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1. Introduction

In this paper, we shall study the following p(x)-biharmonic system: ∆2
p(x)u = λ

|u|p(x)−2u
δ(x)2p(x) + f (x, u) + b(x)u−m(x), in Ω,

u = 0, on ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded domain and δ(x) is the distance between x and the boundary of
Ω, which is denoted by ∂Ω. The functions m and b are continuous on Ω. ∆2

p(x) is the p(x)-biharmonic
operator, which is defined by

∆2
p(x)u = ∆

(
|∆u|p(x)−2∆u

)
.

We noted that problems involving the p(x)-Laplace operator appear in several fields like thermotropic
fluids (Antontsev and Rodrigues [3]), electrorheological fluids (Rajagopal and Rǔzička [31, 32],
Rǔzička [34]), elastic mechanics (Zhikov [38]) and other phenomena related to image processing
(Aboulaich et al. [1], Chen et al. [13]).
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Due to their importance, many researchers have recently concentrated on the development of
problems with the p(x)-growth conditions (see, for example, the papers of Drissi et al. [16],
Elmokhtar [19], Laghzal and Touzani [26] and Raguza et al. [30]). These problems are discussed
in the spaces Lp(·) and Wm,p(·). Different methods are used to prove the existence and the multiplicity
of solutions for such problems. We refer the interested readers to Ben Ali et al. [6, 7] (min-max
method), Chammem et al. [10] (variational methods and monotonicity arguments combined with the
theory of the generalized Lebesgue Sobolev spaces), Chammem et al. [11] (mountain pass lemma
and Ekeland’s variational principle), Chammem and Sahbani [12] (mountain pass lemma and its Z2

symmetric version), Baroni [4] (perturbation arguments), Blanco et al. [9] (monotone operators on a
new Musielak-Orlicz Sobolev space) and Wang [35] (variational methods combined with the Brezis-
Lieb’s lemma and Mazur’s lemma).

Very recently, more attention has been paid to the study of the fourth-order elliptic equations,
namely, the p-biharmonic and the p(x)-biharmonic operator. We cite for example Alsaedi et al. [2]
(fibering maps analysis in the Nehari manifold sets), Bouraunu et al. [8] (combination of the mountain
pass type theorem with several variational arguments), Dhifli and Alsaedi [14] (Nehari manifold
method), El Khalil et al. [17, 18] (combination of the variational method with the Ljusternik-
Schnirelmann theory), Hsini et al. [22] (combination of the variational method with the Ekland’s
variational principle), Kefi and Saoudi [24] (monotonicity arguments in the generalized Lebesgue
Sobolev spaces). In the recent paper of El Khalil et al. [18], the authors considered the following
singular p(x)-biharmonic problem with Hardy-type nonlinearity: ∆2

p(x) = λ
|u|p(x)−2u
δ(x)2p(x) + µ|u|p(x)−2u, in Ω,

u = 0, on ∂Ω.
(1.2)

More precisely, under some suitable conditions and using the Krasnoselskii genus, the authors proved
the multiplicity of solutions. Also, Laghzal et al. [25] used a variational approach combined with
min-max arguments based on Ljusternik-Schnirelmann theory and proved that problem (1.2) admits a
nondecreasing sequence of positive solutions.

We note that the study of differential equations with singularities has been developed very
quickly and the investigation for existence and multiplicity results attracted considerable attention of
researchers. We refer to the papers of Ben Ali et al. [5, 6], Chammem et al. [10], Kefi and Saoudi [24]
and references therein.

Inspired by the above results, our goal in this paper is to continue this investigation by generalizing
the works of Laghzal et al. [25] by adding two types of perturbation. One of them is a singular
perturbation, which means that the functional energy is not of class C1 and so we cannot use the
direct variational methods. For a way to bypass the singularity and work with a functional of class C1,
we refer to the works of Papageorgiou et al. [28, 29] and the paper of Razani and Behboudi [33].

This paper is organized as follows. In section two, we recall some basic facts about the weighted
variable exponent Lesbesgue and Sobolev spaces. In section three, using the min-max method, we
give and prove some existing results related to problem (1.1). In section four, using the mountain pass
theorem and its Z2-symetric version, some multiplicity results are presented and proved.
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2. Notations and terminology

In this section, we shall introduce some important definitions and properties related to the variable
exponent Lebesgue and Sobolev spaces. For more details about these spaces we refer to the book of
Diening et al. [15] and to the papers of Fan and Zhao [20], Fan and Fan [21], Mihǎilescu [27], Yao [36]
and Zang and Fu [37].

Let Ω be a bounded domain in RN , N ≥ 3. We consider the set

C+(Ω) = {φ ∈ C(Ω) : φ(z) > 1, for all z ∈ Ω}.

