Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent ˙Ka(⋅),u),θs(⋅)(Rn) by applying some properties of variable exponent.
Citation: Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki. Boundedness of some operators on grand Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653
[1] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[2] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[3] | Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki . Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036 |
[4] | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250 |
[5] | Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888 |
[6] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[7] | Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad . A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(9): 22178-22191. doi: 10.3934/math.20231130 |
[8] | Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293 |
[9] | Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(9): 22338-22353. doi: 10.3934/math.20231139 |
[10] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent ˙Ka(⋅),u),θs(⋅)(Rn) by applying some properties of variable exponent.
Function spaces and operator theory are most important tools in harmonic analysis. There is a vast literature dealing with variable exponent spaces, some instances of these works are in [1,2,3,4,5,6,7]. In recent times, variable exponent function spaces has witnessed tremendous progress. In fact, it is widely recognized that variable exponent function spaces play an important role in partial differential equations and applied mathematics.
The problem on the boundedness of an intrinsic square function on Lebesgue spaces is considered by [8]. The first generalization of Herz spaces with variable exponent is given by Izuki [9]. He proved boundedness of sublinear operators in these spaces. Herz-Morrey spaces is the generalization of Herz spaces with variable exponent. This class of function spaces is initially defined by the author [10]. In [11], variable parameters were used to define continual Herz spaces, and demonstrated the boundedness of sublinear operators in these spaces.
The idea of grand Morrey spaces introduced in [12] and took considerable amount of attention of researchers, author also proved boundedness of class of integral operators in newly defined grand Morrey spaces. Grand Herz spaces with variable exponent was introduced in [13]. Inspired by the concept, in this article we demonstrated the boundedness of an intrinsic square function and higher order commutators of fractional integral operator in grand Herz spaces with variable exponent.
We divided this article into different sections. Apart from introduction, a section is dedicated to basic lemmas and definitions. One section is for boundedness of intrinsic square function on grand Herz spaces with variable exponent. Last section contains the boundedness of higher order commutators of fractional integral operator in grand Herz spaces with variable exponent.
For this section we refer to [14,15,16,17,18].
Definition 2.1. If H is a measurable set in Rn and p(⋅):H→[1,∞) is a measurable function.
(a) Lebesgue space with variable exponent Lp(⋅)(H) can be defined as
Lp(⋅)(H)={fmeasurable:∫H(|f(y)|γ)p(y)dy<∞whereγis a constant}. |
Norm in Lp(⋅)(H) can be defined as,
‖f‖Lp(⋅)(H)=inf{γ>0:∫H(|f(y)|γ)p(y)dy≤1}. |
(b) The space Lp(⋅)loc(H) can be defined as
Lp(⋅)loc(H):={f:f∈Lp(⋅)(G)for all compact subsets G⊂H}. |
We use these notations in this paper:
(i) The Hardy-Littlewood maximal operator M for f∈L1loc(H) is defined as
Mf(y):=sups>0s−n∫B(y,s)|f(y)|dy(y∈H), |
where B(y,s):={x∈H:|y−x|<s}.
(ii) The set P(H) is consists of all measuable functions p(⋅) satisfying
p−:=essinfh∈Hp(h)>1,p+:=esssuph∈Hp(h)<∞. | (2.1) |
(iii) Plog=Plog(H) is the class of functions p∈P(H) satisfying (2.1) and log-condition defined as,
|Ω(z1)−Ω(z2)|≤C(Ω)−ln|z1−z2|,|z1−z2|≤12,z1,z2∈H. | (2.2) |
(iv) Let H is unbounded, P∞(H) and P0,∞(H) are the subsets of P(H) and values are in [1,∞) satisfying following conditions respectively
|Ω(z1)−Ω∞|≤Cln(e+|z1|), | (2.3) |
where Ω∞∈(1,∞).
|Ω(z1)−Ω0|≤Cln|z1|,|z1|≤12, | (2.4) |
in the case of homogenous Herz spaces.
(v) Let H is bounded, then P∞(H) and P0,∞(H) are the subsets of P(H).
(vi) Let H is unbounded, then P∞(H) are the subsets of exponents in L∞(H) and its values are in [1,∞] satisfying both conditions (2.2) and (2.3), respectively and Plog∞(H) is the set of exponent p∈P∞(H) satisfying condition (2.1).
(vii) B(H) is the collection of p(⋅)∈H satisfying the condition that M is bounded on Lp(⋅)(H).
(viii) χl=χRl, Rl=Dl∖Dl−1, Dl=D(0,2l)={z1∈Rn:|z1|<2l} for all l∈Z.
C is a constant, its value varies from line to line and independent of main parameters involved.
Lemma 2.1. [11] Let D>1 and ω∈P0,∞(Rn). Then
1t0snω(0)≤‖χRs,Ds‖ω(⋅)≤t0snω(0),for0<s≤1, | (2.5) |
and
1t∞snω∞≤‖χRs,Ds‖ω(⋅)≤t∞snω∞,fors≥1, | (2.6) |
respectively, where t0≥1 and t∞≥1 is depending on D but not depending on s.
Lemma 2.2. [15] [Generalised Hölder's inequality] Assume that H is a measurable subset of Rn, and 1≤p−(H)≤p+(H)≤∞. Then
‖fg‖Lr(⋅)(H)≤‖f‖Lp(⋅)(H)‖g‖Lq(⋅)(H) |
holds, where f∈Lp(⋅)(H), g∈Lq(⋅)(H) and 1r(z)=1p(z)+1q(z) for every z∈H.
