m , 1, the chemotaxis system (1.1) represents the reinforced movement of cells (or bacteria)
in porous media, where u, c and β > 0 are the population density of cells, concentration of chemical
signals (e.g., nutrients), and growth rate, respectively. Moreover, the diffusion rate of cells and the
chemotactic coefficient are denoted by D > 0 and χ, respectively. The chemotaxis is said to be
attractive if χ > 0 and repulsive if χ < 0. The logarithmic sensitivity ln c was derived from Weber-
Fechner law [13] and has been verified by the experimental data [11]. The above PDE-ODE system is
the special case of the following Keller-Segel model with porous media type diffusion:ut = ∇ · (D∇um − χu∇π(c)), for m > 0,

ct = ε∆c + f (u, c),

where f (u, c) is a function characterizing the chemical growth and degradation defined as f (u, c) =

βc − ug(c). This system describes the chemotactic dynamics, where cells move up the chemical
concentration gradient and consume (or degrade) the chemical along the path. As stated in [26], the
function g(c) is called the consumption rate function in the form

g(c) = cp =


constant rate, p = 0,
sublinear rate, 0 < p < 1,
linear rate, p = 1,
superlinear rate, p > 1.

Moreover, the typical examples of chemosensitivity function π(c) include π(c) = kc (linear law),
π(c) = k log c (logarithmic law), and π(c) = kcp/(1 + cm) (receptor law) where k > 0 and p ∈ N.

The problems of chemotaxis model in porous media are extensively studied for both the experiments
and mathematical modeling. The experiments of bacterial chemotaxis in porous media were
investigated in [21, 25], and the nonlinear diffusion to a chemotaxis model in order to avoid
overcrowding was instroduced in [1, 8]. Tao and Winkler [24] established the global existence and
boundedness of solutions to a chemotaxis model of self-aggregation with arbitrary porous medium
diffusion. However, few results are available to the chemotaxis model (1.1) except for the existence of
compactly supported traveling waves in [2].

When m = 1, the system (1.1) is exactly the chemotaxis model proposed in [22] to describe the
reinforced random walks. There are many other interesting analytical works with reinforced random
walks. Othmer and Stevens [22] studied the model from random walk and presented the numerical
simulations of the formation of spikes and blowup. The analytic results that support some numerical
results in [22] were established in [23]. The global existence and blowup of classical solutions on
a bounded domain with no-flux boundary conditions were studied in [29, 30]. Moreover, the further
study of global existence of smooth solutions to system (1.1) was investigated by Li et al. [16]. Zhang
and Zhu [31] presented the weak solutions to system (1.1) with the Robin boundary condition. Other
references for global dynamics including well-posedness and large time behaviors of solutions in the
whole space were presented in [3, 14, 18, 28]. The spike solution and blowup solution, traveling wave
is another biological pattern observed in chemotaxis [13]. The existence of traveling fronts to (1.1)
was firstly established in [27]. The stability problem of such a traveling front in the case of u+ > 0
was obtained in [17]. Moreover, when u+ = 0, the energy estimate has the singular term, which
is extremely difficult to overcome. This singular term was presented in [10] by employing it as the
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weighted function in the energy estimate. Recently, the half-space problem of (1.1) under the non-
zero flux boundary condition was considered in [15]. The authors showed that the system still admits
traveling wave profiles on the half-space by introducing a wave selection mechanism. For other related
work on traveling waves of chemotaxis models and Burger’s equations, we refer the readers to these
references [4, 5, 7, 9, 26].

By ignoring the effect of growth rate (β = 0), then one can derive the chemotaxis modelut = D(um)xx − χ (u(ln c)x)x ,

ct = −uc,
(1.2)

for m > 0 and the initial data

(u, c)(x, 0) = (u0, c0)(x)→ (u±, c±) as x→ ±∞. (1.3)

The major problem of this paper is concerned with the nonlinear diffusion and singularity problem.
Under small perturbations and large wave amplitude, we prove the existence and stability of traveling
waves to system (1.2) with m > 0 and u+ = 0. The logarithmic singularity for the first equation of (1.2)
is very difficult to study. Therefore, to handle these barriers, we employ the following Cole-Hopf
transformation as in [10, 17]:

v = −(ln c)x, (1.4)

which presents the chemotaxis system as follows:ut − χ(uv)x = D(um)xx,

vt − ux = 0,
(1.5)

and the initial data
(u, v)(x, 0) = (u0, v0)(x)→ (u±, v±) as x→ ±∞. (1.6)

We organize this paper as follows: In Section 2, we present the theorems of existence and stability
of the transformed system (1.5) and the original system (1.2). The proofs of weighted energy estimates
and the stability of transformed system (1.5) are provided in Section 3. Then, we transfer the obtained
results to prove the existence and stability of the main results for original system (1.2).

Notation 1. The norms in the Sobolev space of Hr(R) are stated as ‖q‖r :=
r∑

k=0
‖∂k

xq‖ and ‖q‖ := ‖q‖L2(R).

Moreover, the weighted norms in the Sobolev space of Hr
w(R) are given by ‖q‖r,w :=

r∑
k=0
‖
√

w(x)∂k
xq‖

and ‖q‖w := ‖q‖L2
w(R).