For all functions φ in the set C+(Ω) , we define

φ− = inf
z∈Ω

φ(z) and φ+ = sup
z∈Ω

φ(z).

The variable exponent Lebesgue space Lφ(.)(Ω) is the set of all measurable functions ψ : Ω → R
such that ∫

Ω

|ψ(z)|φ(z)dz < ∞}.

In the space Lφ(.)(Ω) the following Luxemburg norm:

|ψ|φ(z) = inf{η > 0 :
∫
Ω

|
ψ(z)
η
|φ(z)dz ≤ 1}.

It is noted that
(
Lφ(.)(Ω), |.|φ(z)

)
becomes a separable and reflexive Banach space if and only if

1 < φ− ≤ φ+ < ∞. (2.1)

In the rest of this paper, p denotes a function in C+(Ω) satisfying (2.1).
In the space Lp(·)(Ω), we have an equivalent Hölder inequality, which is given in the following

proposition.

Proposition 2.1. (See [37]) For any φ ∈ Lp(·)(Ω) and any ψ ∈ Lp
′
(·)(Ω), we have∣∣∣∣∣∫

Ω

φ(x)ψ(x) dx
∣∣∣∣∣ ≤ (

1
p−
+

1
(p′)−

)
|φ|p(x)|ψ|p′ (x),

where p
′

(x) is the conjugate function of p(x), which is given by

p
′

(x) =
p(x)

p(x) − 1
.

Another interesting property of the space Lp(·)(Ω) is presented in the following proposition.

Proposition 2.2. (See [20]) If q is a measurable function in L∞(RN), such that for all x ∈ RN we have
1 ≤ p(x)q(x) ≤ ∞, then for any nontrivial function φ ∈ Lp(·)(RN), the following statements hold true:

(i) |φ|p(x)q(x) ≤ 1⇒ |φ|p
+

p(x)q(x) ≤ ||φ|
p(x)|q(x) ≤ |φ|

p−

p(x)q(x).

(ii) |φ|p(x)q(x) ≥ 1⇒ |φ|p
−

p(x)q(x) ≤ ||φ|
p(x)|q(x) ≤ |φ|

p+

p(x)q(x).
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The modular on the space Lp(·)(Ω) is defined by the mapping

ρp(x)(φ) =
∫
Ω

|φ(x)|p(x)dx,

and it satisfies the following properties.

Proposition 2.3. (See [20, Theorem 1.3]) For all φ ∈ Lp(·)(Ω), we have:

(i) |φ|p(x) < 1 if and only if ρp(x)(φ) < 1. Moreover, the last equivalence holds if we replace < by =
or by >.

(ii) If |φ|p(x) > 1, then |φ|p
−

p(x) ≤ ρp(x)(φ) ≤ |φ|p
+

p(x).

(iii) If |φ|p(x) < 1, then |φ|p
+

p(x) ≤ ρp(x)(φ) ≤ |φ|p
−

p(x).

Let us define the Sobolev space with a variable exponent by

Wm,p(·)(Ω) = {φ ∈ Lp(·)(Ω)| Dαφ ∈ Lp(·)(Ω), |α| ≤ m},

equipped with the norm
∥u∥m,p(·) =

∑
|α|≤m

|Dαu|p(·),

where α = (α1, . . . , αN) is a multi-index, |α| =
∑N

i=1 αi, and Dαφ is given as follows:

Dαφ =
∂|α|

∂xα1
1 · · · ∂xαN

N

φ.

It is well-known (see [37]) that
(
Wm,p(·)(Ω), ∥.∥m,p(·)

)
is a separable, reflexive, and uniformly convex

Banach space. Moreover, if we denote Wm,p(·)
0 (Ω) the closure of C∞0 (Ω) in Wm,p(·)(Ω), then Wm,p(·)

0 (Ω)
has the same properties as Wm,p(·)(Ω).

Put
X = W2,p(·)

0 (Ω),

endowed with the norm
∥φ∥ = inf{β > 0 :

∫
Ω

|
∆φ(x)
β
|p(x)dx ≤ 1}.

We recall from Zang [37] that X endowed with the above norm is a separable and reflexive Banach
space. Next, we give a compact embedding theorem related to the space Wm,p(·)(Ω).

Theorem 2.1. (See [37]) If q ∈ C+(Ω) such that q(x) < p∗(x) for any x ∈ Ω, then the embedding from
W2,p(·)(Ω) into Lq(·)(Ω) is compact and continuous, where

p∗(x) =
{ N p(x)

N−2p(x) , i f p(x) < N
2 ,

∞, i f p(x) ≥ N
2 .

