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Abstract: In this paper, we consider the following sublinear biharmonic equations

∆2u + V (x) u = K(x)|u|p−1u, x ∈ RN ,

where N ≥ 5, 0 < p < 1, and K,V both change sign in RN . We prove that the problem has
infinitely many solutions under appropriate assumptions on K,V . To our end, we firstly infer the
boundedness of PS sequence, and then prove that the PS condition was satisfied. At last, we verify
that the corresponding functional satisfies the conditions of the symmetric Mountain Pass Theorem.
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1. Introduction and main result

In this paper, we consider the following sublinear biharmonic equations

∆2u + V (x) u = K(x)|u|p−1u, x ∈ RN , (1.1)

where N ≥ 5, 0 < p < 1, V(x),K(x) ∈ L∞(RN) both change sign in RN and satisfies some conditions
specified below. Problem (1.1) involved biharmonic operator arises in the study of traveling waves in
suspension bridge. Furthermore, it is well know that biharmonic operator arises in the study of static
deflection of a plate, for more details, we refer the read to [1–3].

For biharmonic equations, there have been many results [4–22] and the references therein. In these
results, some authors studied biharmonic equations on the whole space RN [4,6,9,10,12,14–17,19–21],
in which most of them were focused on superlinear case but few results involving sublinear case [10,15,
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16, 20, 21]. On the other hand, we notice that, in [4, 19], authors considered the biharmonic equations
under sign-changing potential and superlinear case. However, to our best knowledge, there are no
results of biharmonic equations on RN in case of sign-changing potential and sublinear case. In this
paper, we will investigate the nontrivial solutions for Eq 1.1 with the potential indefinite in sign and
sublinear case, the tool used in our paper is the symmetric Mountain Pass Theorem.

To stated our main result, we assume that:
(H1) V ∈ L∞(RN) and there exist α,R0 > 0 such that

V(x) ≥ α, for any |x| ≥ R0.

(H2) ‖V−‖ N
4
< 1

S , where V±(x) = max{±V(x), 0} and the S is the constant of Sobolev:

‖u‖22∗ ≤ S ‖∆u‖22, for any u ∈ H2(RN),where 2∗ =
2N

N − 4
.

(H3) K ∈ L∞(RN) and there exist β > 0,R1 > R2 > 0, y0 = (y1, ..., yN) ∈ RN such that

K(x) ≤ −β, for any |x| > R1; K(x) > 0, for any x ∈ B(y0,R2).

Our main result is as follows:

Theorem 1.1. Assume (H1) − (H3) hold. Then problem (1.1) possesses infinitely many nontrivial
solutions.

For biharmonic equations on the whole space RN , the main difficulty one may face is the Sobolev
embedding H2(RN) ↪→ Ls(R) is not compact for s ∈ [2, 2∗). To overcome this difficulty, one can restrict
the corresponding energy functional to a subspace of H2(RN), which embeds compactly into Ls(RN)
with certain qualifications or consisting of radially symmetric functions. For example, Yin and Wu [17]
and Ye and Tang [15] considered biharmonic equations with the potential V satisfying following
conditions:

(V1) V ∈ C(RN ,R), infx∈RN V(x) ≥ b > 0 and for each M > 0, meas{x ∈ RN : V(x) ≤ M} < ∞,
where b is a constant and meas denotes Lebesgue measure in RN .

In fact, due to the condition (V1), space

X =

{
u ∈ H2(RN) :

∫
RN
|∆u|2 + |∇u|2 + V(x)u2dx < +∞

}
can embed compactly into Ls(RN) for s ∈ [2, 2∗), which is crucial in their paper.

Subsequently, Liu, Chen and Wu [6] and Ye and Tang [16] studied biharmonic equations with λV
instead of potential V under more weaker condition than (V1), i.e.,

(V2) V ∈ C(RN ,R), infx∈RN V(x) ≥ b > 0 there exists M > 0, meas{x ∈ RN : V(x) ≤ M} < ∞,
where b is a constant and meas denotes Lebesgue measure in RN .