2. Main results

We first establish the solutions of traveling wave (U,V)(x − st) of the parabolic-hyperbolic
system (1.5). Substituting the following traveling wave ansatz

(u, v)(x, t) = (U,V)(z), z = x − st, (2.1)
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into (1.5), where s and z are the traveling wave speed and moving coordinate, respectively. Then, we
have −sU′ − χ(UV)′ = D (Um)′′ ,

−sV ′ = U′,
(2.2)

where ′ := d
dz , and the boundary conditions are given as follows:

(U,V)(z)→ (u±, v±) as z→ ±∞. (2.3)

Integrating (2.2) in z over (−∞, z) and (z,+∞), then one has

−

(∫ z

−∞

sU
′

+

∫ +∞

z
sU

′

)
−

(∫ z

−∞

χ(UV)
′

+

∫ +∞

z
χ(UV)

′

)
= D

(∫ z

−∞

(Um)
′′

+

∫ +∞

z
(Um)

′′

)
and

−

(∫ z

−∞

sV
′

+

∫ +∞

z
sV

′

)
=

(∫ z

−∞

U
′

+

∫ +∞

z
U
′

)
.

Moreover, we can rewrite the above results as follows:(
lim

z→−∞
sU(z) − lim

z→+∞
sU(z)

)
+

(
lim

z→−∞
χ(UV)(z) − lim

z→+∞
χ(UV)(z)

)
= D

(
− lim

z→−∞
(mUm−1U

′

)(z) + lim
z→+∞

(mUm−1U
′

)(z)
)

and (
lim

z→−∞
sV(z) − lim

z→+∞
sV(z)

)
=

(
− lim

z→−∞
U(z) + lim

z→+∞
U(z)

)
.

Employing (2.3), the fact u+ = 0, and U
′

(z) → 0 as z → ±∞, then one has the following Rankine-
Hugoniot conditions

− s = χv−,

s(v+ − v−) = u−,
(2.4)

which presents
s2 + sχv+ − χu− = 0. (2.5)

In this paper, we only consider s > 0 and

s = −
χv+

2
+

√
χ2v2

+ + 4χu−
2

. (2.6)

Remark 1. To provide the weighted energy estimate, the weighted function is defined as follows:

w(z) = 1 + eηz with η :=
u1−m
−

Dm
· (s + χv+), for all z ∈ R. (2.7)

According to the weighted function in (2.7), the following condition is given

C1w(z) ≤
1

U(z)
≤ C2w(z) for all z ∈ R, (2.8)

where C2 > C1 > 0.
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Lemma 1. Let (2.4) and u+ = 0 hold. Then, the system (2.2) has a monotone traveling wave solution
(U,V)(x − st), which is unique up to a translation satisfying U′ < 0, V ′ > 0. Moreover, (U,V) has the
following monotonicity behavior:

U − u− ∼ e
χu−
Ds z as z→ −∞, U ∼ e−

χu−
Ds z as z→ +∞,

V − v± ∼ e
χu−
Ds ·(v∓−v±)z as z→ ±∞, for v+ > v−.

(2.9)

Proof. To show (2.9), we first assume that

H = (Um)
′

, V ′ = −
HU1−m

sm
.

Then, one has

U′ =
HU1−m

m
,

H′ =
HU1−m

Dsm
·
(
2χU − (χF + s2)

)
,

(2.10)

which provides dH
dU =

χ

Ds · (2U − u−),
H(u−) = 0.

(2.11)

Let Hs be the solution of Eq (2.11), then one can derive

Hs(U) ∼ mum−1
− ·

χ

Ds
(2U − u−)(U − u−), as U → u−. (2.12)

By employing the first equation of Eqs (2.10), (2.12) and L’Hospital’s rule, one has

lim
U→u−

z
ln(U − u−)

= lim
U→u−

mum−1
− (U − u−)

Hs

= lim
U→u−

mum−1
− (U − u−)

mum−1
− ·

χ

Ds (2U − u−)(U − u−)

=
1
χu−
Ds

,

which provides

U − u− ∼ e
χu−
Ds z, as z→ −∞.

Moreover, we assume that Hs is the solution of Eq (2.11), then one has

Hs(U) ∼
χ

Ds
· (2U − u−)mUm, as U → 0. (2.13)

Similarly, by employing the first equation of Eq (2.10), L’Hospital’s rule and Eq (2.13), one gets

lim
U→0

z
ln U

= lim
U→0

mUm

Hs

= lim
U→0

mUm

χ

Ds · (2U − u−)mUm

= −
1
χu−
Ds

,
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which gives

U ∼ e−
χu−
Ds z, as z→ +∞.

Therefore, we have

V − v± ∼ e
χu−
Ds ·(v∓−v±)z, as z→ ±∞, for v+ > v−.

�

Remark 2. Based on the second equation of Eq (2.10), one can derive

U′ =
U1−m

Dms
· (χU2 − (s2 + χF)U), (2.14)

where F = sv− + u− = sv+ + u+ and the wave speed s is given by (2.6).

For the parabolic-hyperbolic system (1.5), we define

(π0, ρ0)(z) :=
∫ z

−∞

(u0 − U, v0 − V)(y)dy,

where the zero perturbation is obtained (see [12,19]). Then the stability result can be stated as follows:

Theorem 1. Assume that D > 0, m > 0 and χ > 0. Let (U,V)(x − st) be the traveling waves from
Lemma 1. If ‖u0 − U‖2,w + ‖v0 − V‖2,w + ‖(π0, ρ0)‖3,w ≤ ε0 for constant ε0 > 0, then the Cauchy
problem (1.5) and (1.6) has a unique global solution (u, v)(x, t), which satisfies

(u − U, v − V) ∈ C([0,∞); H2
w) ∩ L2([0,∞); H2

w)

and
sup
x∈R
|(u, v)(x, t) − (U,V)(x − st)| → 0 as t → +∞.