We note that Theorem 2.1 remains true if we replace W2,p(x)(Ω) by X. Moreover, if we denoted by
M(u) the following expression:

M(u) =
∫
Ω

|∆u|p(x)dx,

then we have the following proposition.
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Proposition 2.4. (See [37]) For all φ ∈ X, we have:

(i) If M(φ) ≥ 1, then ||φ||p
−

≤ M(φ) ≤ ||φ||p
+

,

(ii) If M(φ) ≤ 1, then ||φ||p
+

≤ M(φ) ≤ ||φ||p
−

,

(iii) M(φ) ≥ 1(= 1,≤ 1)⇔ ||φ|| ≥ 1(= 1,≤ 1).

Lemma 2.1. (See [23]) The mapping ∆2
p(x) : W2,p(x)

0 (Ω) → W−2,p
′
(x)

0 (Ω) is of type S +, which means
that if un ⇀ u, weakly in W2,p(·)

0 (Ω) and lim sup
n→∞
≺ ∆2

p(x)(un), un − u ≻≤ 0, then un → u is strongly in

W2,p(·)
0 (Ω), where ≺ · ≻ is the dual product between X and its dual.

To manipulate the Hardy term we assume that 0 < λ < CH, where

CH =
p−

p+
min

(N(p− − 1)(N − 2p−)
(p−)2

)p−

,

(
N(p+ − 1)(N − 2p+)

(p+)2

)p+ .
We recall the p(·)-Hardy inequality (see El Khalil et al. [17] and Laghzal et al. [25]), which is

given by ∫
Ω

|∆u(x)|p(x)

p(x)
dx ≥ CH

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x) dx, (2.2)

for all u ∈ W2,p(x)
0 (Ω).

3. Problem with a singular term

In this section, we will use the min-max method to prove the existence of solutions for
problem (1.1). To this aim, we assume the following hypotheses:

(H1) The function b is almost everywhere positive in Ω, such that

b ∈ L
τ

τ+m−1 (Ω), for some 1 < τ < p∗(x).

(H2) There exist l, σ ∈ C(Ω) and h ∈ Ll(x)(Ω) such that for all x ∈ Ω and all φ ∈ X, we have

1 < σ(x) < p(x) <
N
2
< l(x) < p∗(x),

and
f (x, φ) = h(x)|φ|σ(x)−2φ.

(H3) There exists Ω1 ⊂⊂ Ω such that |Ω1| > 0 and

f (x, y) ≥ 0 for all (x, y) ∈ Ω1 × R.

In this part, we shall use the min-max method to prove the existence of solutions. More precisely, we
will prove the following theorem.

Theorem 3.1. Assume that hypotheses (H1) − (H3) hold. If 0 < λ < CH, then problem (1.1) admits a
nontrivial weak solution with negative energy, where CH is given in Eq (2.2).
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We note that a function φ ∈ X is said to be a weak solution of problem (1.1). If for all ψ ∈ X,
we have ∫

Ω

|∆φ|p(x)−2∆φ∆ψ dx − λ
∫
Ω

|φ(x)|p(x)−2

δ(x)2p(x) φ(x)ψ(x) dx

−

∫
Ω

b(x)|φ|−m(x)ψ(x) dx −
∫
Ω

f (x, φ(x))ψ(x) dx = 0.

Associated to problem (1.1), we define the functional Φλ : X → R by

Φλ(u) = Iλ(u) −
∫
Ω

b(x)
1 − m(x)

|u|1−m(x)dx −
∫
Ω

F(x, u(x))dx,

where F(x, t) =
∫ t

0
f (x, s)ds, and Iλ(u) is given as follows:

Iλ(u) =
∫
Ω

|∆u(x)|p(x)

p(x)
dx − λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x) dx. (3.1)

Remark 3.1. Φλ is well-defined and differentiable, but due to the singular term, it is not in C1(X,R).

Lemma 3.1. Assume that (H1) and (H2) hold and 0 < λ < CH, then the functional Φλ is coercive in X.

Proof. Let u ∈ X with ||u|| > 1 and assume that 0 < λ < CH, then by (2.2), we have

λ

CH

∫
Ω

|∆u(x)|p(x)

p(x)
dx ≥ λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x) dx,

so

Iλ(u) ≥
(
1 −

λ

CH

) ∫
Ω

|∆u(x)|p(x)

p(x)
dx ≥

1
p+

(1 −
λ

CH
)
∫
Ω

|∆u(x)|p(x)dx.