Definition 2.2. [BMO space] A BMO function is a locally integrable function u whose mean oscillation given by 1|Q|∫Q|u(y)−uQ|dy is bounded. Mathematically,
‖u‖BMO=supQ1|Q|∫Q|u(y)−uQ|dy<∞. |
Lemma 2.3. [19] Let k is a positive integers. Then for all b∈BMO(Rn) and all j,i∈Z for j>i,
C−1‖b‖kBMO(Rn)≤supD:ball1‖χD‖Lp(⋅)(Rn)‖(b−bD)kχD‖Lp(⋅)(Rn) | (2.7) |
≤C‖b‖kBMO(Rn), | (2.8) |
||(b−bDi)kχDj||Lp(⋅)(Rn)≤C(j−i)k||b||kBMO(Rn)||χDj||Lp(⋅)(Rn). | (2.9) |
Lemma 2.4. [19] Let r(⋅)∈B(Rn); then for all balls D in Rn,
1|D|‖χD‖Lr(⋅)(Rn)‖χD‖Lr′(⋅)(Rn)≤C. | (2.10) |
In this section we will define variable exponent Herz spaces.
Definition 2.3. Let u,v∈[1,∞), ζ∈R, the classical versions of homogenous and non-homogenous Herz spaces, can be defined by the norms,
‖g‖Kζu,v(Rn):=‖g‖Lu(D(0,1))+{∑l∈N2lζv(∫F2l−1,2l|g(y)|udy)vu}1v, | (2.11) |
‖g‖˙Kζu,v(Rn):={∑l∈Z2lζv(∫F2l−1,2l|g(y)|udy)vu}1v, | (2.12) |
respectively, where Ft,τ stands for the annulus Ft,τ:=D(0,τ)∖D(0,t).
Definition 2.4. Let u∈[1,∞), ζ∈R and v(⋅)∈P(Rn). The homogenous Herz space ˙Kζ,uv(⋅)(Rn) can be defined as
˙Kζ,uv(⋅)(Rn)={g∈Lv(⋅)loc(Rn∖{0}):‖g‖˙Kζ,uv(⋅)(Rn)<∞}, | (2.13) |
where
‖g‖˙Kζ,uv(⋅)(Rn)=(l=∞∑l=−∞‖2lζgχl‖uLv(⋅))1u. |
Definition 2.5. Let u∈[1,∞), ζ∈R and v(⋅)∈P(Rn). The non-homogenous Herz space Kζ,uv(⋅)(Rn) can be defined as
Kζ,uv(⋅)(Rn)={g∈Lv(⋅)loc(Rn∖{0}):‖g‖Kζ,uv(⋅)(Rn)<∞}, | (2.14) |
where
‖g‖Kζ,uv(⋅)(Rn)=(l=∞∑k=−∞‖2lζgχl‖uLv(⋅))1u+‖g‖Lv(⋅)(D(0,1)). |
Next we define Grand Herz spaces with variable exponent.
Definition 3.1. [20] Let a(⋅)∈L∞(Rn), u∈[1,∞), v:Rn→[1,∞), θ>0. A grand Herz spaces with variable exponent ˙Ka(⋅),u),θv(⋅) is defined by
˙Ka(⋅),u),θv(⋅)={g∈Lv(⋅)loc(Rn∖{0}):‖g‖˙Ka(⋅),u),θv(⋅)<∞}, |
where
‖g‖˙Ka(⋅),u),θv(⋅)=supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)‖gχk‖u(1+ψ)Lv(⋅))1u(1+ψ)=supψ>0ψθu(1+ψ)‖g‖˙Ka(⋅),u(1+ψ)v(⋅). |
In this section, we show that an intrinsic square function is bounded on ˙Ka(⋅),u),θs(⋅)(Rn). First we will define intrinsic square function Sζf(z1).
Definition 4.1. Let z1∈Rn, the set Γ(z1) is defined as,
Γ(z1):≡{(z2,t)∈Rn+1+:|z1−z2|<t}, |
where Rn+1+=Rn×(0,∞). Let 0<ζ≤1 is a constant. The set Cζ consists of all functions ϕ defined on Rn such that
(i) supp ϕ⊂{|z1|≤1},
(ii) ∫Rnϕ(z1)dz1=0,
(iii) |ϕ(z1)−ϕ(z′1)|≤|z1−z′1|ζ for z1,z′1∈Rn.
For every (z2,t)∈Rn+1+ we write ϕt(z2)=t−nϕ(z2/t). Then we define a maximal function for f∈L1loc(Rn).
Aζf(z2,t):=supϕ∈Cζ|f∗ϕt(z2)|, where (z2,t)∈Rn+1+. Using above, we define the intrinsic square function with order ζ by
Sζf(z1):=(∫∫Γ(z1)Aζf(z2,t)2dz2dttn+1)1/2. |
An intrinsic square function Sζ is bounded in variable Lebesgue spaces Lp(⋅), for more detail see [8].
Theorem 4.1. Let 1<u<∞, a(⋅),s(⋅)∈P0,∞(Rn), and ζ be such that
(i) −ns(0)<a(0)<ns′(0),
(ii) −ns∞<a∞<ns′∞.
Suppose that an intrinsic square function Sζ bounded on Lebesgue spaces will be bounded on ˙Ka(⋅),u),θs(⋅)(Rn).