Under the condition (V2), it is obvious that V(x) no longer satisfies certain coercive condition.
Hence, corresponding Sobolev’s embedding is not compact. Fortunately, with the aid of parameter λ
(λ > 0 large enough), they obtained that the corresponding energy functional possess the property of
locally compact.
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In [20, 21], Zhang, Tang and Zhang considered biharmonic equations on RN under more weaken
conditions than (V1) and (V2). However, their results does not allow V(x) to change sign.

Recently, Su and Chen [10] studied the following sublinear biharmonic equation∆2u − ∆u + λV (x) u = α(x) f (u) + µK(x)|u|q−2u, x ∈ RN ,

u ∈ H2(RN),

where N > 4, λ > 0, 1 < q < 2 and µ ∈ [0, µ0]. By using Ekeland’s variational principle and Gigliardo-
Nirenberg’s inequality, they proved the existence of nontrivial solution for the above problem. It is
noticed that their results require conditions V(x) ≥ 0 and K(x) > 0.

However, in this paper, the condition like type (V1) or (V2) does not be needed. Furthermore,
functions V(x) and K(x) both change sign in RN . So, the conditions in this paper more weaken than
that of in [6,10,15–17,20,21]. On the other hand, our main result also supplement the results obtained
by [4, 19] in which the sign-changing potential and superlinear case were considered. It is worth
pointing out that there are some interesting results, for example [23–36], considered elliptic equations
with an indefinite nonlinearity or sublinear condition or nonlocal terms.

2. Notations and preliminaries

In this paper, we use the following notations. Let

‖u‖q =

(∫
RN
|u|qdx

) 1
q

, 1 ≤ q < +∞.

Let E be a Banach space and ϕ : E → R be a functional of class C1, the Fréchet derivative of ϕ at
u, ϕ′(u), is an element of the dual space E∗ and we denote ϕ′(u) evaluated at v ∈ E by 〈ϕ′(u), v〉.

The Sobolev space E = H2(RN) ∩ Lp+1(RN), 0 < p < 1, endowed with the norm by

‖u‖ = ‖∆u‖2 + ‖u‖p+1.

Obviously, the space E is a reflexive Banach space.
The energy functional ϕ : E → R corresponding to problem (1.1) is defined by

ϕ(u) =
1
2

∫
RN
|∆u|2dx +

1
2

∫
RN

V(x)u2dx −
1

p + 1

∫
RN

K(x)|u|p+1dx.

It is well know that, under our conditions, ϕ ∈ C1(E) and its critical points are solutions of
problem (1.1).

Definition 2.1. ( [37]) Let E be a Banach space and A a subset of E. Set A is said to be symmetric
if u ∈ E implies −u ∈ E. For a closed symmetric set A which does not contain the origin, we define
a genus γ(A) of A by the smallest integer l such that there exist an odd continuous mapping from A
to Rl \ {0}. If there does not exists such a l, we define γ(A) = ∞. We set γ(∅) = 0. Let Γl denote the
family of closed symmetric subsets A of E such that 0 < A and γ(A) ≥ l.

The following result is a version of the classical symmetric Mountain Pass Theorem [37, 38]. A
proof can be found in [39].
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Theorem 2.1. ( [39]) Let E be an infinite dimensional Banach space and let ϕ ∈ C1(E,R) satisfy:
(1) ϕ is even, bounded from below, ϕ(0) = 0 and ϕ satisfies the Palais-Smale condition.
(2) For each l ∈ N, there exists an Al ∈ Γl such that

sup
u∈Al

ϕ(u) < 0.

Then either of the following two conditions holds:
(i) There exists a sequence ul such that ϕ′(ul) = 0, ϕ(ul) < 0 and ul converges to zero; or
(ii) There exist two sequences ul and vl such that ϕ′(ul) = 0, ϕ(ul) = 0, ul , 0, liml→+∞ ul =

0, ϕ′(vl) = 0, ϕ(vl) < 0, liml→+∞ ϕ(vl) = 0 and vl converges to a non-zero limit.