Thus, by the last inequality and using Proposition 2.4, we get

Iλ(u) ≥
1
p+

(1 −
λ

CH
)||u||p

−

. (3.2)

On the other hand, since 1 < τ < p∗(x), then by Propositions 2.1 and 2.3, we obtain∫
Ω

b(x)
1 − m(x)

u1−m(x)dx ≤
1

1 − m+

∫
Ω

b(x)u1−m(x)dx ≤
1

1 − m+
|b| τ

τ+m(x)−1
||u|1−m(x)| τ

1−m(x)

≤
C

1 − m+
|b| τ

τ+m(x)−1
max

(
||u||1−m+ , ||u||1−m−

)
. (3.3)

Now, from (H2), Propositions 2.1 and 2.2, we have∫
Ω

F(x, u(x))dx ≤
∫
Ω

h(x)|u(x)|σ(x)dx ≤ |h|l(x)||u|σ(x)|l′(x)

≤ |h|l(x) max
(
|u|σ

+

l′ (x)σ(x), |u|
σ−

l′ (x)σ(x)

)
,
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where l
′

is such as
1

l(x)
+

1
l′(x)

= 1.

Next, using hypothesis (H2) and the fact that l
′

(x)σ(x) < p∗(x), we conclude by Theorem 2.1, that∫
Ω

F(x, u(x))dx ≤ C
′

|h|l(x) max
(
||u||σ

+

, ||u||σ
−
)
. (3.4)

Finally, combining (3.2)–(3.4), we get

Φλ(u) ≥
1
p+

(1 −
λ

CH
)||u||p

−

−
C|b| τ

τ+m(x)−1

1 − m+
max

(
||u||1−m+ , ||u||1−m−

)
−C

′

λ|h|l(x) max
(
||u||σ

+

, ||u||σ
−
)
.

Since 1 − m− < σ+ < p− and 0 < λ < CH, then lim
||u||→∞

Φλ(u) = ∞, which means that Φλ is coercive and

bounded below on X. □

Lemma 3.2. Under assumption (H3), there exists ψ ∈ X, such that ψ ≥ 0, ψ , 0 and Φλ(tψ) < 0 for
sufficiently small t > 0.

Proof. Let ψ ∈ C∞0 (Ω), such that supp(ψ) ⊂ Ω1 ⊂⊂ Ω, ψ = 1 in a subset Ω
′

⊂ supp(ψ) and 0 ≤ ψ ≤ 1
in Ω.

Let t ∈ (0, 1), then by Propositions 2.3, 2.4 and Theorem 2.1, there exists a constant C3 > 0,
such that

Iλ(tψ) ≤
∫
Ω

tp(x) |∆ψ(x)|p(x)

p(x)
dx ≤ C3tp− max

(
||ψ||p

+

, ||ψ||p
−
)
.

So, by hypothesis (H3), we get

Φλ(tψ) ≤ C3tp− max
(
||ψ||p

+

, ||ψ||p
−
)
− t1−m−

∫
Ω

b(x)
1 − m(x)

|ψ|1−m(x)dx

≤ t1−m−
(
tp−−(1−m−)C3 max

(
||ψ||p

+

, ||ψ||p
−
)
−

∫
Ω

b(x)
1 − m(x)

|ψ|1−m(x)dx
)
.

Consequently, using the fact that p− > 1 − m−, we deduce that Φλ(tψ) < 0 for t < min(1, B), where

B =


∫
Ω

b(x)
1−m(x) |ψ|

1−m(x)dx

C3 max
(
||ψ||p+ , ||ψ||p−

)
1

p−−(1−m−)

.

Put
θλ = inf

u∈X
Φλ(u).

Proposition 3.1. Assume that hypotheses (H1) − (H3) hold, then for all 0 < λ < CH, the functional Φλ
reaches its global minimizer in X and there exists u∗ ∈ X such that Φλ(u∗) = θλ.
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Proof. Let {un} be a minimizing sequence, which means that

lim
n→∞
Φλ(un) = θλ.

Since Φλ is coercive, we conclude that {un} is bounded in a reflexive space X, so there exists a
subsequence (still denoted by {un}) and u∗ ∈ X such that

un ⇀ u∗ weakly in X,
un → u∗ strongly in Lβ(x)(Ω), 1 ≤ β(x) < p∗(x),
un → u∗ a.e. in Ω.