Proof. Let f∈˙Ka(⋅),u),θs(⋅)(Rn), we have
‖Sζf‖˙Ka(⋅),u),θs(⋅)(Rn)=supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)‖χkSζf‖u(1+ψ)Ls(⋅))1u(1+ψ)≤supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(∞∑l=−∞‖χkSζf(χl)‖u(1+ψ)Ls(⋅)))1u(1+ψ)≤supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(k−2∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(k+1∑l=k−1‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(∞∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:E1+E2+E3. |
As operator Sζ is bounded on Lebesgue space Ls(⋅)(Rn) so for E2,
E2≤supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(k+1∑l=k−1‖Sζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k+1∑l=k−1‖Sζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(k+1∑l=k−1‖Sζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:E21+E22. |
By using the fact 2ka(z1)=2ka(0), k<0, z1∈Rk implies that
‖2ka(⋅)fχk‖Ls(⋅)=2ka(0)‖fχk‖Ls(⋅), |
E21≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k+1∑l=k−1‖Sζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2ka(0)u(1+ψ)(k+1∑l=k−1‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)‖fχk‖u(1+ψ)Ls(⋅))1u(1+ψ)=C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
For E22, we use the fact 2ka(z1)=2ka∞, k≥0, z1∈Rk, we get,
E22≤supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(k+1∑l=k−1‖Sζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤C‖supψ>0(ψθ∞∑k=02ka∞u(1+ψ)(k+1∑l=k−1‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ∞∑k=02ka∞u(1+ψ)‖fχk‖u(1+ψ)Ls(⋅))1u(1+ψ)≤Csupψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)‖fχk‖u(1+ψ)Ls(⋅))1u(1+ψ)=C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
For E1, for k∈Z, l≤k−2, z1∈Rk and (z2,t)∈Γ(z1). For ϕ∈Cζ we have
|f(χl)∗ϕt(z2)|=|∫Rlϕt(z2)f(x)dx|≤Ct−n∫{x∈Rl:|z2−x|<t}|f(x)|dx. |
x∈Rl with |z2−x|<t we obtain
t=12(t+t)>12(|z1−z2|+|z2−x|)≥12|z1−x|≥12(|z1|−|x|)≥12(|z1|−2t)≥12(|z1|−2k−2)≥12(|z1|−2−1|z1|)=|z1|4. |
As a result we get
|Sζ(fχl)(z1)|=(∫∫Γ(z1)(supϕ∈Cζ|fχl∗ϕt(z2)|2dz2dttn+1)2)1/2≤C(∞∫|z1|4∫{z2:|z1−z2|<t}(1tn∫{x∈Rl:|z−x|<t}|f(x)|dx)2dz2dttn+1)1/2≤C(∫Rl|f(x)|dx)(∞∫|z1|4(∫{z2:|z1−z2|<t}dz2)dtt3n+1)1/2=C(∫Rl|f(x)|dx)(∞∫|z1|4dtt2n+1)1/2=C(∫Rl|f(x)|dx)|z1|−n. |
Note that z1∈Rk and |z1|>2k−1, implies that |z1|−n≤2−kn, by using Hölder's inequality,
Sζ(fχl)(z1)|≤C2−kn(∫Rl|f(x)|dx)≤C2−kn‖fχk‖Ls(⋅)‖χl‖Ls′(⋅). |
By using Lemma (2.1) we have
2−kn‖χk‖Ls(⋅)‖χl‖Ls′(⋅)≤C2−kn2kns(0)2lns′(0)≤C2(l−k)ns′(0). | (4.1) |
Splitting E1 by means of Minkowski's inequality we have
E1≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k−2∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(k−2∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:E11+E12. |
Applying above results to E11 we can get
E11≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k−2∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k−2∑l=−∞‖χk‖Ls(⋅)2−kn‖fχl‖Ls(⋅)‖χl‖Ls′(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(k−2∑l=−∞‖χk‖Ls(⋅)2−kn‖fχl‖Ls(⋅)‖χl‖Ls′(⋅))u(1+ψ))1u(1+ψ). |
Let b=ns′(0)−a(0),
E11≤Csupψ>0(ϵθ−1∑k=−∞(k−2∑l=−∞2a(0)l‖fχl‖Ls(⋅)2b(l−k))u(1+ψ))1u(1+ψ), | (4.2) |
by using Hölder's inequality, Fubini's theorem for series and the inequality 2−u(1+ψ)<2−u we get,
E11≤Csupψ>0(ψθ−1∑k=−∞(k−2∑l=−∞2a(0)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)2bu(1+ψ)(l−k)/2k−2∑l=−∞2b(u(1+ψ))′(l−k)/2)u(1+ψ)(u(1+ψ))′)1u(1+ψ)=Csupψ>0(ψθ−1∑k=−∞k−2∑l=−∞2a(0)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)2bu(1+ψ)(l−k)/2)1u(1+ψ)=Csupψ>0(ψθ−1∑l=−∞2a(0)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)−1∑k=l+22bu(1+ψ)(l−k)/2)1u(1+ψ)<Csupψ>0(ψθ−1∑l=−∞2a(0)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)−1∑k=l+22bp(l−k)/2)1u(1+ψ)≤Csupψ>0(ψθ−1∑l=−∞2a(0)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅))1u(1+ψ)=Csupψ>0(ψθ∑l∈Z2a(⋅)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅))1u(1+ψ)≤C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
Now for E12 using Minkowski's inequality we have
E12≤supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(−1∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(k−2∑l=0‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:A1+A2. |