By applying the change of variables (x, t)→ (z = x − st, t), the system (1.5) becomesut − suz − χ(uv)z = D (um)zz ,

vt − svz − uz = 0.
(2.15)

The solutions (u, v) of (2.15) are decomposed as follows:

(u, v)(z, t) = (U,V)(z) + (πz, ρz)(z, t). (2.16)

Then

π(z, t) =

∫ z

−∞

(u(y, t) − U(y))dy, ρ(z, t) =

∫ z

−∞

(v(y, t) − V(y))dy. (2.17)

Substituting (2.16) into (2.15) and integrating the results with respect to z, one hasπt − (s + χV)πz − χUρz = Dm
(
Um−1πz

)
z
+ G + χπzρz,

ρt − sρz − πz = 0,
(2.18)
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where G = D
(
(U + πz)m − Um − mUm−1πz

)
z
, which is one of the barriers for the nonlinear diffusion.

Moreover, the initial perturbation of (π, ρ) is given by

(π, ρ)(z, 0) = (π0, ρ0)(z) =

∫ z

−∞

(u0 − U, v0 − V)dy, (2.19)

with (π0, ρ0)(±∞) = 0. We present the solution of reformulated problem (2.18) and (2.19) in the space

X(0,T ) :=
{
(π, ρ) ∈ C([0,T ),H3

w) : πz ∈ L2((0,T ); H3
w)), ρz ∈ C([0,T ); H2

w) ∩ L2((0,T ); H2
w)

}
,

where 0 < T ≤ +∞ and w is the weighted function defined in (2.7).
Let

N(t) := sup
0≤τ≤t

{
‖π(., τ)‖3,w + ‖ρ(., τ)‖3 + ‖ρ(., τ)‖3,w

}
.

From the Sobolev inequality ‖ f ‖L∞ ≤
√

2‖ f ‖
1
2

L2
w
‖ fx‖

1
2

L2
w
, it follows that

sup
τ∈[0,t]

{
‖π(·, τ)‖W2,∞ , ‖ρ(·, τ)‖W2,∞

}
≤ N(t).

Then, for system (2.18) and (2.19), we have the following global well-posedness:

Theorem 2. There exists a constant δ1 > 0 such that if N(0) ≤ δ1, then the Cauchy problem (2.18)
and (2.19) has a unique global solution (π, ρ) ∈ X(0,+∞) such that

‖π(., t)‖23,w + ‖ρ(., t)‖23 + ‖ρ(., t)‖23,w +

∫ t

0

(
‖πz(., τ)‖23,w + ‖ρz(., τ)‖22,w

)
dτ

≤ C(‖π0‖
2
3,w + ‖ρ0‖

2
3 + ‖ρ0‖

2
3,w) ≤ CN2(0),

(2.20)

for any t > 0. Moreover, it holds that

sup
z∈R
|(πz, ρz)(z, t)| → 0 as t → +∞. (2.21)

According to the classical works (see [17]), the global smooth solution can be constructed by the
local well-posedness, the a priori estimate and an extension procedure. By the standard ways, the local
well-posedness can be inferred (e.g., see [20]).

Proposition 1. Let (π, ρ) ∈ X(0,T ) be a solution of (2.18) and (2.19) for several times T > 0. Then
a constant ε1 > 0 is presented, which is independent on T , such that if N(T ) < ε1, then (π, ρ)
satisfies (2.20) for any 0 ≤ t ≤ T.

We further transfer the results of the transformed system (1.5) to the original chemotaxis
model (1.2). Finally, our main results on the existence and stability of traveling waves (1.2) are stated
in the following theorems:

Theorem 3 (Existence). Let χ ∈ R (, 0). Then, the chemotaxis model with the nonlinear degenerate
viscosity (1.2) does not have a traveling wave solution if χ < 0. If χ > 0 then the chemotaxis model
with the nonlinear degenerate viscosity (1.2) has a unique monotone traveling wave solution (U,C)(z)
such that Uz < 0,Cz > 0 for any given 0 = u+ < u− and 0 = c− < c+.
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Proof. The existence of U is from Lemma 1. We further show the existence of C. It follows from the
second equation of (1.2), which implies that

sC′ = CU, (2.22)

which can be further calculated as follows:

C(z) = c+e
1
s

∫ z
0 U(y)dy. (2.23)

Since U converges to u± exponentially as z → ±∞, and s > 0, then C(z) is bounded for any z ∈ R.
It has the consequence C(z) > 0 for any z ∈ R, since otherwise c+ ≡ 0 and hence C(z) = 0, which is not
desired.

Noting that s > 0 and the Eq (2.22) at z = ±∞ yields

c±u± = 0. (2.24)

Since C(z) > 0 for all z ∈ R, then it causes 0 ≤ c− < c+. It follows from the fact c+ > 0 and (2.24),
then it leads to u+ = 0, which is only possible when Uz < 0 and hence 0 = u+ < u−. Finally, the proof
of Theorem 3 is completed. �

Theorem 4 (Stability). Assume that D > 0, m > 0, and χ > 0. Let (U,C)(x− st) be the traveling waves
obtained in Theorem 3. Then one has a constant ε0 > 0 such that if ‖u0−U‖2,w + ‖(ln c0)x− (lnC)x‖2,w +

‖(π0, ρ0)‖3,w ≤ ε0, where

π0(x) =

∫ x

−∞

(u0 − U)(y)dy, ρ0(x) = lnC(x) − ln c0(x),

then the Cauchy problem (1.2) and (1.3) has a unique global solution (u, c)(x, t) satisfying

(u − U, (ln c)x − (lnC)x) ∈ C([0,∞); H2
w) ∩ L2([0,∞); H2

w),

and
sup
x∈R
|(u, c)(x, t) − (U,C)(x − st)| → 0 as t → +∞.