Since un → u∗ a.e. in Ω, then Fatou’s lemma implies that

Iλ(u∗) ≤ lim inf
n→∞

Iλ(un). (3.5)

Now, we claim that

lim
n→+∞

∫
Ω

b(x)|un|
1−m(x)dx =

∫
Ω

b(x)|u∗|1−m(x)dx. (3.6)

Indeed, let ϵ > 0, then by the fact that
∫
Ω
|b(x)|

τ
τ+m(x)−1 dx is absolutely continuous and using

Proposition 2.3, there exists α, ξ > 0, such that

|b|α τ
τ+m(x)−1

≤

∫
Ω2

|b(x)|
τ

τ+m(x)−1 dx ≤ ϵα

for every Ω2 ⊂ Ω with |Ω2| < ξ.
On the other hand, by Propositions 2.1 and 2.2, we obtain∫

Ω

b(x)|un|
1−m(x)dx ≤ |b| τ

τ+m(x)−1
||un|

1−m(x)| τ
1−m(x)
≤ |b| τ

τ+m(x)−1
max

(
|un|

1−m−
τ , |un|

1−m+
τ

)
.

Thus, we obtain ∫
Ω2

b(x)|un|
1−m(x)dx < ϵ max

(
|un|

1−m−
τ , |un|

1−m+
τ

)
.

Since (un) is bounded in X and τ < p∗(x), by Theorem 2.1 we can deduce that |un|τ is bounded. Using
Vitali’s convergence theorem, we conclude that Eq (3.6) holds.

Next, we claim that

lim
n→+∞

∫
Ω

F(x, un(x))dx =
∫
Ω

F(x, u∗(x))dx. (3.7)

Indeed, from hypothesis (H2) there exists c > 0 such that

|F(x, un(x))| ≤
c
σ−
|h(x)||un|

σ(x).

Since un ⇀ u∗ in X and l
′

(x)σ(x) < p∗(x), we have the strong convergence in Ll
′
(x)σ(x)(Ω). Hence, for a

subsequence again denoted by {un}, we get un → u∗ a.e in Ω and there exists κ ∈ Lσ(x)l
′
(x)(Ω), such that

|un(x)| ≤ κ(x).

AIMS Mathematics Volume 8, Issue 12, 29892–29909.
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So, we get
|F(x, un(x))| ≤

c
σ−
|h(x)||κ(x)|σ(x).

Therefore, by Proposition 2.1 we obtain∫
Ω

|F(x, un(x))|dx ≤
c
σ−
|h|l(x)|κ|

σ(x)
l′ (x)

.

Hence, the Lebesgue-dominated convergence theorem and Proposition 2.3 imply that Eq (3.7) holds.
Now, by combining equations (3.5) and (3.6) with Eq (3.7), we concluded that Φλ is weakly lower
semi-continuous. Finally, we deduce that

θλ ≤ Φλ(u∗) ≤ lim inf
n→∞

Φλ(un) = θλ.

Proof of Theorem 3.1. By Proposition 3.1, Φλ has a global minimizer u∗ ∈ X, so for all t > 0 and all
v ∈ X, we have

Φλ(u∗ + tv) − Φλ(u∗) ≥ 0.

Dividing the last inequality by t > 0 and letting t → 0+, we obtain∫
Ω

|∆u∗|p(x)−2∆u∗∆vdx

≥ λ

∫
Ω

|u∗(x)|p(x)−2

δ(x)2p(x) u∗(x)v(x)dx +
∫
Ω

b(x)|u∗|−m(x)v(x)dx + µ
∫
Ω

f (x, u∗(x))v(x)dx.

Since v is arbitrary in X, we can replace it by −v which yields to∫
Ω

|∆u∗|p(x)−2∆u∗∆vdx

= λ

∫
Ω

|u∗(x)|p(x)−2

δ(x)2p(x) u∗(x)v(x)dx +
∫
Ω

b(x)|u∗|−m(x)v(x)dx + µ
∫
Ω

f (x, u∗(x))v(x)dx.

Hence, u∗ is a weak solution of problem (1.1). Now, by Lemma 3.2 we have Φλ(u∗) < 0, so we
conclude that u∗ is a nontrivial weak solution of problem (1.1).

4. Problem without singular term

In this section, we shall use the mountain pass theorem and its Z2-symetric version to prove the
existence and multiplicity of solutions for the following problem: ∆2

p(x)u = λ
|u|p(x)−2u
δ(x)2p(x) + ϕ(x)ψ(u), in Ω,

u = 0, on ∂Ω,
(4.1)

where ϕ and ψ are measurable functions satisfying the following hypotheses:
(A1) There exists c > 0, α, S ∈ C+(Ω), such that for all (x, u) ∈ Ω × R,

ϕ ∈
S (x)

S (x) − α(x)
(Ω), ψ(u) ≤ c|u|α(x)−1
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and
p+ < α(x) < S (x) < p∗(x). (4.2)

(A2) There exists M > 0, θ > p+ such that for x ∈ Ω,

0 < θϕ(x)Ψ(u) ≤ ϕ(x)ψ(u)u, |u| ≥ M,

where Ψ(t) =
∫ t

0
ψ(s)ds.