3. Proof of theorem 1.1

Lemma 3.1. If (H1) − (H3) hold. Then any PS sequence of ϕ is bounded in E.

Proof. Let {un} ⊂ E be such that

ϕ(un) is bounded and ϕ′(un)→ 0 as n→ ∞.

That is, there exists C > 0 such that ϕ(un) ≤ C. Then, according to (H3), Hölder inequality and
Sobolev embedding, one has that

C ≥ ϕ(un) =
1
2

∫
RN
|∆un|

2dx +
1
2

∫
RN

V(x)u2
ndx −

1
p + 1

∫
RN

K(x)|un|
p+1dx

≥
1
2

∫
RN
|∆un|

2dx −
1
2

∫
RN

V−(x)u2
ndx −

1
p + 1

∫
RN

K+(x)|un|
p+1dx

≥
1
2

∫
RN
|∆un|

2dx −
1
2

(∫
RN
|V−|

N
4 dx

) 4
N
(∫
RN

(|un|
2)

2∗
2 dx

) 2
2∗

− 1
p+1

∫
RN K+(x)|un|

p+1dx

≥

1
2
−

S ‖V−‖ N
4

2

 ‖∆un‖
2
2 −

S
p+1

2

p + 1
‖K+‖ 2∗

2∗−(p+1)
‖∆un‖

p+1
2 .

So, thanks to 0 < p < 1, there exists η > 0 such that

‖∆un‖2 ≤ η, for any n ∈ N. (3.1)

On the other hand, one has that

C +
‖un‖

2
≥ ϕ(un) − 1

2〈ϕ
′(un), un〉

≥

(
1
2
−

1
p + 1

) ∫
RN

K(x)|un|
p+1dx

=

(
1
2
−

1
p + 1

) ∫
RN

K+(x)|un|
p+1dx +

(
1

p + 1
−

1
2

) ∫
RN

K−(x)|un|
p+1dx

=

(
1
2
−

1
p + 1

) ∫
RN

(
K+(x) + χB(0,R1)(x)

)
|un|

p+1dx

+
(

1
p+1 −

1
2

) ∫
RN

(
K−(x) + χB(0,R1)(x)

)
|un|

p+1dx.
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By (H3), we have that
K+(x) = 0, for all |x| > R1.

Then, thanks to K ∈ L∞(RN), we have that∫
RN
|K+(x) + χB(0,R1)(x)|

2∗
2∗−(p+1) dx =

∫
B(0,R1)

|K+(x) + χB(0,R1)(x)|
2∗

2∗−(p+1) dx < ∞.

So, by Hölder inequality and Soblev inequality, we have that∫
RN

(
K+(x) + χB(0,R1)(x)

)
|un|

p+1dx

≤

(∫
RN

(
K+(x) + χB(0,R1)(x)

) 2∗
2∗−(p+1) dx

) 2∗−(p+1)
2∗

×

(∫
RN

(
|un|

p+1
) 2∗

p+1 dx
) p+1

2∗

≤ S
p+1

2 ‖K+ + χB(0,R1)‖ 2∗
2∗−(p+1)

‖∆un‖
p+1
2 . (3.2)

By (H3) again, we know that K−(x) ≥ β, for all |x| > R1. Then, we have that∫
RN

(
K−(x) + χB(0,R1)(x)

)
|vn|

p+1dx ≥ min(β, 1)‖vn‖
p+1
p+1. (3.3)

Thanks to (3.1), (3.2) and (3.3), there is a constant C1 > 0 such that

‖un‖
p+1
p+1 ≤ C1 + C1‖un‖p+1 for all n ∈ N.

Since 0 < p < 1, {un} is bounded in Lp+1(RN).
Then, from (3.1), we conclude that {un} is bounded in E. �

Lemma 3.2. ( [40]) Let x, y be for all real numbers, there exists a constant c > 0 such that

||x + y|p+1 − |x|p+1 − |y|p+1| ≤ c|x|p|y|.

Lemma 3.3. If (H1) − (H3) hold, then ϕ satisfies the PS condition on E.