3. Nonlinear stability

3.1. Weighted energy estimates

We further present the a priori estimates for solutions (π, ρ) of (2.18) and (2.19), and hence prove
Proposition 1. In this paper, we deal with the case u+ = 0 as z → +∞ which provides the singularity
of 1

U . Therefore, we modify the idea of [17] by considering the singular term of 1
U as the weighted

function of w in the energy estimates.

3.1.1. Estimate of (π, ρ) in L2

Lemma 2. Under the same assumptions of Proposition 1, if N(t) � 1, then

‖π(., t)‖2w + ‖ρ(., t)‖2 +

∫ t

0
‖πz(., τ)‖2wdτ

≤ C(‖π0‖
2
w + ‖ρ0‖

2) +

∫ t

0

∫
CN(t)w(z)(ρ2

z + π2
zz).

(3.1)
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Proof. Multiplying (2.18)1 by π
U and (2.18)2 by χρ, adding them, and integrating the resulting

equations, we have

1
2

d
dt

∫ (
π2

U
+ χρ2

)
+ Dm

∫
Um−2π2

z

= −

∫
π2

2

( s + χV
U

)
z
− Dm

(
Um−1

(
1
U

)
z

)
z

 +

∫ (Gπ
U

+ χ
πzρzπ

U

)
.

(3.2)

From Eq (2.14) and u+ = 0, one has( s + χV
U

)
z
− Dm

(
Um−1

(
1
U

)
z

)
z

=

(
s + χV

U
− DmUm−1

(
1
U

)
z

)
z

=

( su+ + χu+v+

U2

)
z

= −
2u+(s + χv+)Uz

U3 = 0.

(3.3)

We further approximate (U + πz)m in (2.18) through the following estimation:

(πz + U)m ≤ (πz + u−)m = um
−

(
πz

u−
+ 1

)m

=

m∑
l=0

um
−

Pm
l

l!

(
πz

u−

)l

, (3.4)

where Pm
l = m!

(m−l)! .
By dealing with N(t) � 1, one has ‖πz(·, t)‖L∞ ≤ 1, and then (3.4) becomes

(πz + U)m ≤ um
−(m!)2π2

z

m∑
l=0

1
l!

(
1
u−

)l

= um
−(m!)2π2

z e1/u− ≤ Cπ2
z . (3.5)

Note that 0 < U ≤ u−, ‖πz(·, t)‖L∞ ≤ N(t) � 1, and the term (πz + U)m−1 consists of two conditions:
(πz +U)m−1 ≤ (πz +u−)m−1 if m ≥ 1 and (πz +U)m−1 ≤ (πz +Cw(z))m−1 if 0 < m < 1, where the weighted
function w(z) is given in Remark 1. Then we can derive

|G| ≤ C(|πzz||πz| + |πz|
2). (3.6)

By employing Young’s inequality, we have∣∣∣∣∣∫ Gπ
U

∣∣∣∣∣ ≤ CN(t)
∫ (
|π2

z | + |πzz|
2

U

)
, (3.7)

where ‖π(·, t)‖L∞ ≤ N(t) has been employed. Similarly,∣∣∣∣∣∫ πzρzπ

U

∣∣∣∣∣ ≤ CN(t)
∫ (

π2
z + ρ2

z

U

)
. (3.8)

Substituting (3.3), (3.7) and (3.8) into (3.2), we get

1
2

d
dt

∫ (
π2

U
+ χρ2

)
+

∫ (
DmUm−2 −

CN(t)
U

)
π2

z ≤ CN(t)
∫

ρ2
z + π2

zz

U
. (3.9)
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Moreover, the higher-order estimate Um−2 has two possibilities as follows:

Um−2 =

(
1
U

)2−m

≤ Kw(z) ≤
Cw(z)

U
, if 0 < m < 2,

Um−2 ≤ Lu− ≤
Cu−
U

, if m ≥ 2,

where C = max {K, L} = max
{

a
m−a , (m + a)m

}
for a > 0 and m > a. Then, (3.9) becomes

1
2

d
dt

∫ (
π2

U
+ χρ2

)
+

∫
Cw (Dm(w(z) + u−) − N(t)) π2

z ≤

∫
CN(t)

(ρ2
z + π2

zz)
U

. (3.10)

Conducting N(t) ≤ Dm(w(z) + u−) and 1/U(z) ≤ Cw(z) for all z ∈ R, and further calculation of the
integration of (3.10) with respect to t, the proof of estimate (π, ρ) in L2 is completed. �

3.1.2. Estimate of (π, ρ) in H1

Lemma 3. Under the same assumptions of Proposition 1, if N(t) � 1, then

‖π(., t)‖21,w + ‖ρ(., t)‖21 + ‖ρ(., t)‖21,w +

∫ t

0
(‖πz(., τ)‖21,w + ‖ρz(., τ)‖2w)dτ

≤ C(‖π0‖
2
1,w + ‖ρ0‖

2
1 + ‖ρ0‖

2
1,w).

(3.11)

Proof. Differentiating (2.18) in z givesπzt − χUρzz − Dm
(
Um−1πzz

)
z

= Dm((Um−1)zπz)z + χUzρz + ((s + χV)πz)z + (G + χπzρz)z,

ρzt − sρzz − πzz = 0.
(3.12)

Multiplying (3.12)1 by πz
U and (3.12)2 by χρz, we have

1
2

d
dt

∫ (
π2

z

U
+ χρ2

z

)
+ Dm

∫
Um−2π2

zz

=

∫
Dmπ2

z

2

(
(Um−1)zz

1
U
−

(
Um−1

)
z

(
1
U

)
z

)
+ χ

∫
Vzπ

2
z

U
+ χ

∫
Uzρzπz

U
−

∫
(G + χπzρz)

(
πz

U

)
z
.