(A3) For all x ∈ Ω ,
ψ(−u) = −ψ(u).

To show the existence and the multiplicity of solutions to problem (4.1), we will use the following
theorems.

Theorem 4.1. (Mountain pass theorem) Let E be a real Banach space and J ∈ C1(E,R) satisfy the
Palais-Smale condition. Assume that

(i) J(0) = 0.
(ii) There is ρ > 0 and σ > 0, such that J(z) ≥ σ for all z ∈ E with ∥z∥ = ρ.

(iii) There exists z1 ∈ E with ∥z1∥ ≥ ρ, such that J(z1) < 0.

Then ϕλ possesses a critical value c ≥ σ. Moreover, c can be characterized as

c = inf
γ∈Γ

max
z∈[0,1]

ϕλ(γ(z)),

where Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = z1}.

Theorem 4.2. (Z2-symmetric version of the mountain pass theorem) Let E be an infinite dimensional
real Banach space. Let J ∈ C1(E,R), satisfying the following conditions:

• J is an even functional such that J(0) = 0.
• J satisfies the Palais-Smale condition.
• There exists positive constants ρ0 and α0, such that if ∥u∥ = ρ0, then J(u) ≥ α0.
• For each finite-dimensional subspace X ⊂ E, the set {u ∈ X, J(u) ≥ 0} is bounded in E.

Then, J has an unbounded sequence of critical values.

We note that the functional J satisfies the Palais-Smale condition if any Palais-Smale sequence has a
strongly convergent subsequence. That is, if {um} ⊂ E such that J(um) is bounded and J′λ(um) converges
to zero in the dual space E′, then {um} has a convergent subsequence.

The main results of this section are summarized in the following theorems.

Theorem 4.3. Under hypothesis (A1) and (A2), there exists λ∗ > 0 such that for all λ ∈ (0, λ∗),
problem (4.1) has a nontrivial weak solution.

Theorem 4.4. Under the same hypotheses of Theorem 4.3, if in addition hypothesis (A3) is satisfied,
then there exists λ∗ > 0, such that for any λ ∈ (0, λ∗), problem (4.1) has infinitely many solutions.

AIMS Mathematics Volume 8, Issue 12, 29892–29909.
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It is noted that a function u ∈ X, is said to be a weak solution for problem (4.1) if for any v ∈ X we
have ∫

Ω

|∆u|p(x)−2∆u∆vdx − λ
∫
Ω

|u|p(x)−2uv
δ(x)2p(x) dx −

∫
Ω

ϕ(x)ψ(u)vdx = 0.

Associated to the problem (4.1), we define the functional χλ : X → R as follows:

χλ(u) =
∫
Ω

|∆u(x)|p(x)

p(x)
dx − λ

∫
Ω

|u(x)|p(x)

p(x)δ(x)2p(x) dx −
∫
Ω

ϕ(x)Ψ(u)dx.

Remark 4.1. The functional χλ is well defined, it is in C1(X,R). Moreover, for all (u, v) ∈ X × X,
we have

≺ χ
′

λ(u), v ≻=
∫
Ω

|∆u|p(x)−2∆u∆vdx − λ
∫
Ω

|u|p(x)−2uv
δ(x)2p(x) dx −

∫
Ω

ϕ(x)ψ(u)vdx.

Also, weak solutions of problem (4.1) correspond to critical points of the functional χλ.

To prove our main results, we need to prove several lemmas.

Lemma 4.1. Under hypothesis (A1), there exists η, ϱ > 0 such that for u ∈ X:

If ||u|| = η, then, χλ(u) ≥ ϱ.

Proof. Let x ∈ Ω and u ∈ X with ||u|| < 1, then from (A1) we get

F(x, u) ≤ c
∫ u

0
|ϕ(x)||s|α(x)−1ds ≤

c
α(x)
|ϕ(x)||u|α(x). (4.3)

So from (2.2), we get

χλ(u) =
∫
Ω

|∆u|p(x)

p(x)
dx − λ

∫
Ω

|u|p(x)

p(x)δ(x)2p(x) dx −
∫
Ω

ϕ(x)Ψ(u)dx

≥ (1 −
λ

CH
)
∫
Ω

|∆u(x)|p(x)

p(x)
dx −

∫
Ω

ϕ(x)Ψ(u)dx

≥
(1 − λ

CH
)

p+
M(u) −

∫
Ω

ϕ(x)Ψ(u)dx. (4.4)

By combining Eqs (4.3) and (4.4) with the Hölder inequality and Proposition 2.4, there exists c1 > 0
such that

χλ(u) ≥
(1 − λ

CH
)

p+
M(u) −

c
α−

∫
Ω

|ϕ(x)||u|α(x)dx

≥
(1 − λ

CH
)

p+
M(u) −

c1

α−
|ϕ| S (x)