Proof. Let {un} ⊂ E be such that

ϕ(un) is bounded and ϕ′(un)→ 0 as n→ ∞.

According to Lemma 3.1, {un} is bounded in E. Passing to a subsequence in necessary, we can
assume that

un ⇀ u in E,

un → u in Lq
loc(R

N), 2 ≤ q < 2∗,

un → u, a.e RN .

So, for any h ∈ C∞0 (RN), one has that∫
RN

∆un∆h + V(x)unhdx→
∫
RN

∆u∆h + V(x)uhdx.
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On the other hand, by Sobolev embedding and Lebesgue’s dominated convergence theorem, one
has that ∫

RN
K(x)|un|

p−1unh(x)dx→
∫
RN

K(x)|u|p−1uh(x)dx.

Therefore, according to above facts, one has that

0 = lim
n→+∞

〈ϕ′(un), h〉 = 〈ϕ′(u), h〉, for any h ∈ C∞0 (RN).

Hence, we have that
〈ϕ′(u), u〉 = 0.

Let vn = un − u, then un = vn + u, and we have that

〈ϕ′(un), un〉 =
∫
RN

(
|∆un|

2 + V(x)u2
n

)
dx −

∫
RN K(x)|un|

p+1dx

=
∫
RN

(
|∆vn|

2 + |∆u|2 + 2∆vn∆u + V(x)v2
n + V(x)u2 + 2V(x)vnu

)
dx

−
∫
RN K(x)|un|

p+1dx +
∫
RN K(x)|u|p+1dx −

∫
RN K(x)|u|p+1dx

= 〈ϕ′(u), u〉 +
∫
RN |∆vn|

2dx +
∫
RN V(x)v2

ndx

−
∫
RN K(x)|un|

p+1dx +
∫
RN K(x)|u|p+1dx + on(1)

≥
∫
RN |∆vn|

2dx −
∫
RN V−(x)v2

ndx

−
∫
RN K(x)

(
|un|

p+1 − |u|p+1
)

dx + on(1).

By Lemma 3.2, we have that

|K(x)|||un|
p+1 − |u|p+1 − |vn|

p+1| = |K(x)|||vn + u|p+1 − |u|p+1 − |vn|
p+1|

≤ c|K(x)||u|p|vn|.
(3.4)

We claim that ∫
RN
|K(x)||u|p|vn|dx ≤ C

∫
RN
|u|p|vn|dx→ 0, (3.5)

as n→ +∞.

In fact, because E ↪→ Lp+1(RN) is continuous and vn ⇀ 0 in E, we obtain that vn ⇀ 0 in Lp+1(RN).
On the other hand, it is obvious that |u|p ∈ L

p+1
p (RN). So, by K ∈ L∞(RN) and definition of weakly

convergence in space Lp+1(RN), we have that∫
RN
|K(x)||u|p|vn|dx ≤ C

∫
RN
|u|p|vn|dx→ 0,

as n→ +∞.

Hence, according to (3.4) and (3.5), we have that

lim
n→+∞

∫
RN

K(x)[|un|
p+1 − |u|p+1]dx = lim

n→+∞

∫
RN

K(x)|vn|
p+1dx.
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Then, we obtain that

〈ϕ′(un), un〉 ≥ 〈ϕ
′(u), u〉 +

∫
RN |∆vn|

2dx −
∫
RN V−(x)v2

ndx

−
∫
RN K(x)|vn|

p+1dx + on(1)

=
∫
RN |∆vn|

2dx −
∫
RN V−(x)v2

ndx

−
∫
RN

(
K+(x) + χB(0,R1)(x)

)
|vn|

p+1dx

+
∫
RN

(
K−(x) + χB(0,R1)(x)

)
|vn|

p+1dx + on(1).

(3.6)

Claim 1:
∫
RN V−(x)v2

ndx→ 0 as n→ +∞.

In fact, by (H1), we have that V−(x) = 0, for all |x| ≥ R0. So, from vn → 0 in Lq
loc(R

N), 2 ≤ q < 2∗,
and V ∈ L∞(RN), we obtain

∫
RN V−(x)v2

ndx→ 0 as n→ +∞.