The estimate for A2 can be obtained by similar way to E11 by replacing s′(0) with s′∞ and using the fact ns′∞−a∞>0. For A1 using Lemma (2.1) we have
2−kn‖χk‖Ls(⋅)‖χl‖Ls′(⋅)≤C2−kn2kns∞2lns′(0)≤C2−kns′∞2lns′(0). | (4.3) |
As a∞−ns′∞<0 we have
A1≤supψ>0(ψθ∞∑k=02ka∞u(1+ψ)(−1∑l=−∞‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupϵ>0(ψθ∞∑k=02ka∞u(1+ψ)×(−1∑l=−∞2−kns∞2lns′(0)‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ϵθ∞∑k=02kα−kns′∞u(1+ψ)×(−1∑l=−∞2lns′(0)‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ(−1∑l=−∞2lns′(0)‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ(−1∑l=−∞2lns′(0)−a(0)l‖fχl‖Ls(⋅)2a(0)l)u(1+ψ))1u(1+ψ) |
Now by applying Hölder's inequality and using the fact that ns′(0)−a(0)>0 we have
A1≤Csupψ>0(ψθ(−1∑l=−∞2lns′(0)−a(0)l‖fχl‖Ls(⋅)2a(0)l)u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑l=−∞2a(0)lu(1+ψ)‖fχl‖u(1+ψ)Ls(⋅)(−1∑l=−∞2(lns′(0)−a(0)l)(u(1+ψ))′)u(1+ψ)(u(1+ψ))′)1u(1+ψ)≤Csupψ>0(ψθ∑l∈Z2a(⋅)lu(1+ψ)‖fχl‖u(1+ψ)Ls(⋅))1u(1+ψ)≤C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
Now we estimate E3, we take k∈Z, l≥k−2, z1∈Rk and (z2,t)∈Γ(z1). For x∈Rl, ϕ∈Cζ with |z2−x|<t we obtain
t=12(t+t)>12(|z1−z2|+|z2−x|)≥12|z1−x|≥12(|x|−|z1|)≥12(2l−1−2k)≥2l−3. |
As a result we get
|Sζ(fχl)(z1)|=(∫∫Γ(z1)(supϕ∈Cζ|fχl∗ϕt(z2)|2dz2dttn+1)2)1/2≤C(∫∫Γ(z1)(1tn∫{x∈Rl:|z2−x|<t}|f(x)|dx)2dz2dttn+1)1/2≤C(∫Rl|f(x)|dx)(∞∫2l−3(∫{z2:|z1−z2|<t}dz2)dtt3n+1)1/2=C(∫Rl|f(x1)|dx1)(∞∫2l−3dtt2n+1)1/2=C(∫Rl|f(x)|dx)|Bl|−1≤C2−ln‖fχl‖Ls(⋅)‖χl‖Ls′(⋅). |
Splitting E3 by using Minkowski's inequality we have
E3≤supψ>0(ψθ∑k∈Z2ka(⋅)u(1+ψ)(∞∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(∞∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(∞∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:E31+E32. |
For E32 Lemma (2.1) yields
2−ln‖χk‖Ls(⋅)‖χl‖Ls′(⋅)≤C2−ln2kns∞2lns′∞≤C2(k−l)ns∞, | (4.4) |
we get
E32≤supψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(∞∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ∞∑k=02ka(⋅)u(1+ψ)(∞∑l=k+2‖χk‖Ls(⋅)2−ln⋅‖fχl‖Ls(⋅)‖χl‖Ls′(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ∞∑k=0(∞∑l=k+22a∞l‖fχl‖Ls(⋅)2d(k−l))u(1+ψ))1u(1+ψ), |
where d=ns∞+α∞>0. Then we use Hölder's theorem for series and 2−u(1+ψ)<2−u to obtain
E32≤Csupψ>0(ψθ∞∑k=0(∞∑l=k+22α∞u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)2du(1+ψ)(k−l)/2)×(∞∑l=k+22d(u(1+ψ))′(k−l)/2)u(1+ψ)(u(1+ψ))′)1u(1+ψ)≤Csupψ>0(ψθ∞∑k=0∞∑l=k+22a∞u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)2du(1+ψ)(k−l)/2)1u(1+ψ)≤Csupψ>0(ψθ∞∑l=02a∞u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)l−2∑k=02du(1+ψ)(k−l)/2)1u(1+ψ)≤Csupψ>0(ψθ∑l∈Z2a∞u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅)l−2∑k=−∞2dp(k−l)/2)1u(1+ψ)≤Csupψ>0(ψθ∑l∈Z2a(⋅)u(1+ψ)l‖fχl‖u(1+ψ)Ls(⋅))1u(1+ψ)≤C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
Now for E31 using Monkowski's inequality we have
E31≤supψ>0(ψθ−1∑k=−∞2ka(⋅)u(1+ψ)(−1∑l=k+2‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)+supψ>0(ψθ −1∑k=−∞2ka(⋅)u(1+ψ)(∞∑l=0‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)=:B1+B2. |
The estimate for B1 can be obtained by similar way to E32 by replacing s∞ with s(0) and using the fact that ns(0)+a(0)>0. For B2 using Lemma (2.1) we have
2−ln‖χk‖Ls(⋅)‖χl‖Ls′(⋅)≤C2−ln2kns(0)2lns′∞≤C2kns(0)2−lns∞ | (4.5) |
B2≤supψ>0(ψθ−1∑k=−∞2ka(0)u(1+ψ)(∞∑l=0‖χkSζ(fχl)‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2ka(0)u(1+ψ)×(∞∑l=02−ln2kns(0)2lns′∞‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2ka(0)u(1+ψ)×(∞∑l=02kns(0)2−lns∞‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ−1∑k=−∞2k(a(0)+n)/s(0)u(1+ψ)×(∞∑l=02−lns∞‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ(∞∑l=02−lns∞‖fχl‖Ls(⋅))u(1+ψ))1u(1+ψ)≤Csupψ>0(ψθ(∞∑l=02la∞‖fχl‖Ls(⋅)2l(ns∞+a∞))u(1+ψ))1u(1+ψ). |
Now by applying Hölder's inequality and using the fact that ns∞+a∞>0 we have
B2≤Csupψ>0(ψθ(∞∑l=02la∞u(1+ψ)‖fχl‖u(1+ψ)Ls(⋅))u(1+ψ)×(∞∑l=02l(ns∞+a∞)u(1+ψ))u(1+ψ)u(1+ψ)′)1u(1+ψ)≤Csupψ>0(ψθ(∑l∈Z2a∞lu(1+ψ)‖fχl‖u(1+ψ)Ls(⋅)))1u(1+ψ)≤C‖f‖˙Ka(⋅),u),θs(⋅)(Rn). |
Combining the estimates for E1, E2 and E3 yields
‖Sζf‖˙Ka(⋅),u),θs(⋅) (Rn)≤C‖f‖˙Ka(⋅),u),θs(⋅) (Rn) |
which ends the proof.