S (x)−α(x)
||u|α(x)| S (x)

α(x)

≥
(1 − λ

CH
)

p+
M(u) −

c1

α−
|ϕ| S (x)

S (x)−α(x)
max(|u|α

−

S (x), |u|
α+

S (x)).
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On the other hand, since 1 < S (x) < p∗(x), then by Theorem 2.1 there exists c2 > 0 such that

|u|S (x) ≤ c2||u||. (4.5)

Using (4.5) we obtain

χλ(u) ≥
(1 − λ

CH
)

p+
||u||p

+

−
c1c2

α−
|ϕ| S (x)

S (x)−α(x)
||u||α

−

≥ ||u||p
+

 (1 − λ
CH

)

p+
−

c1c2

α−
|ϕ| S (x)

S (x)−α(x)
||u||α

−−p+
 .

Let 0 < η < 1 small enough such that

(1 − λ
CH

)

p+
−

c1c2

α−
|ϕ| S (x)

S (x)−α(x)
ηα
−−p+ > 0,

then for ||u|| = η, we have

χλ(u) ≥ ηp+
 (1 − λ

CH
)

p+
−

c1c2

α−
|ϕ| S (x)

S (x)−α(x)
ηα
−−p+

 =: ϱ > 0.

Lemma 4.2. Assume that hypotheses (A1) and (A2) hold, then there exists 0 < λ∗ < CH, such that for
any λ ∈ (0, λ∗), χλ satisfies the Palais Smale condition.

Proof. Let {un} be a sequence in X such that

χλ(un)→ c, χ
′

λ(un)→ 0, in X∗, as n→ ∞,

for some positive constant c.
It follows that there exists d1 > 0, such that for an n large enough, we have

|χλ(un)| ≤ d1. (4.6)

On the other hand, using the fact that χ
′

λ(un) → 0 in X∗, which implies that ≺ χ
′

λ(un), un ≻→ 0, there
exists d2 > 0 such that

| ≺ χ
′

λ(un), un ≻ | ≤ d2. (4.7)

Next, we shall prove that {un} is bounded. If not, without loss of generality we can assume that ||un|| →

∞, so for an n large enough we have ||un|| ≥ 1. Now, if we combine Eq (4.4) with Eq (4.6), we get

d1 ≥ χλ(un) ≥
(1 − λ

CH
)

p+
M(un) −

∫
Ω

ϕ(x)Ψ(un)dx, (4.8)

and by (4.7), we obtain

d2 ≥ − ≺ χ
′

λ(un), un ≻

= −M(un) +
∫
Ω

ϕ(x)ψ(un)undx. (4.9)
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So using hypothesis (A2) and Eqs (4.8) and (4.9), we obtain

θd1 + d2 ≥

(
(1 −

λ

CH
)
θ

p+
− 1

)
M(un) +

∫
Ω

(ϕ(x)ψ(un)un − θϕ(x)Ψ(un))dx

≥

(
(1 −

λ

CH
)
θ

p+
− 1

)
M(un)

≥

(
(1 −

λ

CH
)
θ

p+
− 1

)
||un||

p− . (4.10)

Put
λ∗ = (1 −

p+

θ
)CH.

Since θ > p+, for all λ ∈ (0, λ∗) we have

(1 −
λ

CH
)
θ

p+
− 1 > 0.

Therefore, by letting n tend to infinity in equation (4.10), we obtain a contradiction. We conclude
that {un} is bounded in X, so there exists {un} and u in X such that, {un} converges weakly to u in X.

On the other hand, by Theorem 2.1 and the fact that S (x) < p∗(x), we deduce that {un} converges
strongly to u in S (x)(Ω) . Moreover, we know that

≺ χ
′

λ(un), un − u ≻=≺ ∆2
p(x)(un), un − u ≻ −λ ≺ φ

′

(un), un − u ≻ −
∫
Ω

ϕ(x)ψ(un)(un − u) dx.

Next, by using hypothesis (A1) and the Hölder’s inequality, there exists C > 0 and C
′

> 0, such that∫
Ω

ϕ(x)ψ(un)(un − u)dx ≤
∫
Ω

C|ϕ(x)||un|
α(x)−1|un − u| dx

≤ C|un − u|S (x)|ϕ(x)| S (x)
S (x)−α(x)

||un|
α(x)−1| S (x)

α(x)−1

≤ C
′

|un − u|S (x)|ϕ(x)| S (x)
S (x)−α(x)

max
(
||un||

α+−1|, ||un||
α+−1

)
.