Claim 2:
∫
RN

(
K+(x) + χB(0,R1)(x)

)
|vn|

p+1dx→ 0 as n→ +∞.

In fact, by (H3), we have that K+(x) = 0, for all |x| > R1. Thanks to K ∈ L∞(RN) and vn →

0 in Lq
loc(R

N), 2 ≤ q < 2∗, we get∫
RN

(
K+(x) + χB(0,R1)(x)

)
|vn|

p+1dx→ 0

as n→ +∞.

Combining claim 1, claim 2, (3.3) and (3.6), we obtain that

0 = lim
n→+∞

(
‖∆vn‖

2
2 + min(β, 1)‖vn‖

p+1
p+1

)
.

That is, vn → 0 in E. The proof is complete. �

The proof of following Lemma is based on some ideas of Kajikiya [39] and very similar to the one
contained in [40]. For reader convenient, we give the proof.

Lemma 3.4. If (H1) − (H3) hold, then for each l ∈ N, there exists subset Al ∈ Γl such that,

sup
u∈Al

I(u) < 0.

Proof. For R2 and y0 given by (H3), let

B(R2) = {(x1, · · · , xn) ∈ RN : |xi − yi| < R2, 1 ≤ i ≤ N}.

Let l ∈ N be an arbitrary number and define n = min{n ∈ N : nN ≥ l}. By planes parallel to each
face of B(R2), B(R2) be equally divided into nN small partes Bi with 1 ≤ i ≤ nN . In fact, the length
a of the edge Bi is R2

n . Let Fi ⊂ Bi be new cubes such that Fi has the same center as that of Bi. The
faces of Fi and Bi are parallel, and the length of the edge of Fi is a

2 . Let φi ∈ C(RN), 1 ≤ i ≤ l, satisfy:
supp(φi) ⊂ Bi; supp(φi)∩ supp(φ j) = ∅ (i , j); φi(x) = 1 for x ∈ Fi; 0 ≤ φi(x) ≤ 1, for all x ∈ RN . Let

S l−1 = {(t1, · · · , tl) ∈ Rl : max1≤i≤l |ti| = 1}, (3.7)

Wl = {
∑l

i=1 tiφi(x) : (t1, · · · tl) ∈ S l−1} ⊂ E.
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According to the fact that the mapping (t1, · · · , tl) →
∑l

i=1 tiφi from S l−1 to Wl is odd and
homeomorphic, so γ(Wl) = γ(S l−1) = l. Since Wl is compact in E, it follows that there exists αl > 0
such that

‖u‖2 ≤ αl, for any u ∈ Wl.

On the other hand, we claim that

‖u‖2 ≤ C‖∆u‖s2‖u‖
1−s
p+1 ≤ C‖u‖,

where s =
2∗(1−p)

2(2∗−p−1) .
First, we prove that ‖u‖2∗ ≤ C‖∆u‖2,∀u ∈ E.
In fact, ∀u ∈ E, u ∈ H2(RN), so u,∇u ∈ H1(RN). Then, by Gagliardo-Nirenberg-Sobolev inequality

(since C∞0 (RN) is dense in H1(RN)), we have

‖∇u‖2∗ ≤ C1‖∆u‖2

where 2∗ = 2N
N−2 and C1 depending only on N.

Since 2 < 2∗ < N, by using Gagliardo-Nirenberg-Sobolev inequality again, we have

‖u‖2∗ = ‖u‖(2∗)∗ ≤ C2‖∇u‖2∗ ,

where C2 depending on N.
Next, since 1 < p + 1 < 2 < 2∗, by interpolation inequality, we have

‖u‖2 ≤ ‖u‖s2∗‖u‖
1−s
p+1,

where 1
2 = s

2∗
+ 1−s

p+1 (thai is s =
2∗(1−p)

2(2∗−p−1) ).
So ‖u‖2 ≤ C‖∆u‖s2‖u‖

1−s
p+1 ≤ C‖u‖.

According to above facts, there exists cl > 0 such that

‖u‖22 ≤ cl for all u ∈ Wl.

