Research article

Infinitely many solutions for a class of biharmonic equations with indefinite potentials

  • Received: 12 February 2020 Accepted: 10 April 2020 Published: 16 April 2020
  • MSC : 35J20, 35J65

  • In this paper, we consider the following sublinear biharmonic equations Δ2u+V(x)u=K(x)|u|p1u, xRN, where N5, 0<p<1, and K,V both change sign in RN. We prove that the problem has infinitely many solutions under appropriate assumptions on K,V. To our end, we firstly infer the boundedness of PS sequence, and then prove that the PS condition was satisfied. At last, we verify that the corresponding functional satisfies the conditions of the symmetric Mountain Pass Theorem.

    Citation: Wen Guan, Da-Bin Wang, Xinan Hao. Infinitely many solutions for a class of biharmonic equations with indefinite potentials[J]. AIMS Mathematics, 2020, 5(4): 3634-3645. doi: 10.3934/math.2020235

    Related Papers:

    [1] Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546
    [2] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [3] Miguel Vivas-Cortez, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor . Some new generalized κ–fractional Hermite–Hadamard–Mercer type integral inequalities and their applications. AIMS Mathematics, 2022, 7(2): 3203-3220. doi: 10.3934/math.2022177
    [4] Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121
    [5] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [6] Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538
    [7] Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506
    [8] Tahir Ullah Khan, Muhammad Adil Khan . Hermite-Hadamard inequality for new generalized conformable fractional operators. AIMS Mathematics, 2021, 6(1): 23-38. doi: 10.3934/math.2021002
    [9] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [10] Paul Bosch, Héctor J. Carmenate, José M. Rodríguez, José M. Sigarreta . Generalized inequalities involving fractional operators of the Riemann-Liouville type. AIMS Mathematics, 2022, 7(1): 1470-1485. doi: 10.3934/math.2022087
  • In this paper, we consider the following sublinear biharmonic equations Δ2u+V(x)u=K(x)|u|p1u, xRN, where N5, 0<p<1, and K,V both change sign in RN. We prove that the problem has infinitely many solutions under appropriate assumptions on K,V. To our end, we firstly infer the boundedness of PS sequence, and then prove that the PS condition was satisfied. At last, we verify that the corresponding functional satisfies the conditions of the symmetric Mountain Pass Theorem.


    For a convex function σ:IRR on I with ν1,ν2I and ν1<ν2, the Hermite-Hadamard inequality is defined by [1]:

    σ(ν1+ν22)1ν2ν1ν2ν1σ(η)dησ(ν1)+σ(ν2)2. (1.1)

    The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4] are focused on extending and generalizing the convexity and Hermite-Hadamard inequality.

    The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [5,6,7].

    Now, we recall the definitions of Riemann-Liouville fractional integrals.

    Definition 1.1 ([5,6,7]). Let σL1[ν1,ν2]. The Riemann-Liouville integrals Jϑν1+σ and Jϑν2σ of order ϑ>0 with ν10 are defined by

    Jϑν1+σ(x)=1Γ(ϑ)xν1(xη)ϑ1σ(η)dη,   ν1<x (1.2)

    and

    Jϑν2σ(x)=1Γ(ϑ)ν2x(ηx)ϑ1σ(η)dη,  x<ν2, (1.3)

    respectively. Here Γ(ϑ) is the well-known Gamma function and J0ν1+σ(x)=J0ν2σ(x)=σ(x).

    With a huge application of fractional integration and Hermite-Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite-Hadamard inequality, including fractional integration rather than ordinary integration; for example see [8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    In this paper, we consider the integral inequality of Hermite-Hadamard-Mercer type that relies on the Hermite-Hadamard and Jensen-Mercer inequalities. For this purpose, we recall the Jensen-Mercer inequality: Let 0<x1x2xn and μ=(μ1,μ2,,μn) nonnegative weights such that ni=1μi=1. Then, the Jensen inequality [22,23] is as follows, for a convex function σ on the interval [ν1,ν2], we have

    σ(ni=1μixi)ni=1μiσ(xi), (1.4)

    where for all xi[ν1,ν2] and μi[0,1], (i=¯1,n).