(3.13)

By Young’s inequality,

χ

∫
Uzρzπz

U
≤
γχ

2

∫
Uρ2

z +
χ

2γ

∫
U2

z π
2
z

U3 ,

where γ is a small enough constant. Substituting this inequality into (3.13) leads to∫ (
π2

z

U
+ χρ2

z

)
+ 2Dm

∫ t

0

∫
Um−2π2

zz

≤ C‖π0z‖
2
w + C‖ρ0z‖

2 + C(1 +
1
γ

)
∫ t

0

∫
π2

z

U
+ γχ

∫ t

0

∫
Uρ2

z

+ C
∫ t

0

∫
|(G + χπzρz)|

(
|πz| +

|πzz|

U

)
.

(3.14)
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We further multiply the first equation of (2.18) by ρz to present the estimate
∫ t

0

∫
Uρ2

z , and one
yields

χUρ2
z = πtρz − (s + χV)πzρz − Dm

(
Um−1πz

)
z
ρz − (G + χπzρz)ρz. (3.15)

By the second equation of (3.12), we have

πtρz = (πρz)t − πρzt = (πρz)t − π(sρzz + πzz) = (πρz)t − s(πρz)z + sπzρz − (ππz)z + π2
z . (3.16)

Combining (3.15) with (3.16) and integrating the results, we get

χ

∫ t

0

∫
Uρ2

z =

∫
πρz −

∫
π0ρ0z +

∫ t

0

∫
π2

z − Dm
∫ t

0

∫ (
Um−1πz

)
z
ρz

− χ

∫ t

0

∫
Vπzρz −

∫ t

0

∫
(G + χπzρz)ρz.

By Young’s inequality, noting 0 < U ≤ u−, we have

−Dm
∫ (

Um−1πz

)
z
ρz = −Dm

∫
Um−1πzzρz − Dm

∫
(Um−1)zπzρz

≤
χ

4

∫
Uρ2

z +
D2m2Am

χ

∫
Um−2π2

zz + C
∫

π2
z ,

where Am = um−1
− if m ≥ 1 and Am = C(1 + eηz)m−1 if 0 < m < 1, for η =

u1−m
−

Dm · (s + χv+) and some
constant C > 0. By Young’s inequality again,

χ

∫
|Vπzρz| ≤

χ

4

∫
Uρ2

z + χ

∫
V2π2

z .

Thus, by employing π2
z ≤

Cπ2
z

U , we have

χ

∫ t

0

∫
Uρ2

z ≤

∫
ρ2

z +

∫
π2 + 2

∫
|π0ρ0z| +

2D2m2Am

χ

∫ t

0

∫
Um−2π2

zz

+ C
∫ t

0

∫
π2

z

U
+ C

∫ t

0

∫
|(G + χπzρz)ρz|.

(3.17)

By choosing γ = min{ χ

2Dmum−1
−

, χ2 } for m ≥ 1, γ = min{ χ

2DmC(1+eηz)m−1 ,
χ

2 } for 0 < m < 1, substituting (3.17)
into (3.14), and through Lemma 2, when N(t) � 1, one gets∫ (

π2
z

U
+ χρ2

z

)
+

∫ t

0

∫
Um−2π2

zz

≤ C(‖π0‖
2
1,w + ‖ρ0‖

2
1) + C

∫
|(G + χπzρz)|

(
|πz| +

|πzz|

U
+ |ρz|

)
.

(3.18)

Substituting (3.18) into (3.17) gives∫ t

0

∫
ρ2

z ≤ C(‖π0‖
2
1 + ‖ρ0‖

2
1) + C

∫
|(G + χπzρz)|

(
|πz| +

|πzz|

U
+ |ρz|

)
, (3.19)
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which is combined with (3.18), πz ≤ C πz
U , πzz ≤ C πzz

U , ρz ≤ C ρz
U , one has∫ (

π2
z

U
+ ρ2

z

)
+

∫ t

0

∫
π2

zz

U
≤ C(‖π0‖

2
1,w + ‖ρ0‖

2
1) + C

∫ t

0

∫
|(G + χπzρz)|

(
|πz| +

|πzz|

U
+ |ρz|

)
. (3.20)

In view of (3.6), by Young’s inequality, ‖πz(·, t)‖L∞ ≤ N(t), and Lemma 2, we get∫ t

0

∫
|(G + χπzρz)|

(
|πz| +

|πzz|

U
+ |ρz|

)
≤

∫ t

0

∫
CN(t)

(
π2

zz + ρ2
z

U

)
.

Substituting this inequality into (3.20) and employing the higher-order estimate Um−2 as in L2, then
one can obtain ∫ (

π2
z

U
+ ρ2

z

)
+

∫ t

0

∫
C(Dm(w(z) + u−) − N(t))

π2
zz

U

≤ C(‖π0‖
2
1,w + ‖ρ0‖

2
1) +

∫ t

0

∫
CN(t)

ρ2
z

U
.

