In this paper, we mainly discuss the embedding theory of variable exponent fractional Sobolev space $ W^{s(\cdot), p(\cdot)} (\Omega) $, and apply this theory to study the $ s(x) $-$ p(x) $-Laplacian equation:
$ (-\varDelta)_{p(\cdot)}^{s(\cdot)}u+V(x)|u|^{p(x)-2}u = f(x,u)+g(x) $
where $ x\in\Omega\subset \mathbb{R}^n $, $ (-\varDelta)_{p(\cdot)}^{s(\cdot)} $ is $ s(x) $-$ p(x) $-Laplacian operator with $ 0 < s(x) < 1 < p(x) < \infty $ and $ p(x)s(x) < n $, the nonlinear term $ f: \Omega \times \mathbb{R} \to \mathbb{R} $ is a Carathéodory function, $ V:\mathbb{R}^n\to \mathbb{R} $ is a potential function and $ g:\mathbb{R}^n\to \mathbb{R} $ is a perturbation term.
Citation: Haikun Liu, Yongqiang Fu. Embedding theorems for variable exponent fractional Sobolev spaces and an application[J]. AIMS Mathematics, 2021, 6(9): 9835-9858. doi: 10.3934/math.2021571
In this paper, we mainly discuss the embedding theory of variable exponent fractional Sobolev space $ W^{s(\cdot), p(\cdot)} (\Omega) $, and apply this theory to study the $ s(x) $-$ p(x) $-Laplacian equation:
$ (-\varDelta)_{p(\cdot)}^{s(\cdot)}u+V(x)|u|^{p(x)-2}u = f(x,u)+g(x) $
where $ x\in\Omega\subset \mathbb{R}^n $, $ (-\varDelta)_{p(\cdot)}^{s(\cdot)} $ is $ s(x) $-$ p(x) $-Laplacian operator with $ 0 < s(x) < 1 < p(x) < \infty $ and $ p(x)s(x) < n $, the nonlinear term $ f: \Omega \times \mathbb{R} \to \mathbb{R} $ is a Carathéodory function, $ V:\mathbb{R}^n\to \mathbb{R} $ is a potential function and $ g:\mathbb{R}^n\to \mathbb{R} $ is a perturbation term.
[1] | R. A. Adams, Sobolev spaces, Academic Press, New York, 1975. Second edition with J. J. F. Fournier, Elsevier/Academic Press, Amsterdam, 2003. |
[2] | A. Ambrosetti, P. H. Rabinowitz, Dual variation methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[3] | E. Azroul, A. Benkirane, M. Shimi, Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 4 (2019), 539–555. doi: 10.15352/aot.1809-1420 |
[4] | E. Azroul, A. Benkirane, M. Shimi, M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Appl. Anal., 100 (2021), 383–402. doi: 10.1080/00036811.2019.1603372 |
[5] | A. Baalal, M. Berghout, Traces and fractional Sobolev extension domains with variable exponent, Int. J. Math. Anal., 12 (2018), 85–98. doi: 10.12988/ijma.2018.815 |
[6] | A. Bahrouni, Comparison and sub-supersolution principles for the fractional $p(x)$-Laplacian, J. Math. Anal. Appl., 458 (2018), 1363–1372. doi: 10.1016/j.jmaa.2017.10.025 |
[7] | A. Bahrouni, V. D. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 379–389. |
[8] | R. Biswas, S. Tiwari, Variable order nonlocal Choquard problem with variable exponents, Complex Var. Elliptic Equ., 66 (2021), 853–875. doi: 10.1080/17476933.2020.1751136 |
[9] | J. Chabrowski, Y. Q. Fu, Existence of solutions for $p(x)$-Laplacian problems on a bounded domain, J. Math. Anal. Appl., 306 (2005), 604–618. Erratum in: J. Math. Anal. Appl., 323 (2006), 1483. doi: 10.1016/j.jmaa.2004.10.028 |
[10] | Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. doi: 10.1137/050624522 |
[11] | Y. Cheng, B. Ge, R. P. Agarwal, Variable-order fractional Sobolev spaces and nonlinear elliptic equations with variable exponents, J. Math. Phys., 61 (2020), 071507. doi: 10.1063/5.0004341 |
[12] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhäuser/Springer, Heidelberg, 2013. |
[13] | L. M. Del Pezzo, J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2 (2017), 435–446. |
[14] | L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr., 268 (2004), 31–43. doi: 10.1002/mana.200310157 |
[15] | L. Diening, P. Harjulehto, P. Hästö, M. Růzička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2011. |
[16] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[17] | S. Dipierro, G. Palatucci, E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche, 68 (2013), 201–216. |
[18] | D. E. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Studia Math., 143 (2000), 267–293. doi: 10.4064/sm-143-3-267-293 |
[19] | I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324–353. |
[20] | X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843–1852. doi: 10.1016/S0362-546X(02)00150-5 |
[21] | X. L. Fan, D. Zhao, On the Spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617 |
[22] | P. Felmer, A. Quaas, J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinburgh Sect. A: Math., 142 (2012), 1237–1262. doi: 10.1017/S0308210511000746 |
[23] | Y. Q. Fu, The principle of concentration compactness in $L^{p(x)}$ spaces and its application, Nonlinear Anal., 71 (2009), 1876–1892. doi: 10.1016/j.na.2009.01.023 |
[24] | P. Hajlasz, P. Koskela, H. Tuominen, Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254 (2008), 1217–1234. doi: 10.1016/j.jfa.2007.11.020 |
[25] | K. Ho, Y. H. Kim, A-priori bounds and multiplicity of solutions for nonlinear elliptic problems involving the fractional $p(\cdot)$-Laplacian, Nonlinear Anal., 188 (2019), 179–201. doi: 10.1016/j.na.2019.06.001 |
[26] | M. Kar, M. Sini, An $H^{s, p}(curl; \Omega)$ estimate for the Maxwell system, Math. Ann., 364 (2016), 559–587. doi: 10.1007/s00208-015-1225-9 |
[27] | U. Kaufmann, J. D. Rossi, R. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians, Electron. J. Qual. Theory Differ. Equ., (2017), 1–10. |
[28] | O. Kováčik, J. Rákosník, On spaces $L^{p(x)}(\Omega)$ and $W ^{m, p(x)}(\Omega)$, Czechoslovak Math. J., 41 (1991), 592–618. doi: 10.21136/CMJ.1991.102493 |
[29] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. doi: 10.1016/S0375-9601(00)00201-2 |
[30] | N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 249–264. |
[31] | H. K. Liu, Y. Q. Fu, On the variable exponential fractional Sobolev space $W^{s(\cdot), p(\cdot)}$, AIMS Math., 6 (2020), 6261–6276. |
[32] | T. C. Nguyen, Eigenvalue problems for fractional $p(x, y)$-Laplacian equations with indefinite weight, Taiwan. J. Math., 23 (2019), 1153–1173. |
[33] | W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math., 3 (1931), 200–211. doi: 10.4064/sm-3-1-200-211 |
[34] | M. Q. Xiang, B. L. Zhang, D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal., 178 (2019), 190–204. doi: 10.1016/j.na.2018.07.016 |
[35] | Y. Zhou, Fractional Sobolev extension and imbedding, Trans. Amer. Math. Soc., 367 (2015), 959–979. |