    Theorem 1.1 ([2,23]). If σ is convex function on [ν1,ν2], then

    σ(ν1+ν2ni=1μixi)σ(ν1)+σ(ν2)ni=1μiσ(xi), (1.5)

    for each xi[ν1,ν2] and μi[0,1], (i=¯1,n) with ni=1μi=1. For some results related with Jensen-Mercer inequality, see [24,25,26].

    In view of above indices, we establish new integral inequalities of Hermite-Hadamard-Mercer type for convex functions via the Riemann-Liouville fractional integrals in the current project. Particularly, we see that our results can cover the previous researches.

    Theorem 2.1. For a convex function σ:[ν1,ν2]RR with x,y[ν1,ν2], we have:

    σ(ν1+ν2x+y2)2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1)+σ(ν2)σ(x)+σ(y)2. (2.1)

    Proof. By using the convexity of σ, we have

    σ(ν1+ν2u+v2)12[σ(ν1+ν2u)+σ(ν1+ν2v)], (2.2)

    and above with u=1η2x+1+η2y, v=1+η2x+1η2y, where x,y[ν1,ν2] and η[0,1], leads to

    σ(ν1+ν2x+y2)12[σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))]. (2.3)

    Multiplying both sides of (2.3) by ηϑ1 and then integrating with respect to η over [0,1], we get

    1ϑσ(ν1+ν2x+y2)12[10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη]=12[2ϑ(yx)ϑν1+ν2x+y2ν1+ν2y((ν1+ν2x+y2)w)ϑ1σ(w)dw+2ϑ(yx)ϑν1+ν2xν1+ν2x+y2(w(ν1+ν2x+y2))ϑ1σ(w)dw]=2ϑ1Γ(ϑ)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)],

    and thus the proof of first inequality in (2.1) is completed.

    On the other hand, we have by using the Jensen-Mercer inequality:

    σ(ν1+ν2(1η2x+1+η2y))σ(ν1)+σ(ν2)(1η2σ(x)+1+η2σ(y)) (2.4)
    σ(ν1+ν2(1+η2x+1η2y))σ(ν1)+σ(ν2)(1+η2σ(x)+1η2σ(y)). (2.5)

    Adding inequalities (2.4) and (2.5) to get

    σ(ν1+ν2(1η2x+1+η2y))+σ(ν1+ν2(1+η2x+1η2y))2[σ(ν1)+σ(ν2)][σ(x)+σ(y)]. (2.6)

    Multiplying both sides of (2.6) by ηϑ1 and then integrating with respect to η over [0,1] to obtain

    10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη+10ηϑ1σ(ν1+ν2(1+η2x+1η2y))dη2ϑ[σ(ν1)+σ(ν2)]1ϑ[σ(x)+σ(y)].

    By making use of change of variables and then multiplying by ϑ2, we get the second inequality in (2.1).

    Remark 2.1. If we choose ϑ=1, x=ν1 and y=ν2 in Theorem 2.1, then the inequality (2.1) reduces to (1.1).

    Corollary 2.1. Theorem 2.1 with

    ϑ=1 becomes [24, Theorem 2.1].

    x=ν1 and y=ν2 becomes:

    σ(ν1+ν22)2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1)+σ(ν2)2,

    which is obtained by Mohammed and Brevik in [10].

    The following Lemma linked with the left inequality of (2.1) is useful to obtain our next results.

    Lemma 2.1. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and σL[ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)=(yx)410ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη. (2.7)

    Proof. From right hand side of (2.7), we set

    ϖ1ϖ2:=10ηϑ[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη=10ηϑσ(ν1+ν2(1η2x+1+η2y))dη10ηϑσ(ν1+ν2(1+η2x+1η2y))dη. (2.8)

    By integrating by parts with w=ν1+ν2(1η2x+1+η2y), we can deduce:

    ϖ1=2(yx)σ(ν1+ν2y)+2ϑ(yx)10ηϑ1σ(ν1+ν2(1η2x+1+η2y))dη=2(yx)σ(ν1+ν2y)+2ϑ+1ϑ(yx)ϑ+1ν1+ν2x+y2ν1+ν2yσ((ν1+ν2x+y2)w)ϑ1σ(w)dw=2(yx)σ(ν1+ν2y)+2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2).

    Similarly, we can deduce:

    ϖ2=2yxσ(ν1+ν2x)2ϑ+1Γ(ϑ+1)(yx)ϑ+1Jϑ(ν1+ν2x)σ(ν1+ν2x+y2).