(3.21)

By the assumption 1/U(z) ≤ Cw(z) for all z ∈ R, we show the term
∫ t

0

∫
wρ2

z . Multiplying the
second equation of (3.12) by wρz, and integrating the results in z, one provides

1
2

d
dt

wρ2
z = wsρzρzz + wρzπzz, (3.22)

which is combined with (3.23)

wsρzρzz =
1
2

w(sρ2
z )z =

(
wsρ2

z

2

)
z
−

sρ2
z wz

2
, (3.23)

then (3.22) becomes

1
2

d
dt

wρ2
z +

sρ2
z wz

2
=

(
wsρ2

z

2

)
z
+ wρzπzz. (3.24)

Since w = 1+eηz, one has 1 < w < 2 and 0 ≤ wz = ηeηz ≤ 2ηw in (−∞, 0). We further integrate (3.24)
with respect to z over (−∞, 0) to obtain

1
2

d
dt

∫ 0

−∞

wρ2
z +

∫ 0

−∞

sρ2
z

2
ηeηz ≤

1
2

d
dt

∫ 0

−∞

wρ2
z +

∫ 0

−∞

sρ2
zηw

= sρ2
z (0, t) +

∫ 0

−∞

wρzπzz

≤ sρ2
z (0, t) +

∫ 0

−∞

2|ρzπzz|.

(3.25)

Integrating (3.24) in z over (0,+∞), and using the fact wz = ηeηz ≥
ηw
2 in (0,+∞) we get

1
2

d
dt

∫ +∞

0
wρ2

z +

∫ +∞

0

sρ2
z

4
ηw ≤

1
2

d
dt

∫ +∞

0
wρ2

z +

∫ +∞

0

sρ2
z

2
ηeηz = sρ2

z (0, t) +

∫ +∞

0
wρzπzz. (3.26)
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Combining (3.25) and (3.26), and then integrating the results in t, one has

1
2

∫
wρ2

z + C
∫ t

0

∫ +∞

0

sρ2
z

4
ηw + C

∫ t

0

∫ 0

−∞

sρ2
zηw

≤
1
2

∫
wρ2

0z + C
∫ t

0

∫ +∞

0
wρzπzz + C

∫ t

0

∫ 0

−∞

2|ρzπzz|

≤
1
2

∫
wρ2

0z + C
∫ t

0

∫ +∞

0

(
2wρ2

z +
wπ2

zz

2

)
+ C

∫ t

0

∫ 0

−∞

(
4wρ2

z +
wπ2

zz

4

)
.

(3.27)

Next, we combine (3.27) with (3.21), and we have∫ (
wπ2

z + ρ2
z

)
+

∫
wρ2

z +

∫ t

0

∫
C(Dm(w(z) + u−) − N(t))wπ2

zz +

∫ t

0

∫
C(1 − N(t))wρ2

z

≤

∫ (
wπ2

0z + ρ2
0z

)
+

∫
wρ2

0z.

(3.28)

Applying N(t) = min {Dm(w(z) + u−), 1}, we complete the proof of Lemma 3. �

3.1.3. Estimate of (π, ρ) in H2

Lemma 4. Under the same assumptions of Proposition 1, if N(t) � 1, then

‖π(., t)‖22,w + ‖ρ(., t)‖22 + ‖ρ(., t)‖22,w +

∫ t

0
(‖πz(., τ)‖22,w + ‖ρz(., τ)‖21,w)dτ

≤ C(‖π0‖
2
2,w + ‖ρ0‖

2
2 + ‖ρ0‖

2
2,w).

(3.29)

Proof. We differentiate (3.12) in z to present
πzzt − χUρzzz − Dm

(
Um−1πzzz

)
z

= Dm(2(Um−1)zπzz + (Um−1)zzπz)z + χ(2Uzρzz + Uzzρz)
+((s + χV)πz)zz + (G + χπzρz)zz,

ρzzt − sρzzz − πzzz = 0.

(3.30)

Multiplying (3.30)1 by πzz
U and (3.30)2 by χρzz, we have

1
2

d
dt

∫ (
π2

zz

U
+ χρ2

zz

)
+ Dm

∫
Um−2π2

zzz − χ

∫
(2Uzρzz + Uzzρz)

πzz

U

=

∫ [
Dm

(
3(Um−1)zz

U
−

(
(Um−1)z

U

)
z

)
−

( s + χVπz

2U

)
z
+

2χVz

U

]
π2

zz

+

∫ (
χVπzz

U
+

Dm(Um−1)zzz

U

)
πzπzz +

∫
(G + χπzρz)z

(
πzz

U

)
z
.

(3.31)

By Young’s inequality,

χ

∣∣∣∣∣(2Uzρzz + Uzzρz)
πzz

U

∣∣∣∣∣ ≤ γχ

2
Uρ2

zz + χ

(
2
γ
·

U2
z

U3 +
U2

zz

U2

)
π2

zz + χρ2
z , (3.32)
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where γ is a small enough constant. Noting

Gz =Dm((U + πz)m−1 − Um−1)πzzz + Dm(m − 1)(U + πz)m−2π2
zz

+ Dm(m − 1)U2
z ((U + πz)m−2 − Um−2 − (m − 2)Um−3πz)

+ DmUzz((U + πz)m−1 − Um−1 − (m − 1)Um−2πz)
+ 2Dm(m − 1)Uz((U + πz)m−2 − Um−2)πzz,

(3.33)

we have ∫
(G + χπzρz)z

(
πzz

U

)
z
≤ CN(t)

∫ (
π2

zzz + ρ2
zz

U

)
, (3.34)

where ‖πz(·, t)‖L∞ , ‖ρz(·, t)‖L∞ , ‖πzz(·, t)‖L∞ ≤ N(t) has been employed. Substituting (3.32) and (3.34)
into (3.31), by (3.1) and (3.11), we get∫ (

π2
zz

U
+ χρ2

zz

)
+ 2Dm

∫ t

0

∫
Um−2π2

zzz

≤ C(‖π0‖
2
2,w + ‖ρ0‖

2
2) + γχ

∫ t

0

∫
Uρ2

zz +

∫ t

0

∫
CN(t)

(
ρ2

zz + π2
zzz

U

)
.