Let b be a locally integrable function, 0<ζ<n, and m∈N; the higher order commutators of fractional integrable operator Imζ,b are defined by
Imζ,bf(x)=∫Rn[b(x)−b(y)]m|x−y|n−ζf(y)dy. | (5.1) |
When m=0 then I0ζ,b=Iζ and for, m=1 I1ζ,b=[b,Iζ]. According to Hardy-Littlewood-Sobolev theorem the fractional integral operator Iζ is bounded operator from Lebesgue spaces Lp1(Rn) to Lp2(Rn) when 0<p1<p2<∞ and 1/p1−1/p2=ζ/n.
Lemma 5.1. [19] Suppose that q1(⋅)∈P(Rn) satisfies (2.2), (2.3), 0<ζ<n/(q1)+ and 1/q1(x)−1/q2(x)=ζ/n, b∈BMO(Rn) then
‖Imζ,b(f)‖q2(⋅)≤C‖b‖mBMO(Rn)‖f‖q1(⋅). | (5.2) |
Theorem 5.1. Let 1<p<∞, b∈BMO(Rn), α,q2∈P0,∞(Rn), 1/q1(x)−1/q2(x)=ζ/n. If 0<r<min{1/(q1)+,1(q′2)+}, 0<ζ<nr, and
−nq1∞<a∞<nq′1∞,−nq1(0)<a(0)<nq′1(0). |
Suppose that Imζ,b is higher order commutators of fractional integral operator bounded on Lebesgue spaces will be bounded from ˙Ka(⋅),p),θq1(⋅)(Rn) to ˙Ka(⋅),p),θq2(⋅)(Rn).
Proof. Let f∈˙Ka(⋅),p),θq2(⋅)(Rn), and f(x)=∑∞l=−∞f(x)χl(x)=∑∞l=−∞fl(x), we have
‖Imζ,b(f)‖˙Ka(⋅),p),θq2(⋅) (Rn)=supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)‖χkImζ,bf‖p(1+ϵ)q2(⋅))1p(1+ϵ)≤supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(∞∑l=−∞‖χkImζ,bf(χl)‖p(1+ϵ)q2(⋅)))1p(1+ϵ)≤supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(k−2∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(k+1∑l=k−1‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)=:E1+E2+E3. |
As operator Imζ,b is bounded on Lebesgue space q2(⋅) so for E2,
E2≤supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(k+1∑l=k−1‖Imζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k+1∑l=k−1‖Imζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(k+1∑l=k−1‖Imζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ):=E21+E22. |
Here we use the fact 2kα(x)=2kα(0), k<0, x∈Rk equivalent to say that
‖2ka(⋅)fχk‖q1(⋅)=2kα(0)‖fχk‖q1(⋅), |
E21≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k+1∑l=k−1‖Imζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞2kα(0)p(1+ϵ)(k+1∑l=k−1‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞2kα(0)p(1+ϵ)‖fχk‖p(1+ϵ)q1(⋅))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)‖fχk‖p(1+ϵ)q1(⋅))1p(1+ϵ)=C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn). |
For E22, we use the fact 2kα(x)=2ka∞, k<0, x∈Rk, we have,
E22≤Csupϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(k+1∑l=k−1‖Imζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=02ka∞p(1+ϵ)(k+1∑l=k−1‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=02ka∞p(1+ϵ)‖fχk‖p(1+ϵ)q1(⋅))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)‖fχk‖p(1+ϵ)q1(⋅))1p(1+ϵ)=C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn). |
For E1, we use the facts that, if x∈Rk, y∈Rl and l≤k−2, then |x−y|∼|x|∼2k, we get
E1≤supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(k−2∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ), |
by using size condition and Hölder's inequality, we get
|Imζ,b(fχl)(x).χk(x)|≤C∫Rl|fl(y)|[b(x)−b(y)]m|x−y|n−ζdy.χk(x)≤C2k(ζ−n)∫Rl|fl(y)|b(x)−b(y)|mdy.χk(x)≤C2k(ζ−n)(|b(x)−bBl|m∫Rl|fl(y)|dy+∫Rl|fl(y)||b(y)−bBl|mdy).χk(x)≤C2k(ζ−n)‖fl‖q1(⋅)(|b(x)−bBl|m‖χl‖q′1(⋅)+‖((b−bBl)mχl‖Lq′1(⋅)(Rn)).χk(x). |
Thus, from Lemma (2.3), and the fact that ‖χl‖Ls(⋅)≤‖χBl‖Ls(⋅), we get
‖|Imζ,b(fχl)(x).χk(x)‖q2(⋅)≤C2k(ζ−n)‖fl‖q1(⋅)(‖(b−bBl)mχk‖q2(⋅)‖χl‖q′1(⋅)+‖((b−bBl)mχl‖Lq′1(⋅)(Rn)‖χl‖q2(⋅))≤C2k(ζ−n)‖fl‖q1(⋅)((k−l)m‖b‖mBMO(Rn)‖χBk‖q2(⋅)‖χl‖q′1(⋅)+‖b‖mBMO(Rn)‖χBl‖Lq′1(⋅)(Rn)‖χk‖q2(⋅))≤C2k(ζ−n)(k−l)m‖b‖mBMO(Rn)‖fl‖q1(⋅)‖χBl‖q′1(⋅)‖χBk‖q2(⋅). |
It is known, see e.g., [19] that χBk(x)≤C2−kζIζ(χBk)(x), which yields
‖χBk‖q2(⋅)≤C2−kζ‖Iζ(χBk)‖q2(⋅)≤C2−kζ‖χBk‖q1(⋅). |