    By substituting ϖ1 and ϖ2 in (2.8) and then multiplying by (yx)4, we obtain required identity (2.7).

    Corollary 2.2. Lemma 2.1 with

    ϑ=1 becomes:

    1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)=(yx)410η[σ(ν1+ν2(1η2x+1+η2y))σ(ν1+ν2(1+η2x+1η2y))]dη.

    ϑ=1, x=ν1 and y=ν2 becomes:

    1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)=(ν2ν1)410η[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    x=ν1 and y=ν2 becomes:

    2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)=(ν2ν1)410ηϑ[σ(ν1+ν2(1η2ν1+1+η2ν2))σ(ν1+ν2(1+η2ν1+1η2ν2))]dη.

    Theorem 2.2. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ| is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2]. (2.9)

    Proof. By taking modulus of identity (2.7), we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|dη+10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|dη].

    Then, by applying the convexity of |σ| and the Jensen-Mercer inequality on above inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4[10ηϑ[|σ(ν1)|+|σ(ν2)|(1+η2|σ(x)|+1η2)|σ(y)|]dη+10ηϑ[|σ(ν1)|+|σ(ν2)|(1η2|σ(x)|+1+η2)|σ(y)|]dη]=(yx)2(1+ϑ)[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2],

    which completes the proof of Theorem 2.2.

    Corollary 2.3. Theorem 2.2 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4[|σ(ν1)|+|σ(ν2)||σ(x)|+|σ(y)|2].

    ϑ=1, x=ν1 and y=ν2 becomes [27, Theorem 2.2].

    x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)4[|σ(ν1)|+|σ(ν2)|2].

    Theorem 2.3. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q>1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q], (2.10)

    where 1p+1q=1.

    Proof. By taking modulus of identity (2.7) and using Hölder's inequality, we get

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    Then, by applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑp)1p{(10|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q))1q+(10|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q))1q}=(yx)4pϑp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q],

    which completes the proof of Theorem 2.3.

    Corollary 2.4. Theorem 2.3 with

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)4pp+1[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+3|σ(y)|q4))1q+(|σ(ν1)|q+|σ(ν2)|q(3|σ(x)|q+|σ(y)|q4))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(ν2ν1)22p(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|2ϑ12qν2ν1(1p+1)1p[|σ(ν1)|+|σ(ν2)|].

    Theorem 2.4. Let σ:[ν1,ν2]RR be a differentiable function on (ν1,ν2) and |σ|q,q1 is convex on [ν1,ν2] with ν1ν2 and x,y[ν1,ν2]. Then, we have:

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q]. (2.11)

    Proof. By taking modulus of identity (2.7) with the well-known power mean inequality, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ|σ(ν1+ν2(1η2x+1+η2y))|qdη)1q+(10ηϑ|σ(ν1+ν2(1+η2x+1η2y))|qdη)1q}.

    By applying the Jensen-Mercer inequality with the convexity of |σ|q, we can deduce

    |2ϑ1Γ(ϑ+1)(yx)ϑ[Jϑ(ν1+ν2y)+σ(ν1+ν2x+y2)+Jϑ(ν1+ν2x)σ(ν1+ν2x+y2)]σ(ν1+ν2x+y2)|(yx)4(10ηϑ)11q{(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1η2|σ(x)|q+1+η2|σ(y)|q)])1q+(10ηϑ[|σ(ν1)|q+|σ(ν2)|q(1+η2|σ(x)|q+1η2|σ(y)|q)])1q}=(yx)4(ϑ+1)[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+(2ϑ+3)|σ(y)|q2(ϑ+2)))1q+(|σ(ν1)|q+|σ(ν2)|q((2ϑ+3)|σ(x)|q+|σ(y)|q2(ϑ+2)))1q],

    which completes the proof of Theorem 2.4.

    Corollary 5. Theorem 2.4 with

    q=1 becomes Theorem 2.2.

    ϑ=1 becomes:

    |1yxν1+ν2xν1+ν2yσ(w)dwσ(ν1+ν2x+y2)|(yx)8[(|σ(ν1)|q+|σ(ν2)|q(|σ(x)|q+5|σ(y)|q6))1q+(|σ(ν1)|q+|σ(ν2)|q(5|σ(x)|q+|σ(y)|q6))1q].