(3.35)

Next we estimate
∫ t

0

∫
Uρ2

zz. Multiplying (3.12)1 by ρzz, we get

χUρ2
zz =πztρzz − Dm

(
Um−1πzz

)
z
ρzz − Dm((Um−1)zπz)zρzz

− (χUzρz + ((s + χV)πz)z + (G + χπzρz)z)ρzz.
(3.36)

By the second equation of (3.30),

πztρzz = (πzρzz)t − πzρzzt

= (πzρzz)t − sπzρzzz − πzπzzz

= (πzρzz)t − s(πzρzz)z + sπzzρzz − (πzπzz)z + π2
zz.

By Young’s inequality,

Dm
(
Um−1πzz

)
z
ρzz = DmUm−1πzzzρzz + Dm(Um−1)zπzzρzz

≤
χUρ2

zz

4
+

2D2m2U2m−3π2
zzz

χ
+

2D2m2|(Um−1)z|
2π2

zz

χ
.

Similarly,

|Dm((Um−1)zπz)zρzz + (χUzρz + ((s + χV)πz)z| ≤
χUρ2

zz

4
+ C(ρ2

z + π2
zz + π2

z ).

In view of (3.33), since ‖πz(·, t)‖L∞ , ‖ρz(·, t)‖L∞ , ‖πzz(·, t)‖L∞ ≤ N(t), we get

|(G + χπzρz)z)ρzz| ≤ CN(t)(ρ2
zz + π2

zz + π2
zzz + π2

z ).
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Thus, integrating (3.36) and using π2
z ≤

Cπ2
z

U , π2
zz ≤

Cπ2
zz

U , ρ2
z ≤

Cρ2
z

U , ρ2
zz ≤

Cρ2
zz

U , π2
zzz ≤

Cπ2
zzz

U , we have

χ

∫ t

0

∫
Uρ2

zz ≤

∫
(
1
γ
π2

z + γρ2
zz + π2

0z + ρ2
0zz) +

2D2m2

χ

∫ t

0

∫
U2m−3π2

zzz

+ C
∫ t

0

∫ (
π2

z + ρ2
z + π2

zz

U

)
+

∫ t

0

∫
CN(t)

(
ρ2

zz + π2
zzz

U

)
.

(3.37)

Substituting (3.37) into (3.35), choosing γ � 1 and N(t) � 1, since 0 < U ≤ u−, by Lemmas 2 and 3,
we have ∫ (

π2
zz

U
+ χρ2

zz

)
+ 2Dm

∫ t

0

∫
Um−2π2

zzz

≤ C(‖π0‖
2
2,w + ‖ρ0‖

2
2) +

∫ t

0

∫
CN(t)

(
1 +

D2m2

χ

)
π2

zzz

U

+

∫ t

0

∫
CN(t)

(
ρ2

zz

U

) (3.38)

Substituting (3.38) into (3.37) gives∫ t

0

∫
ρ2

zz ≤ C(‖π0‖
2
2,w + ‖ρ0‖

2
2) +

∫ t

0

∫
CN(t)

(
1 +

D2m2

χ

)
π2

zzz

U
+

∫ t

0

∫
CN(t)

(
ρ2

zz

U

)
, (3.39)

which is combined with (3.38), further gives∫ (
π2

zz

U
+ χρ2

zz

)
+

∫ t

0

∫
C(Dm(w(z) + u−) − N(t))

π2
zzz

U

≤ C(‖π0‖
2
2,w + ‖ρ0‖

2
2) +

∫ t

0

∫
CN(t)

ρ2
zz

U
.

(3.40)

Similarly, by the assumptions 1/U(z) ≤ Cw(z) for all z ∈ R as in previous lemmas, we can consider
the term

∫ t

0

∫
wρ2

zz. Multiplying the second equation of (3.30) by wρzz, and integrating the results in z,
one has

1
2

d
dt

wρ2
zz = wsρzzρzzz + wρzzπzzz, (3.41)

where

wsρzzρzzz =
1
2

w(sρ2
zz)z =

(
wsρ2

zz

2

)
z
−

sρ2
zzwz

2
. (3.42)

Then, it follows from (3.42) and (3.41), that one has

1
2

d
dt

wρ2
zz +

sρ2
zzwz

2
=

(
wsρ2

zz

2

)
z
+ wρzzπzzz. (3.43)
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Since w = 1+eηz, one has 1 < w < 2 and 0 ≤ wz = ηeηz ≤ 2ηw in (−∞, 0). We further integrate (3.43)
in z over (−∞, 0) to obtain

1
2

d
dt

∫ 0

−∞

wρ2
zz +

∫ 0

−∞

sρ2
zz

2
ηeηz ≤

1
2

d
dt

∫ 0

−∞

wρ2
zz +

∫ 0

−∞

sρ2
zzηw

= sρ2
zz(0, t) +

∫ 0

−∞

wρzzπzzz

≤ sρ2
zz(0, t) +

∫ 0

−∞

2|ρzzπzzz|.

(3.44)

Integrating (3.43) in z over (0,+∞), and using the fact wz = ηeηz ≥
ηw
2 in (0,+∞) gives one

1
2

d
dt

∫ +∞

0
wρ2

zz +

∫ +∞

0

sρ2
zz

4
ηw ≤

1
2

d
dt

∫ +∞

0
wρ2

zz +

∫ +∞

0

sρ2
zz

2
ηeηz

= sρ2
zz(0, t) +

∫ +∞

0
wρzzπzzz.