As a result we get,
2k(ζ−n)‖χBl‖q′1(⋅)‖χBk‖q2(⋅)≤2k(ζ−n)‖χBl‖q′1(⋅).2−kζ‖χBk‖q1(⋅)≤2−kn‖χBl‖q′1(⋅)‖χBk‖q1(⋅). |
Consequently, we have
2−kn‖χBl‖q′1(⋅)‖χBk‖q1(⋅)≤C2−kn2knq1(0)2lnq′1(0)≤C2(l−k)nq′1(0), | (5.3) |
splitting E1 by means of Minkowski's inequality we have
E1≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k−2∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(k−2∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ):=E11+E12, |
applying above results to E11,
E11≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k−2∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤Csupϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k−2∑l=−∞2(l−k)nq′1(0)(k−l)m‖b‖mBMO(Rn)‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤Csupϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(k−2∑l=−∞2(l−k)nq′1(0)(k−l)m‖b‖mBMO(Rn)‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ), |
let b:=nq′1(0)−α(0), applying Hölder's inequality, Fubini's theorem for series and 2−p(1+ϵ)<2−p we get,
≤Csupϵ>0(ϵθ−1∑k=−∞(k−2∑l=−∞2α(0)l(k−l)m‖b‖mBMO(Rn)‖fχl‖q1(⋅)2b(l−k))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞(k−2∑l=−∞2α(0)l‖fχl‖q1(⋅)(k−l)m2b(l−k))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞(k−2∑l=−∞2α(0)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)(k−l)p(1+ϵ)m/2)×2bp(1+ϵ)(l−k)/2(k−2∑l=−∞(k−l)p(1+ϵ)′m/22bp(1+ϵ)′(l−k)/2)p(1+ϵ)p(1+ϵ)′)1p(1+ϵ)=C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞k−2∑l=−∞2α(0)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)(k−l)p(1+ϵ)m/22bp(1+ϵ)(l−k)/2)1p(1+ϵ)=C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑l=−∞2a(⋅)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)−1∑k=l+2(k−l)p(1+ϵ)m/22bp(1+ϵ)(l−k)/2)1p(1+ϵ)<C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑l=−∞2α(0)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)−1∑k=l+2(k−l)pm/22bp(l−k)/2)1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑l=−∞2α(0)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅))1p(1+ϵ)=C‖b‖mBMO(Rn)supϵ>0(ϵθ∑l∈Z2a(⋅)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅))1p(1+ϵ)≤C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn). |
Now for E12 using Minkowski's inequality we have
E12≤supϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(−1∑l=−∞‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(k−2∑l=0‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ):=A1+A2. |
The estimate for A2 follows in a similar manner to E11 with q′1(0) replaced by q′1∞ and using the fact b:=nq1′∞−a∞>0. For A1 using Lemma (2.1) we have
2−kn‖χBk‖q1(⋅)‖χBl‖Lq′1(⋅)(Rn)≤C2−kn2knq1∞2lnq′1(0)≤C2−knq′1∞2lnq′1(0), | (5.4) |
as a∞−nq′1∞<0 we have
A1≤Csupϵ>0(ϵθ∞∑k=02ka∞p(1+ϵ)(−1∑l=−∞‖χkImζ,bfχl‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=02ka∞p(1+ϵ)(−1∑l=−∞(k−l)m2(lnq′1(0))2(−knq′1∞)‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0(−1∑l=−∞(k−l)m2l(nq′1(0)−a∞)2k(−nq′1∞+a∞)2la∞‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0(−1∑l=−∞2a∞lp(1+ϵ)((k−l)m2l(nq′1(0)−a∞)2k(−nq′1∞+a∞))p(1+ϵ)/2)‖fχl‖p(1+ϵ)q1(⋅)×(−1∑l=−∞((k−l)m2l(nq′1(0)−a∞)2k(−nq′1∞+a∞))p(1+ϵ)′/2)p(1+ϵ)p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0−1∑l=−∞2a∞lp(1+ϵ)‖fχl‖p(1+ϵ)q1(⋅)((k−l)m2l(nq′1(0)−a∞)2k(−nq′1∞+a∞))p(1+ϵ)/2)1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑l=−∞2a∞lp(1+ϵ)‖fχl‖p(1+ϵ)q1(⋅)×∞∑k=l((k−l)m2l(nq′1(0)−a∞)2k(−nq′1∞+a∞))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑l=−∞2a∞lp(1+ϵ)‖fχl‖p(1+ϵ)q1(⋅))1u(1+ψ)≤C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn). |
Now we estimate E3, for each k∈Z and l≥k+2 and a.e. x∈Rk; splitting E3 by using Minkowski's inequality and using similar method of E1,E2 we have
E3≤supϵ>0(ϵθ∑k∈Z2ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ):=E31+E32. |
For E31 by using Monkowski's inequality
E31≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)E31≤supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(−1∑l=k+2‖χkImζ,b(fχl)‖q1(⋅))p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ−1∑k=−∞2ka(⋅)p(1+ϵ)(∞∑l=0‖χkImζ,b(fχl)‖q1(⋅))p(1+ϵ))1p(1+ϵ):=B1+B2. |
The estimate for B1 follows in a similar manner to E32 with q1∞ replaced by q1(0) and using the facts that nq1(0)+α(0)>0, nq1∞+a∞>0, For B2 using Lemma (2.1) and Hölder's inequality we have,
2−ln‖χk‖q1(⋅)‖χl‖Lq′1(⋅)(Rn)≤C2−ln2knq1(0)2lnq′1∞≤C2knq1(0)2−lnq1∞, | (5.5) |
B2≤Csupϵ>0(ϵθ−1∑k=−∞2ka(0)p(1+ϵ)(∞∑l=0‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞2ka(0)p(1+ϵ)(∞∑l=0(k−l)m2−l(nq1∞)2k(nq1(0))‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞(∞∑l=02a(0)(k−l)m2−l(nq1∞−a(0))2k(nq1(0)+a(0)‖fχl‖q1(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞(∞∑l=02a(0)(p(1+ϵ))((k−l)m2−l(nq1∞−a(0))2k(nq1(0)+a(0))p(1+ϵ)/2)×‖fχl‖p(1+ϵ)q1(⋅)(∞∑l=0((k−l)m2−l(nq1∞−a(0))2k(nq1(0)+a(0))p(1+ϵ)′/2)p(1+ϵ)p(1+ϵ)′)1u(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ−1∑k=−∞∞∑l=02a(0)(p(1+ϵ))‖fχl‖p(1+ϵ)/2q1(⋅)((k−l)m2−l(nq1∞−a(0))2k(nq1(0)+a(0))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑l=02a(0)(p(1+ϵ))‖fχl‖p(1+ϵ)q1(⋅)l∑k=−∞((k−l)m2−l(nq1∞−a(0))2k(nq1(0)+a(0))p(1+ϵ)/2)1p(1+ϵ)≤C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅) (Rn). |
Finally we will estimate E32,
|Imζ,b(fχl)(x).χk(x)|≤C∫Rl|fl(y)|[b(x)−b(y)]m|x−y|n−ζdy.χk(x)≤C2l(ζ−n)∫Rl|fl(y)|b(x)−b(y)|mdy.χk(x)≤C2l(ζ−n)(|b(x)−bBk|m∫Rl|fl(y)|dy+∫Rl|fl(y)||b(y)−bBk|mdy).χk(x)≤C2l(ζ−n)‖fl‖q1(⋅)(|b(x)−bBl|m‖χl‖q′1(⋅)+‖((b−bBl)mχl‖Lq′1(⋅)(Rn)).χk(x). |
Thus, from Lemma (2.3), and the fact that ‖χl‖Ls(⋅)≤‖χBl‖Ls(⋅), we get
‖|Imζ,b(fχl)(x).χk(x)‖q2(⋅)≤C2l(ζ−n)‖fl‖q1(⋅)(‖(b−bBk)mχk‖q2(⋅)‖χl‖q′1(⋅)+‖((b−bBk)mχl‖Lq′1(⋅)(Rn)‖χk‖q2(⋅))≤C2l(ζ−n)‖fl‖q1(⋅)(‖b‖mBMO(Rn)‖χBk‖q2(⋅)‖χl‖q′1(⋅)+(l−k)m‖b‖mBMO(Rn)‖χBl‖Lq′1(⋅)(Rn)‖χk‖q2(⋅))≤C2l(ζ−n)(l−k)m‖b‖mBMO(Rn)‖fl‖q1(⋅)‖χBl‖q′1(⋅)‖χBk‖q2(⋅). |
It is known, see e.g., [19], that χBl(x)≤C2−lζIζ(χBl)(x), which yields
‖χBl‖q2(⋅)≤C2−lζ‖Iζ(χBl)‖q2(⋅)≤C2−lζ‖χBl‖q1(⋅). |
As a result we get,
2l(ζ−n)‖χBl‖q′1(⋅)‖χBk‖q2(⋅)≤2l(ζ−n)‖χBl‖q′1(⋅).2−kζ‖χBk‖q1(⋅)≤2−ln‖χBl‖q′1(⋅)‖χBk‖q1(⋅). |
For E32 Lemma (2.2) yields
2−ln‖χBk‖q1(⋅)‖χBl‖Lq′1(⋅)(Rn)≤C2−ln2knq1∞2lnq′1∞≤C2(k−l)nq1∞, | (5.6) |
we get
E32≤Csupϵ>0(ϵθ∞∑k=02ka(⋅)p(1+ϵ)(∞∑l=k+2‖χkImζ,b(fχl)‖q2(⋅))p(1+ϵ))1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0(∞∑l=k+2(l−k)m2a∞l‖fχl‖q1(⋅)2d(k−l))p(1+ϵ))1p(1+ϵ), |
where d=nq1∞+a∞>0. Then we use Hölder's theorem for series and 2−p(1+ϵ)<2−p to obtain
E32≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0(∞∑l=k+22a∞p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)(l−k)mp(1+ϵ)/2)×2dp(1+ϵ)(k−l)/2(∞∑l=k+2(l−k)mp(1+ϵ)/22dp(1+ϵ)′(k−l)/2)p(1+ϵ)p(1+ϵ)′)1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑k=0∞∑l=k+22a∞p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)(l−k)mp(1+ϵ)/22dp(1+ϵ)(k−l)/2)1p(1+ϵ)≤C‖b‖mBMO(Rn)supϵ>0(ϵθ∞∑l=02a∞p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)l−2∑k=0(l−k)mp(1+ϵ)/22dp(1+ϵ)(k−l)/2)1p(1+ϵ)<C‖b‖mBMO(Rn)supϵ>0(ϵθ∑l∈Z2a∞p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅)l−2∑k=−∞(l−k)mp(1+ϵ)/22dp(k−l)/2)1p(1+ϵ)=C‖b‖mBMO(Rn)supϵ>0(ϵθ∑l∈Z2a(⋅)p(1+ϵ)l‖fχl‖p(1+ϵ)q1(⋅))1p(1+ϵ)≤C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn). |
Combining the estimates for E1, E2 and E3 yields
‖Imζ,bf‖˙Ka(⋅),p),θq2(⋅)(Rn)≤C‖b‖mBMO(Rn)‖f‖˙Ka(⋅),p),θq1(⋅)(Rn), |
which ends the proof.
The authors A. ALoqaily and N. Mlaiki would like to thank Prince Sultan University for paying the APC for this work through TAS LAB.
The authors declare no conflict of interest.
[1] |
B. Sultan, F. M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
![]() |
[2] |
B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
![]() |
[3] | V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Birkhuser, 2016. https://doi.org/10.1007/978-3-319-21018-6 |
[4] |
B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
![]() |
[5] |
A. Hussain, M. Asim, F. Jarad, Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
![]() |
[6] |
M. Asim, A. Hussain, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
![]() |
[7] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 9705250. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[8] |
K. P. Ho, Intrinsic square functions on Morrey and block spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 40 (2017), 995–1010. https://doi.org/10.1007/s40840-016-0330-6 doi: 10.1007/s40840-016-0330-6
![]() |
[9] |
M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
![]() |
[10] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponents, Math. Sci. Res. J., 13 (2009), 243–253. |
[11] |
S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
![]() |
[12] | A Meskhi, Integral operators in grand Morrey spaces, 2010, arXiv: 1007.1186. |
[13] |
H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
![]() |
[14] | O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592–618. |
[15] | D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Perez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. M., 31 (2006), 239–264. |
[16] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8 |
[17] |
A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
![]() |
[18] |
A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
![]() |
[19] |
W. L. Jiang, W. J. Zhao, Boundedness for higher order commutators of fractional integrals on variable exponent Herz-Morrey spaces, Mediterr. J. Math., 14 (2017), 198. https://doi.org/10.1007/s00009-017-1002-y doi: 10.1007/s00009-017-1002-y
![]() |
[20] |
H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
![]() |
1. | Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, 2023, 8, 2473-6988, 22338, 10.3934/math.20231139 | |
2. | Pham Thi Kim Thuy, Kieu Huu Dung, Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents, 2024, 9, 2473-6988, 23060, 10.3934/math.20241121 | |
3. | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces, 2023, 8, 2473-6988, 26484, 10.3934/math.20231352 | |
4. | Babar Sultan, Mehvish Sultan, Ilyas Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, 2023, 126, 10075704, 107464, 10.1016/j.cnsns.2023.107464 | |
5. | Babar Sultan, Mehvish Sultan, Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces, 2024, 76, 1027-3190, 1052, 10.3842/umzh.v76i7.7546 | |
6. | Babar Sultan, Mehvish Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, 2024, 36, 0933-7741, 717, 10.1515/forum-2023-0152 | |
7. | Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki, Boundedness of Hardy operators on grand variable weighted Herz spaces, 2023, 8, 2473-6988, 24515, 10.3934/math.20231250 | |
8. | M. Sultan, B. Sultan, A. Hussain, Grand Herz–Morrey Spaces with Variable Exponent, 2023, 114, 0001-4346, 957, 10.1134/S0001434623110305 | |
9. | Waqar Afzal, Mujahid Abbas, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents, 2024, 8, 2504-3110, 518, 10.3390/fractalfract8090518 | |
10. | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, 2024, 2024, 1029-242X, 10.1186/s13660-024-03169-3 | |
11. | Mehvish Sultan, Babar Sultan, Estimate for the Intrinsic Square Function on $$p$$-Adic Herz Spaces with Variable Exponent, 2024, 16, 2070-0466, 82, 10.1134/S2070046624010072 | |
12. | Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces, 2023, 72, 1303-5991, 1000, 10.31801/cfsuasmas.1328691 | |
13. | Babar Sultan, Mehvish Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, 2024, 190, 00074497, 103373, 10.1016/j.bulsci.2023.103373 | |
14. | Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, 2023, 8, 2473-6988, 22178, 10.3934/math.20231130 | |
15. | Babar Sultan, Mehvish Sultan, Sobolev-Type Theorem for Commutators of Hardy Operators in Grand Herz Spaces, 2024, 0041-5995, 10.1007/s11253-024-02381-0 | |
16. | Babar Sultan, Mehvish Sultan, Amjad Hussain, Boundedness of the Bochner–Riesz Operators on the Weighted Herz–Morrey Type Hardy Spaces, 2025, 19, 1661-8254, 10.1007/s11785-025-01671-0 | |
17. | Waqar Afzal, Mujahid Abbas, Mutum Zico Meetei, Saïd Bourazza, Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces, 2025, 13, 2227-7390, 917, 10.3390/math13060917 |