    ϑ=1, x=ν1 and y=ν2 becomes:

    |1ν2ν1ν2ν1σ(w)dwσ(ν1+ν22)|(yx)8[(5|σ(ν1)|q+|σ(ν2)|q6)1q+(|σ(ν1)|q+5|σ(ν2)|q6)1q].

    x=ν1 and y=ν2 becomes:

    |2ϑ1Γ(ϑ+1)(ν2ν1)ϑ[Jϑν1+σ(ν1+ν22)+Jϑν2σ(ν1+ν22)]σ(ν1+ν22)|(ν2ν1)4(ϑ+1)[((2ϑ+3)|σ(ν1)|q+|σ(ν2)|q2(ϑ+2))1q+(|σ(ν1)|q+(2ϑ+3)|σ(ν2)|q2(ϑ+2))1q].

    Here, we consider the following special means:

    ● The arithmetic mean:

    A(ν1,ν2)=ν1+ν22,ν1,ν20.

    ● The harmonic mean:

    H(ν1,ν2)=2ν1ν2ν1+ν2,ν1,ν2>0.

    ● The logarithmic mean:

    L(ν1,ν2)={ν2ν1lnν2lnν1,ifν1ν2,ν1,ifν1=ν2,ν1,ν2>0.

    ● The generalized logarithmic mean:

    Ln(ν1,ν2)={[νn+12νn+11(n+1)(ν2ν1)]1n,ifν1ν2ν1,ifν1=ν2,ν1,ν2>0;nZ{1,0}.

    Proposition 3.1. Let 0<ν1<ν2 and nN, n2. Then, for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4[2A(νn11,νn12)A(xn1,yn1)]. (3.1)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.2. Let 0<ν1<ν2. Then, for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|(yx)4[2H1(ν21,ν22)H1(x2,y2)]. (3.2)

    Proof. By applying Corollary 2.3 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.3. Let 0<ν1<ν2 and nN, n2. Then, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4[A(νn11,νn12)], (3.3)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|(ν2ν1)4H1(ν21,ν22). (3.4)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.1 and Proposition 3.2, one can obtain the Proposition 3.3.

    Proposition 3.4. Let 0<ν1<ν2 and nN, n2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |Lnn(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))n|n(yx)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(xq(n1),3yq(n1))]1q+[2A(νq(n1)1,νq(n1)2)12A(3xq(n1),yq(n1))]1q}. (3.5)

    Proof. By applying Corollary 2.4 (first item) for convex function σ(x)=xn,x>0, one can obtain the result directly.

    Proposition 3.5. Let 0<ν1<ν2. Then, for q>1,1p+1q=1 and for all x,y[ν1,ν2], we have:

    |L1(ν1+ν2y,ν1+ν2x)(2A(ν1,ν2)A(x,y))1|q2(yx)4pp+1{[H1(ν2q1,ν2q2)34H1(x2q,3y2q)]1q+[H1(ν2q1,ν2q2)34H1(3x2q,y2q)]1q}. (3.6)

    Proof. By applying Corollary 2.4 (first item) for the convex function σ(x)=1x,x>0, one can obtain the result directly.

    Proposition 3.6. Let 0<ν1<ν2 and nN, n2. Then, for q>1 and 1p+1q=1, we have:

    |Lnn(ν1,ν2)An(ν1,ν2)|n(ν2ν1)4pp+1{[2A(νq(n1)1,νq(n1)2)12A(νq(n1)1,3νq(n1)2)]1q+[2A(νq(n1)1,νq(n1)2)12A(3νq(n1)1,νq(n1)2)]1q}, (3.7)

    and

    |L1(ν1,ν2)A1(ν1,ν2)|q2(ν2ν1)4pp+1{[H1(ν2q1,ν2q2)34H1(ν2q1,3ν2q2)]1q+[H1(ν2q1,ν2q2)34H1(3ν2q1,ν2q2)]1q}. (3.8)

    Proof. By setting x=ν1 and y=ν2 in results of Proposition 3.4 and Proposition 3.5, one can obtain the Proposition 3.6.