(3.45)

Combining (3.44) and (3.45), and then integrating the results in t, one has

1
2

∫
wρ2

zz + C
∫ t

0

∫ +∞

0

sρ2
zz

4
ηw + C

∫ t

0

∫ 0

−∞

sρ2
zzηw

≤
1
2

∫
wρ2

0zz + C
∫ t

0

∫ +∞

0
wρzzπzzz + C

∫ t

0

∫ 0

−∞

2|ρzzπzzz|

≤
1
2

∫
wρ2

0zz + C
∫ t

0

∫ +∞

0

(
2wρ2

zz +
wπ2

zzz

2

)
+ C

∫ t

0

∫ 0

−∞

(
4wρ2

zz +
wπ2

zzz

4

)
.

(3.46)

Next, we combine (3.46) with (3.40) to provide∫ (
wπ2

zz + ρ2
zz

)
+

∫
wρzz +

∫ t

0

∫
C(Dm(w(z) + u−) − N(t))wπ2

zzz +

∫ t

0

∫
C(1 − N(t))wρ2

zz

≤

∫ (
wπ2

0zz + ρ2
0zz

)
+

∫
wρ2

0zz.

(3.47)

Finally, employing N(t) = min {Dm(w(z) + u−), 1}, then the Lemma 4 is proved. �

Under the influence of nonlinear diffusion, one needs to establish the third order derivative of (π, ρ)
in order to make sense with the energy estimates stated in Theorem 2. In similar ways to Lemmas 3
and 4, the estimate of (π, ρ) in H3 can be inferred, where the details are omitted here. Proposition 1
follows from Lemma 2 to Lemma 4.

Proof of Theorem 2. The a priori estimate (2.20) states that small enough N(0) gives small N(t). Thus,
applying the procedure in a standard way, the global well-posedness of (2.18) and (2.19) in X(0,+∞)
is established. Then, the convergence (2.21) is proved. Clearly, if (π, ρ) ∈ H3

w then (π, ρ) ∈ H3 since
w ≥ 1. By dealing with the global estimate (2.20), we get∫ t

0

∫ ∞

−∞

π2
z (z, τ)dzdτ ≤ C(‖π0‖3,w + ‖ρ0‖3 + ‖ρ0‖3,w) ≤ CN2(0), ∀ t > 0. (3.48)
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Because of the first equation of (2.18) and Young’s inequality, one has

d
dt

∫ ∞

−∞

π2
z (z, t)dz

= −2
∫ ∞

−∞

πzz(Dm
(
Um−1πz

)
z
+ (s + χV)πz + χUρz + G + χπzρz)

≤

∫ ∞

−∞

πzz(Dm
(
Um−1πz

)
z
+ (s + χV)πz + χUρz + χπzρz)

+

∫ ∞

−∞

πzz(Dm(πz + U)m−1(πzz + Uz) + mUzBm + Dm((m − 1)Um−2πzUz + Um−1πzz))

≤ C
∫ ∞

−∞

(π2
zz + π2

z + ρ2
z ),

where for some constants C > 0, we have used Bm = um−1
− , (πz + U)m−1 ≤ (πz + u−)m−1 if m ≥ 1 and

Bm = C(1 + eηz)m−1, (πz + U)m−1 ≤ (πz +C(1 + eηz))m−1 for η =
u1−m
−

Dm · (s +χv+) if 0 < m < 1. By referring
to the global estimate (2.20), one has∫ ∞

0

∣∣∣∣∣ d
dt

∫ ∞

−∞

π2
z (z, t)dz

∣∣∣∣∣ ≤ C
∫ ∞

0

∫ ∞

−∞

(π2
zz + π2

z + ρ2
z ) ≤ CN2(0). (3.49)

From (3.48) and (3.49), we get ∫ ∞

−∞

π2
z (z, t)dz→ 0 as t → +∞.

Moreover, by dealing with the Cauchy-Schwarz inequality, we further have

π2
z (z, t) = 2

∫ z

−∞

πzπzz(y, t)dy

≤ 2
(∫ ∞

−∞

π2
z (y, t)dy

) 1
2
(∫ ∞

−∞

π2
zz(y, t)dy

) 1
2

≤ C
(∫ ∞

−∞

π2
z (y, t)dy

) 1
2

→ 0 as t → +∞.

Applying the same argument to ρz yields

sup
z∈R
|ρz(z, t)| → 0 as t → +∞. (3.50)

Hence (2.21) is proved. �

3.2. Proof of main results

Now, the main results become the focus of our paper. By employing the transformation (2.16),
Theorem 1 is based on Theorem 2.
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Proof of Theorem 4. The stability of u has been established in Theorem 1. It only needs to transfer the
results of v into c. In view of the transformations (1.4) and (2.16), we have

c(x, t)
C(x − st)

= e
∫ x
−∞

(V(y−st)−v(y,t))dy = eρ(x,t).

By Cauchy-Schwarz inequality, the global estimate (2.20) and (3.50), we get

sup
x∈R

ρ2(x, t) = 2 sup
x∈R

∫ x

−∞

ρρy(y, t)dy ≤ 2
( ∫
R

ρ2(y, t)dy
)1/2( ∫

R

ρ2
y(y, t)dy

)1/2

→ 0 as t → ∞.

Then for all x ∈ R,
|c(x, t) − C(x − st)| = |C(x − st)eρ(x,t) − C(x − st)|

= C(x − st)|1 − eρ(x,t)|

≤ C|1 − eρ(x,t)|

→ 0 as t → ∞.

Hence, the proof is finished. �
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