Let t > 0 and v =
∑l

=1 tiφi(x) ∈ Wl,

ϕ(tv) = t2
2

∫
RN (|∆v|2 + V(x)v2)dx − 1

p+1

∑l
i=1

∫
Bi

K(x)|ttiφi|
p+1dx

≤ t2
2αl + t2

2 ‖V‖∞cl −
1

p+1

∑l
i=1

∫
Bi

K(x)|ttiφi|
p+1dx.

(3.8)

From (3.2), there exists j ∈ [1, l] such that |t j| = 1 and |ti| ≤ 1 for i , j. So

l∑
i=1

∫
Bi

K(x)|ttiφi|
p+1dx =

∫
F j

K(x)|tt jφ j|
p+1dx

+
∫

B j\F j
K(x)|tt jφ j(x)|p+1dx +

∑
i, j

∫
Bi

K(x)|ttiφi|
p+1dx.

(3.9)

According to φ j(x) = 1 for x ∈ F j and |t j| = 1, one has that∫
F j

K(x)|tt jφ j|
p+1dx = |t|p+1

∫
F j

K(x)dx. (3.10)
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By (H3), one has that∫
B j\F j

K(x)|tt jφ j(x)|p+1dx +
∑

i, j

∫
Bi

K(x)|ttiφi|
p+1dx ≥ 0. (3.11)

So, combining (3.3), (3.4), (3.5) and (3.6), we have that

ϕ(tv)
t2 ≤

1
2
αl +

1
2
‖V‖∞cl −

|t|p+1

(p + 1)t2 inf
1≤i≤l

(∫
Fi

K(x)dx
)
.

Therefore, it is easy to see that

lim
t→0

sup
v∈Wl

ϕ(tv)
t2 = −∞.

Hence, we can fixed t small enough such that sup{ϕ(v), v ∈ Al} < 0, where Al = tWl ∈ Γl. �

Lemma 3.5. If (H1) − (H3) hold. Then ϕ is bounded from below.

Proof. By (H3), Hölder inequality and Sobolev embedding, as in the proof of Lemma 3.1, we have that

ϕ(u) = 1
2

∫
RN

(
|∆u|2 + V(x)u2

)
dx − 1

p+1

∫
RN K(x)|u|p+1dx

≥ 1
2

∫
RN

(
|∆u|2 − V−(x)u2

)
dx − 1

p+1

∫
RN K+(x)|u|p+1dx

≥

(
1
2 −

S ‖V−‖ N
4

2

)
‖∆u‖22 −

S
p+1

2

p+1 ‖K
+‖ 2∗

2∗−p−1
‖∆u‖p+1

2 .

Since 0 < p < 1, we conclude the proof. �

The proof of Theorem 1.1

Proof. In fact, ϕ(0) = 0 and ϕ is an even functional. Then by Lemma 3.3, Lemma 3.4 and Lemma 3.5,
the conditions (1) and (2) of Theorem 2.1 are satisfied. Therefore, by Theorem 2.1, problem (1.1)
possesses infinitely many nontrivial solutions converging to 0 with negative energy. �

Remark 3.1. By using Theorem 2.1, we obtain infinitely many nontrivial solutions to problem (1.1).
For infinitely many nontrivial solutions converges to 0, we must verify that the functional ϕ satisfies
some assumption like (A3) in [39], (see Remark 1.2 in [39]). In fact, we can verify this property by
following similar inequality obtained in [ [40], page 460].

4. Conclusions

In this paper, by using the symmetric Mountain Pass Theorem, we prove a class of biharmonic
equations with indefinite potentials has infinitely many solutions. Because our result mainly involves
theoretical research, we don’t know how to use our result to the real applications in practical problems.
So, we should pay attention to both theoretical research and practical application in the follow-up work.
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23. A. Bahrouni, H. Ounaies, V. D. Rădulescu, Bound state solutions of sublinear Schrödinger
equations with lack of compactness, Racsam. Rev. R. Acad. A., 113 (2019), 1191–1210.
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