    As we emphasized in the introduction, integral inequality is the most important field of mathematical analysis and fractional calculus. By using the well-known Jensen-Mercer and power mean inequalities, we have proved new inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional operators. In the last section, we have considered some propositions in the context of special functions; these confirm the efficiency of our results.

    We would like to express our special thanks to the editor and referees. Also, the first author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

    The authors declare no conflict of interest.



    [1] Y. Chen, P. J. McKenna, Traveling waves in a nonlinearly suspension beam: Theoretical results and numerical observations, J. Differ. Equations, 135 (1997), 325-355. doi: 10.1006/jdeq.1996.3155
    [2] A. C. Lazer, P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, Siam. Rev., 32 (1990), 537-578. doi: 10.1137/1032120
    [3] P. J. McKenna, W. Walter, Traveling waves in a suspension bridge, Siam J. Appl. Math., 50 (1990), 703-715. doi: 10.1137/0150041
    [4] C. O. Alves, J. Marcos do Ó, O. H. Miyagaki, Nontrivial solutions for a class of semilinear biharmonic problems involving critical exponents, Nonlinear Anal-Theor., 46 (2001), 121-133. doi: 10.1016/S0362-546X(99)00449-6
    [5] K. Kefi, K. Saoudi, On the existence of a weak solution for some singular p(x)-biharmonic equation with Navier boundary conditions, Adv. Nonlinear Anal., 8 (2018), 1171-1183. doi: 10.1515/anona-2016-0260
    [6] J. Liu, S. X. Chen, X. Wu, Existence and multiplicity of solutions for a class of fourth-order elliptic equations in RN, J. Math. Anal. Appl., 395 (2012), 608-615.
    [7] A. Mao, W. Wang, Nontrivial solutions of nonlocal fourth order elliptic equation of Kirchhoff type in R3, J. Math. Anal. Appl., 459 (2018), 556-563.
    [8] Y. Pu, X. P. Wu, C. L. Tang, Fourth-order Navier boundary value problem with combined nonlinearities, J. Math. Anal. Appl., 398 (2013), 798-813. doi: 10.1016/j.jmaa.2012.09.019
    [9] M. T. O. Pimenta, S. H. M. Soares, Singulary perturbed biharmonic problem with superlinear nonlinearities, Adv. Differential Equ., 19 (2014), 31-50.
    [10] Y. Su, H. Chen, The existence of nontrivial solution for a class of sublinear biharmonic equations with steep potential well, Bound. Value Probl., 2018 (2018), 1-14. doi: 10.1186/s13661-017-0918-2
    [11] X. Wang, A. Mao, A. Qian, High energy solutions of modified quasilinear fourth-order elliptic equation, Bound. Value Probl., 2018 (2018), 1-13. doi: 10.1186/s13661-017-0918-2
    [12] Y. Wang, Y. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Differ. Equations, 246 (2009), 3109-3125. doi: 10.1016/j.jde.2009.02.016
    [13] Y. Wei, Multiplicity results for some fourth-order elliptic equations, J. Math. Anal. Appl., 385 (2012), 797-807. doi: 10.1016/j.jmaa.2011.07.011
    [14] M. B. Yang, Z. F. Shen, Infinitely many solutions for a class of fourth order elliptic equations in RN, Acta Math. Sin., 24 (2008), 1269-1278.
    [15] Y. W. Ye, C. L. Tang, Infinitely many solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 394 (2012), 841-854. doi: 10.1016/j.jmaa.2012.04.041
    [16] Y. W. Ye, C. L. Tang, Existence and multiplicity of solutions for fourth-order elliptic equations in RN, J. Math. Anal. Appl., 406 (2013), 335-351.
    [17] Y. L. Yin, X. Wu, High energy solutions and nontrivial solutions for fourth-order elliptic equations, J. Math. Anal. Appl., 375 (2011), 699-705. doi: 10.1016/j.jmaa.2010.10.019
    [18] J. Zhang, Z. Wei, Infinitely many nontrivial solutions for a class of biharmonic equations via variant fountain theorems, Nonlinear Anal-Theor., 74 (2011), 7474-7485. doi: 10.1016/j.na.2011.07.067