Thus, we obtain

lim
n→+∞

∫
Ω

ϕ(x)ψ(un)(un − u) dx = 0. (4.11)

Now, by Lemma 2.1, we have
lim

n→+∞
≺ φ

′

(un), un − u ≻= 0. (4.12)

Since < χ
′

λ(un), un − u >→ 0, by combining (4.11) with (4.12), we deduce that

≺ ∆2
p(x)(un), un − u ≻→ 0.

Finally, by Lemma 2.1 and the fact that ∆2
p(x) is of type (S +), we conclude that un → u is strongly in X.

This implies that χλ satisfies the Palais Smale condition.

Lemma 4.3. If hypothesis (A2) holds, then there exists u∗ ∈ X, such that ||u∗|| > η and χλ(u∗) < 0.
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Proof. From hypothesis (A2) there exists m > 0, such that for all (x, t) ∈ Ω × R we have

ϕ(x)Ψ(t) ≥ m |t|θ . (4.13)

Let u ∈ X, such that
∫
Ω
|u|θ dx > 0, and let t > 1 be large enough. Then, from (4.13) we get

χλ(tu) =
∫
Ω

|∆tu|p(x)

p(x)
dx − λ

∫
Ω

|tu|p(x)

p(x)δ(x)2p(x) dx −
∫
Ω

ϕ(x)Ψ(tu)dx

≤
tp+

p−

∫
Ω

|∆(u)|p(x)dx − mtθ
∫
Ω

|u|θ dx.

Since θ > p+, we deduce that
lim
t→∞

χλ(tu)→ −∞,

so, we can choose t0 > 0, such that the function u∗ = t0u satisfies

||u∗|| > η and χλ(u∗) < 0.

Proof of Theorem 4.3. First of all, it is easy to see that 0 = χλ(0), which implies that condition (i) of
Theorem 4.1 is satisfied.

On the other hand, from Lemma 4.1 we have

inf
||u||=η

χλ(u) ≥ m > 0 = χλ(0).

This implies that condition (ii) of Theorem 4.1 is also satisfied.
Moreover, by Lemma 4.3, there exists u∗ ∈ X such that

||u∗|| > η and χλ(u∗) < 0. (4.14)

This implies that condition (iii) of Theorem 4.1 is satisfied.
Finally, from Lemma 4.2, χλ satisfies the Palais Smale condition, and χλ ∈ C1(X). Thus by the

mountain pass theorem (Theorem 4.1), we concluded that the functional χλ has a critical point which
is a weak solution for a problem (4.1). Moreover, by Eq (4.14), we see that this solution is nontrivial,
so the proof of Theorem 4.3 is completed.

Next, we will use Theorem 4.2 to prove the second main result of this section, so we need to prove
the following lemma.

Lemma 4.4. Assume that hypotheses (A1) and (A2) hold, and let E be a finite-dimensional subspace
of X, then the set

H = {u ∈ E, χλ(u) ≥ 0}

is bounded in X.

Proof. Let u ∈ H, then we have

χλ(u) ≤
1
p−

∫
Ω

|∆u|p(x)dx −
∫
Ω

ϕ(x)Ψ(u)dx.
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On the other hand by Eq (4.13) and Proposition 2.4, we obtain

χλ(u) ≤
1
p−

M(u) − m
∫
Ω

|u|θdx ≤
1
p−

(||u||p
+

+ ||u||p
−

) − m|u|θLθ . (4.15)

Since E is a finite-dimensional subspace, the norms |.|Lθ1 and ||.|| are equivalent, so there exists C > 0
such that

||u||θ ≤ C|u|θLθ .

By combining the last inequality with Eq (4.15), we obtain

χλ(u) ≤
1
p−

(||u||p
+

+ ||u||p
−

) −
m
C
||u||θ.

Since, p− < p+ < θ, we concluded that the set H is bounded in X.
Now, we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. We have χλ(0) = 0. Moreover, by hypothesis (A3) we see that χλ is an even
functional. Therefore the proof of Theorem 4.4 is deduced by combining Lemmas 4.1, 4.2 and 4.4
with Theorem 4.2. This implies that problem (4.1) has infinitely many solutions.

5. Conclusions

This paper considered some classes of p(x)-biharmonic problems with singular nonlinearity and
Hardy potential. More precisely, by the use of the min-max method, some existing results were proved.
Moreover, some important properties of the associated functional energy were given, and after that,
using diversions of the mountain pass theorem, the multiplicity of solutions was also proved. This
study can be generalized to similar problems involving the p(x, y)-Laplacian operator.
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31. K. R. Rajagopal, M. Růžička, On the modeling of electrorheological materials, Mech. Res.
Commun., 23 (1996), 401–407. https://doi.org/10.1016/0093-6413(96)00038-9
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