    [19] W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with sign-changing potential, Taiwan. J. Math., 18 (2014), 645-659. doi: 10.11650/tjm.18.2014.3584
    [20] W. Zhang, X. H. Tang, J. Zhang, Infinitely many solutions for fourth-order elliptic equations with general potentials, J. Math. Anal. Appl., 407 (2013), 359-368. doi: 10.1016/j.jmaa.2013.05.044
    [21] W. Zhang, X. H. Tang, J. Zhang, Existence and concentration of solutions for sublinear fourthorder elliptic equations, Electronic J. Differ. Eq., 2015 (2015), 1-9. doi: 10.1186/s13662-014-0331-4
    [22] J. W. Zhou, X. Wu, Sign-changing solutions for some fourth-order nonlinear elliptic problems, J. Math. Anal. Appl., 342 (2008), 542-558. doi: 10.1016/j.jmaa.2007.12.020
    [23] A. Bahrouni, H. Ounaies, V. D. Rădulescu, Bound state solutions of sublinear Schrödinger equations with lack of compactness, Racsam. Rev. R. Acad. A., 113 (2019), 1191-1210.
    [24] A. Bahrouni, V. D. Rădulescu, D. Repovs, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), 2481-2495. doi: 10.1088/1361-6544/ab0b03
    [25] G. Bonanno, G. D'Aguì, A. Sciammetta, Nonlinear elliptic equations involving the p-Laplacian with mixed Dirichlet-Neumann boundary conditions, Opuscula Math., 39 (2018), 159-174. doi: 10.7494/OpMath.2019.39.2.159
    [26] Y. Li, D. B. Wang, J. Zhang, Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity, AIMS Math., 5 (2020), 2100-2112. doi: 10.3934/math.2020139
    [27] N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Nonlinear analysis-theory and methods, Springer Monographs in Mathematics, Springer, Cham, 2019.
    [28] N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Positive solutions for nonlinear parametric singular Dirichlet problems, Bull. Math. Sci., 9 (2019), 1950011. doi: 10.1142/S1664360719500115
    [29] H. R. Quoirin, K. Umezu, An elliptic equation with an indefinite sublinear boundary condition, Adv. Nonlinear Anal., 8 (2019), 175-192. doi: 10.1515/anona-2016-0023
    [30] D. B. Wang, Least energy sign-changing solutions of Kirchhoff-type equation with critical growth, J. Math. Phys., 61 (2020), 011501. Available from: https://doi.org/10.1063/1.5074163.
    [31] D. B. Wang, T. Li, X. Hao, Least-energy sign-changing solutions for KirchhoffSchrödinger-Poisson systems in R3, Bound. Value Probl., 75 (2019). Available from: https://doi.org/10.1186/s13661-019-1183-3.
    [32] D. B. Wang, Y. Ma, W. Guan, Least energy sign-changing solutions for the fractional Schrödinger-Poisson systems in R3, Bound. Value Probl., 25 (2019). Available from: https://doi.org/10.1186/s13661-019-1128-x.
    [33] D. B. Wang, H. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284-2301. doi: 10.1016/j.jmaa.2019.07.052
    [34] D. B. Wang, H. Zhang, Y. Ma, et al. Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger-Poisson system with potential vanishing at infinity, J. Appl. Math. Comput., 61 (2019), 611-634. doi: 10.1007/s12190-019-01265-y
    [35] D. B. Wang, J. Zhang, Least energy sign-changing solutions of fractional Kirchhoff-SchrödingerPoisson system with critical growth, App. Math. Lett., 106 (2020), 106372.
    [36] J. Zhao, X. Liu, Z. Feng, Quasilinear equations with indefinite nonlinearity, Adv. Nonlinear Anal., 8 (2018), 1235-1251. doi: 10.1515/anona-2018-0010
    [37] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in. Math., 65, American Mathematical Society, Providence, RI, 1986.
    [38] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. doi: 10.1016/0022-1236(73)90051-7
    [39] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352-370. doi: 10.1016/j.jfa.2005.04.005
    [40] A. Bahrouni, H. Ounaies, V. D. Rădulescu, Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potential, P. Roy. Soc. Edinburgh, Sect. A, 145 (2015), 445-465. doi: 10.1017/S0308210513001169
  • This article has been cited by:

    1. Tariq A. Aljaaidi, Deepak B. Pachpatte, Ram N. Mohapatra, The Hermite–Hadamard–Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function, 2022, 2022, 1687-0425, 1, 10.1155/2022/6716830
    2. Saad Ihsan Butt, Ahmet Ocak Akdemir, Muhammad Nadeem, Nabil Mlaiki, İşcan İmdat, Thabet Abdeljawad, (m,n)-Harmonically polynomial convex functions and some Hadamard type inequalities on the co-ordinates, 2021, 6, 2473-6988, 4677, 10.3934/math.2021275
    3. Ifra Bashir Sial, Nichaphat Patanarapeelert, Muhammad Aamir Ali, Hüseyin Budak, Thanin Sitthiwirattham, On Some New Ostrowski–Mercer-Type Inequalities for Differentiable Functions, 2022, 11, 2075-1680, 132, 10.3390/axioms11030132
    4. Deniz Uçar, Inequalities for different type of functions via Caputo fractional derivative, 2022, 7, 2473-6988, 12815, 10.3934/math.2022709
    5. Soubhagya Kumar Sahoo, Y.S. Hamed, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators, 2023, 65, 11100168, 689, 10.1016/j.aej.2022.10.019
    6. Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392
    7. Churong Chen, Discrete Caputo Delta Fractional Economic Cobweb Models, 2023, 22, 1575-5460, 10.1007/s12346-022-00708-5
    8. Soubhagya Kumar Sahoo, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Bibhakar Kodamasingh, Kamsing Nonlaopon, Khadijah M. Abualnaja, Hadamard–Mercer, Dragomir–Agarwal–Mercer, and Pachpatte–Mercer Type Fractional Inclusions for Convex Functions with an Exponential Kernel and Their Applications, 2022, 14, 2073-8994, 836, 10.3390/sym14040836
    9. Muhammad Tariq, Sotiris K. Ntouyas, Asif Ali Shaikh, A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators, 2023, 11, 2227-7390, 1953, 10.3390/math11081953
    10. Loredana Ciurdariu, Eugenia Grecu, Hermite–Hadamard–Mercer-Type Inequalities for Three-Times Differentiable Functions, 2024, 13, 2075-1680, 413, 10.3390/axioms13060413
    11. Muhammad Aamir Ali, Thanin Sitthiwirattham, Elisabeth Köbis, Asma Hanif, Hermite–Hadamard–Mercer Inequalities Associated with Twice-Differentiable Functions with Applications, 2024, 13, 2075-1680, 114, 10.3390/axioms13020114
    12. Muhammad Aamir Ali, Christopher S. Goodrich, On some new inequalities of Hermite–Hadamard–Mercer midpoint and trapezoidal type in q-calculus, 2024, 44, 0174-4747, 35, 10.1515/anly-2023-0019
    13. Thanin Sitthiwirattham, Ifra Sial, Muhammad Ali, Hüseyin Budak, Jiraporn Reunsumrit, A new variant of Jensen inclusion and Hermite-Hadamard type inclusions for interval-valued functions, 2023, 37, 0354-5180, 5553, 10.2298/FIL2317553S
    14. Muhammad Aamir Ali, Zhiyue Zhang, Michal Fečkan, GENERALIZATION OF HERMITE–HADAMARD–MERCER AND TRAPEZOID FORMULA TYPE INEQUALITIES INVOLVING THE BETA FUNCTION, 2024, 54, 0035-7596, 10.1216/rmj.2024.54.331
    15. Bahtiyar Bayraktar, Péter Kórus, Juan Eduardo Nápoles Valdés, Some New Jensen–Mercer Type Integral Inequalities via Fractional Operators, 2023, 12, 2075-1680, 517, 10.3390/axioms12060517
    16. THANIN SITTHIWIRATTHAM, MIGUEL VIVAS-CORTEZ, MUHAMMAD AAMIR ALI, HÜSEYIN BUDAK, İBRAHIM AVCI, A STUDY OF FRACTIONAL HERMITE–HADAMARD–MERCER INEQUALITIES FOR DIFFERENTIABLE FUNCTIONS, 2024, 32, 0218-348X, 10.1142/S0218348X24400164
    17. Muhammad Ali, Hüseyin Budak, Elisabeth Köbis, Some new and general versions of q-Hermite-Hadamard-Mercer inequalities, 2023, 37, 0354-5180, 4531, 10.2298/FIL2314531A
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3925) PDF downloads(317) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog