Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Boundedness of some operators on grand Herz spaces with variable exponent

  • Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent ˙Ka(),u),θs()(Rn) by applying some properties of variable exponent.

    Citation: Mehvish Sultan, Babar Sultan, Ahmad Aloqaily, Nabil Mlaiki. Boundedness of some operators on grand Herz spaces with variable exponent[J]. AIMS Mathematics, 2023, 8(6): 12964-12985. doi: 10.3934/math.2023653

    Related Papers:

    [1] Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352
    [2] Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139
    [3] Babar Sultan, Mehvish Sultan, Mazhar Mehmood, Fatima Azmi, Maryam Ali Alghafli, Nabil Mlaiki . Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(1): 752-764. doi: 10.3934/math.2023036
    [4] Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki . Boundedness of Hardy operators on grand variable weighted Herz spaces. AIMS Mathematics, 2023, 8(10): 24515-24527. doi: 10.3934/math.20231250
    [5] Wanjing Zhang, Suixin He, Jing Zhang . Boundedness of sublinear operators on weighted grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(8): 17381-17401. doi: 10.3934/math.2023888
    [6] Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051
    [7] Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad . A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent. AIMS Mathematics, 2023, 8(9): 22178-22191. doi: 10.3934/math.20231130
    [8] Dazhao Chen . Endpoint estimates for multilinear fractional singular integral operators on Herz and Herz type Hardy spaces. AIMS Mathematics, 2021, 6(5): 4989-4999. doi: 10.3934/math.2021293
    [9] Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces. AIMS Mathematics, 2023, 8(9): 22338-22353. doi: 10.3934/math.20231139
    [10] Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007
  • Our aim in this paper is to prove boundedness of an intrinsic square function and higher order commutators of fractional integrals on grand Herz spaces with variable exponent ˙Ka(),u),θs()(Rn) by applying some properties of variable exponent.



    Function spaces and operator theory are most important tools in harmonic analysis. There is a vast literature dealing with variable exponent spaces, some instances of these works are in [1,2,3,4,5,6,7]. In recent times, variable exponent function spaces has witnessed tremendous progress. In fact, it is widely recognized that variable exponent function spaces play an important role in partial differential equations and applied mathematics.

    The problem on the boundedness of an intrinsic square function on Lebesgue spaces is considered by [8]. The first generalization of Herz spaces with variable exponent is given by Izuki [9]. He proved boundedness of sublinear operators in these spaces. Herz-Morrey spaces is the generalization of Herz spaces with variable exponent. This class of function spaces is initially defined by the author [10]. In [11], variable parameters were used to define continual Herz spaces, and demonstrated the boundedness of sublinear operators in these spaces.

    The idea of grand Morrey spaces introduced in [12] and took considerable amount of attention of researchers, author also proved boundedness of class of integral operators in newly defined grand Morrey spaces. Grand Herz spaces with variable exponent was introduced in [13]. Inspired by the concept, in this article we demonstrated the boundedness of an intrinsic square function and higher order commutators of fractional integral operator in grand Herz spaces with variable exponent.

    We divided this article into different sections. Apart from introduction, a section is dedicated to basic lemmas and definitions. One section is for boundedness of intrinsic square function on grand Herz spaces with variable exponent. Last section contains the boundedness of higher order commutators of fractional integral operator in grand Herz spaces with variable exponent.

    For this section we refer to [14,15,16,17,18].

    Definition 2.1. If H is a measurable set in Rn and p():H[1,) is a measurable function.

    (a) Lebesgue space with variable exponent Lp()(H) can be defined as

    Lp()(H)={fmeasurable:H(|f(y)|γ)p(y)dy<whereγis a constant}.

    Norm in Lp()(H) can be defined as,

    fLp()(H)=inf{γ>0:H(|f(y)|γ)p(y)dy1}.

    (b) The space Lp()loc(H) can be defined as

    Lp()loc(H):={f:fLp()(G)for all compact subsets GH}.

    We use these notations in this paper:

    (i) The Hardy-Littlewood maximal operator M for fL1loc(H) is defined as

    Mf(y):=sups>0snB(y,s)|f(y)|dy(yH),

    where B(y,s):={xH:|yx|<s}.

    (ii) The set P(H) is consists of all measuable functions p() satisfying

    p:=essinfhHp(h)>1,p+:=esssuphHp(h)<. (2.1)

    (iii) Plog=Plog(H) is the class of functions pP(H) satisfying (2.1) and log-condition defined as,

    |Ω(z1)Ω(z2)|C(Ω)ln|z1z2|,|z1z2|12,z1,z2H. (2.2)

    (iv) Let H is unbounded, P(H) and P0,(H) are the subsets of P(H) and values are in [1,) satisfying following conditions respectively

    |Ω(z1)Ω|Cln(e+|z1|), (2.3)

    where Ω(1,).

    |Ω(z1)Ω0|Cln|z1|,|z1|12, (2.4)

    in the case of homogenous Herz spaces.

    (v) Let H is bounded, then P(H) and P0,(H) are the subsets of P(H).

    (vi) Let H is unbounded, then P(H) are the subsets of exponents in L(H) and its values are in [1,] satisfying both conditions (2.2) and (2.3), respectively and Plog(H) is the set of exponent pP(H) satisfying condition (2.1).

    (vii) B(H) is the collection of p()H satisfying the condition that M is bounded on Lp()(H).

    (viii) χl=χRl, Rl=DlDl1, Dl=D(0,2l)={z1Rn:|z1|<2l} for all lZ.

    C is a constant, its value varies from line to line and independent of main parameters involved.

    Lemma 2.1. [11] Let D>1 and ωP0,(Rn). Then

    1t0snω(0)χRs,Dsω()t0snω(0),for0<s1, (2.5)

    and

    1tsnωχRs,Dsω()tsnω,fors1, (2.6)

    respectively, where t01 and t1 is depending on D but not depending on s.

    Lemma 2.2. [15] [Generalised Hölder's inequality] Assume that H is a measurable subset of Rn, and 1p(H)p+(H). Then

    fgLr()(H)fLp()(H)gLq()(H)

    holds, where fLp()(H), gLq()(H) and 1r(z)=1p(z)+1q(z) for every zH.

    Definition 2.2. [BMO space] A BMO function is a locally integrable function u whose mean oscillation given by 1|Q|Q|u(y)uQ|dy is bounded. Mathematically,

    uBMO=supQ1|Q|Q|u(y)uQ|dy<.

    Lemma 2.3. [19] Let k is a positive integers. Then for all bBMO(Rn) and all j,iZ for j>i,

    C1bkBMO(Rn)supD:ball1χDLp()(Rn)(bbD)kχDLp()(Rn) (2.7)
    CbkBMO(Rn), (2.8)
    ||(bbDi)kχDj||Lp()(Rn)C(ji)k||b||kBMO(Rn)||χDj||Lp()(Rn). (2.9)

    Lemma 2.4. [19] Let r()B(Rn); then for all balls D in Rn,

    1|D|χDLr()(Rn)χDLr()(Rn)C. (2.10)

    In this section we will define variable exponent Herz spaces.

    Definition 2.3. Let u,v[1,), ζR, the classical versions of homogenous and non-homogenous Herz spaces, can be defined by the norms,

    gKζu,v(Rn):=gLu(D(0,1))+{lN2lζv(F2l1,2l|g(y)|udy)vu}1v, (2.11)
    g˙Kζu,v(Rn):={lZ2lζv(F2l1,2l|g(y)|udy)vu}1v, (2.12)

    respectively, where Ft,τ stands for the annulus Ft,τ:=D(0,τ)D(0,t).

    Definition 2.4. Let u[1,), ζR and v()P(Rn). The homogenous Herz space ˙Kζ,uv()(Rn) can be defined as

    ˙Kζ,uv()(Rn)={gLv()loc(Rn{0}):g˙Kζ,uv()(Rn)<}, (2.13)

    where

    g˙Kζ,uv()(Rn)=(l=l=2lζgχluLv())1u.

    Definition 2.5. Let u[1,), ζR and v()P(Rn). The non-homogenous Herz space Kζ,uv()(Rn) can be defined as

    Kζ,uv()(Rn)={gLv()loc(Rn{0}):gKζ,uv()(Rn)<}, (2.14)

    where

    gKζ,uv()(Rn)=(l=k=2lζgχluLv())1u+gLv()(D(0,1)).

    Next we define Grand Herz spaces with variable exponent.

    Definition 3.1. [20] Let a()L(Rn), u[1,), v:Rn[1,), θ>0. A grand Herz spaces with variable exponent ˙Ka(),u),θv() is defined by

    ˙Ka(),u),θv()={gLv()loc(Rn{0}):g˙Ka(),u),θv()<},

    where

    g˙Ka(),u),θv()=supψ>0(ψθkZ2ka()u(1+ψ)gχku(1+ψ)Lv())1u(1+ψ)=supψ>0ψθu(1+ψ)g˙Ka(),u(1+ψ)v().

    In this section, we show that an intrinsic square function is bounded on ˙Ka(),u),θs()(Rn). First we will define intrinsic square function Sζf(z1).

    Definition 4.1. Let z1Rn, the set Γ(z1) is defined as,

    Γ(z1):≡{(z2,t)Rn+1+:|z1z2|<t},

    where Rn+1+=Rn×(0,). Let 0<ζ1 is a constant. The set Cζ consists of all functions ϕ defined on Rn such that

    (i) supp ϕ{|z1|1},

    (ii) Rnϕ(z1)dz1=0,

    (iii) |ϕ(z1)ϕ(z1)||z1z1|ζ for z1,z1Rn.

    For every (z2,t)Rn+1+ we write ϕt(z2)=tnϕ(z2/t). Then we define a maximal function for fL1loc(Rn).

    Aζf(z2,t):=supϕCζ|fϕt(z2)|, where (z2,t)Rn+1+. Using above, we define the intrinsic square function with order ζ by

    Sζf(z1):=(Γ(z1)Aζf(z2,t)2dz2dttn+1)1/2.

    An intrinsic square function Sζ is bounded in variable Lebesgue spaces Lp(), for more detail see [8].

    Theorem 4.1. Let 1<u<, a(),s()P0,(Rn), and ζ be such that

    (i) ns(0)<a(0)<ns(0),

    (ii) ns<a<ns.

    Suppose that an intrinsic square function Sζ bounded on Lebesgue spaces will be bounded on ˙Ka(),u),θs()(Rn).

    Proof. Let f˙Ka(),u),θs()(Rn), we have

    Sζf˙Ka(),u),θs()(Rn)=supψ>0(ψθkZ2ka()u(1+ψ)χkSζfu(1+ψ)Ls())1u(1+ψ)supψ>0(ψθkZ2ka()u(1+ψ)(l=χkSζf(χl)u(1+ψ)Ls()))1u(1+ψ)supψ>0(ψθkZ2ka()u(1+ψ)(k2l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθkZ2ka()u(1+ψ)(k+1l=k1χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθkZ2ka()u(1+ψ)(l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:E1+E2+E3.

    As operator Sζ is bounded on Lebesgue space Ls()(Rn) so for E2,

    E2supψ>0(ψθkZ2ka()u(1+ψ)(k+1l=k1Sζ(fχl)Ls())u(1+ψ))1u(1+ψ)supψ>0(ψθ1k=2ka()u(1+ψ)(k+1l=k1Sζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθk=02ka()u(1+ψ)(k+1l=k1Sζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:E21+E22.

    By using the fact 2ka(z1)=2ka(0), k<0, z1Rk implies that

    2ka()fχkLs()=2ka(0)fχkLs(),
    E21supψ>0(ψθ1k=2ka()u(1+ψ)(k+1l=k1Sζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2ka(0)u(1+ψ)(k+1l=k1fχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθkZ2ka()u(1+ψ)fχku(1+ψ)Ls())1u(1+ψ)=Cf˙Ka(),u),θs()(Rn).

    For E22, we use the fact 2ka(z1)=2ka, k0, z1Rk, we get,

    E22supψ>0(ψθk=02ka()u(1+ψ)(k+1l=k1Sζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupψ>0(ψθk=02kau(1+ψ)(k+1l=k1fχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθk=02kau(1+ψ)fχku(1+ψ)Ls())1u(1+ψ)Csupψ>0(ψθkZ2ka()u(1+ψ)fχku(1+ψ)Ls())1u(1+ψ)=Cf˙Ka(),u),θs()(Rn).

    For E1, for kZ, lk2, z1Rk and (z2,t)Γ(z1). For ϕCζ we have

    |f(χl)ϕt(z2)|=|Rlϕt(z2)f(x)dx|Ctn{xRl:|z2x|<t}|f(x)|dx.

    xRl with |z2x|<t we obtain

    t=12(t+t)>12(|z1z2|+|z2x|)12|z1x|12(|z1||x|)12(|z1|2t)12(|z1|2k2)12(|z1|21|z1|)=|z1|4.

    As a result we get

    |Sζ(fχl)(z1)|=(Γ(z1)(supϕCζ|fχlϕt(z2)|2dz2dttn+1)2)1/2C(|z1|4{z2:|z1z2|<t}(1tn{xRl:|zx|<t}|f(x)|dx)2dz2dttn+1)1/2C(Rl|f(x)|dx)(|z1|4({z2:|z1z2|<t}dz2)dtt3n+1)1/2=C(Rl|f(x)|dx)(|z1|4dtt2n+1)1/2=C(Rl|f(x)|dx)|z1|n.

    Note that z1Rk and |z1|>2k1, implies that |z1|n2kn, by using Hölder's inequality,

    Sζ(fχl)(z1)|C2kn(Rl|f(x)|dx)C2knfχkLs()χlLs().

    By using Lemma (2.1) we have

    2knχkLs()χlLs()C2kn2kns(0)2lns(0)C2(lk)ns(0). (4.1)

    Splitting E1 by means of Minkowski's inequality we have

    E1supψ>0(ψθ1k=2ka()u(1+ψ)(k2l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθk=02ka()u(1+ψ)(k2l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:E11+E12.

    Applying above results to E11 we can get

    E11supψ>0(ψθ1k=2ka()u(1+ψ)(k2l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2ka()u(1+ψ)(k2l=χkLs()2knfχlLs()χlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2ka()u(1+ψ)(k2l=χkLs()2knfχlLs()χlLs())u(1+ψ))1u(1+ψ).

    Let b=ns(0)a(0),

    E11Csupψ>0(ϵθ1k=(k2l=2a(0)lfχlLs()2b(lk))u(1+ψ))1u(1+ψ), (4.2)

    by using Hölder's inequality, Fubini's theorem for series and the inequality 2u(1+ψ)<2u we get,

    E11Csupψ>0(ψθ1k=(k2l=2a(0)u(1+ψ)lfχlu(1+ψ)Ls()2bu(1+ψ)(lk)/2k2l=2b(u(1+ψ))(lk)/2)u(1+ψ)(u(1+ψ)))1u(1+ψ)=Csupψ>0(ψθ1k=k2l=2a(0)u(1+ψ)lfχlu(1+ψ)Ls()2bu(1+ψ)(lk)/2)1u(1+ψ)=Csupψ>0(ψθ1l=2a(0)u(1+ψ)lfχlu(1+ψ)Ls()1k=l+22bu(1+ψ)(lk)/2)1u(1+ψ)<Csupψ>0(ψθ1l=2a(0)u(1+ψ)lfχlu(1+ψ)Ls()1k=l+22bp(lk)/2)1u(1+ψ)Csupψ>0(ψθ1l=2a(0)u(1+ψ)lfχlu(1+ψ)Ls())1u(1+ψ)=Csupψ>0(ψθlZ2a()u(1+ψ)lfχlu(1+ψ)Ls())1u(1+ψ)Cf˙Ka(),u),θs()(Rn).

    Now for E12 using Minkowski's inequality we have

    E12supψ>0(ψθk=02ka()u(1+ψ)(1l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθk=02ka()u(1+ψ)(k2l=0χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:A1+A2.

    The estimate for A2 can be obtained by similar way to E11 by replacing s(0) with s and using the fact nsa>0. For A1 using Lemma (2.1) we have

    2knχkLs()χlLs()C2kn2kns2lns(0)C2kns2lns(0). (4.3)

    As ans<0 we have

    A1supψ>0(ψθk=02kau(1+ψ)(1l=χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupϵ>0(ψθk=02kau(1+ψ)×(1l=2kns2lns(0)fχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ϵθk=02kαknsu(1+ψ)×(1l=2lns(0)fχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ(1l=2lns(0)fχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ(1l=2lns(0)a(0)lfχlLs()2a(0)l)u(1+ψ))1u(1+ψ)

    Now by applying Hölder's inequality and using the fact that ns(0)a(0)>0 we have

    A1Csupψ>0(ψθ(1l=2lns(0)a(0)lfχlLs()2a(0)l)u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1l=2a(0)lu(1+ψ)fχlu(1+ψ)Ls()(1l=2(lns(0)a(0)l)(u(1+ψ)))u(1+ψ)(u(1+ψ)))1u(1+ψ)Csupψ>0(ψθlZ2a()lu(1+ψ)fχlu(1+ψ)Ls())1u(1+ψ)Cf˙Ka(),u),θs()(Rn).

    Now we estimate E3, we take kZ, lk2, z1Rk and (z2,t)Γ(z1). For xRl, ϕCζ with |z2x|<t we obtain

    t=12(t+t)>12(|z1z2|+|z2x|)12|z1x|12(|x||z1|)12(2l12k)2l3.

    As a result we get

    |Sζ(fχl)(z1)|=(Γ(z1)(supϕCζ|fχlϕt(z2)|2dz2dttn+1)2)1/2C(Γ(z1)(1tn{xRl:|z2x|<t}|f(x)|dx)2dz2dttn+1)1/2C(Rl|f(x)|dx)(2l3({z2:|z1z2|<t}dz2)dtt3n+1)1/2=C(Rl|f(x1)|dx1)(2l3dtt2n+1)1/2=C(Rl|f(x)|dx)|Bl|1C2lnfχlLs()χlLs().

    Splitting E3 by using Minkowski's inequality we have

    E3supψ>0(ψθkZ2ka()u(1+ψ)(l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)supψ>0(ψθ1k=2ka()u(1+ψ)(l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθk=02ka()u(1+ψ)(l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:E31+E32.

    For E32 Lemma (2.1) yields

    2lnχkLs()χlLs()C2ln2kns2lnsC2(kl)ns, (4.4)

    we get

    E32supψ>0(ψθk=02ka()u(1+ψ)(l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupψ>0(ψθk=02ka()u(1+ψ)(l=k+2χkLs()2lnfχlLs()χlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθk=0(l=k+22alfχlLs()2d(kl))u(1+ψ))1u(1+ψ),

    where d=ns+α>0. Then we use Hölder's theorem for series and 2u(1+ψ)<2u to obtain

    E32Csupψ>0(ψθk=0(l=k+22αu(1+ψ)lfχlu(1+ψ)Ls()2du(1+ψ)(kl)/2)×(l=k+22d(u(1+ψ))(kl)/2)u(1+ψ)(u(1+ψ)))1u(1+ψ)Csupψ>0(ψθk=0l=k+22au(1+ψ)lfχlu(1+ψ)Ls()2du(1+ψ)(kl)/2)1u(1+ψ)Csupψ>0(ψθl=02au(1+ψ)lfχlu(1+ψ)Ls()l2k=02du(1+ψ)(kl)/2)1u(1+ψ)Csupψ>0(ψθlZ2au(1+ψ)lfχlu(1+ψ)Ls()l2k=2dp(kl)/2)1u(1+ψ)Csupψ>0(ψθlZ2a()u(1+ψ)lfχlu(1+ψ)Ls())1u(1+ψ)Cf˙Ka(),u),θs()(Rn).

    Now for E31 using Monkowski's inequality we have

    E31supψ>0(ψθ1k=2ka()u(1+ψ)(1l=k+2χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)+supψ>0(ψθ 1k=2ka()u(1+ψ)(l=0χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)=:B1+B2.

    The estimate for B1 can be obtained by similar way to E32 by replacing s with s(0) and using the fact that ns(0)+a(0)>0. For B2 using Lemma (2.1) we have

    2lnχkLs()χlLs()C2ln2kns(0)2lnsC2kns(0)2lns (4.5)
    B2supψ>0(ψθ1k=2ka(0)u(1+ψ)(l=0χkSζ(fχl)Ls())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2ka(0)u(1+ψ)×(l=02ln2kns(0)2lnsfχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2ka(0)u(1+ψ)×(l=02kns(0)2lnsfχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ1k=2k(a(0)+n)/s(0)u(1+ψ)×(l=02lnsfχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ(l=02lnsfχlLs())u(1+ψ))1u(1+ψ)Csupψ>0(ψθ(l=02lafχlLs()2l(ns+a))u(1+ψ))1u(1+ψ).

    Now by applying Hölder's inequality and using the fact that ns+a>0 we have

    B2Csupψ>0(ψθ(l=02lau(1+ψ)fχlu(1+ψ)Ls())u(1+ψ)×(l=02l(ns+a)u(1+ψ))u(1+ψ)u(1+ψ))1u(1+ψ)Csupψ>0(ψθ(lZ2alu(1+ψ)fχlu(1+ψ)Ls()))1u(1+ψ)Cf˙Ka(),u),θs()(Rn).

    Combining the estimates for E1, E2 and E3 yields

    Sζf˙Ka(),u),θs()    (Rn)Cf˙Ka(),u),θs()    (Rn)

    which ends the proof.

    Let b be a locally integrable function, 0<ζ<n, and mN; the higher order commutators of fractional integrable operator Imζ,b are defined by

    Imζ,bf(x)=Rn[b(x)b(y)]m|xy|nζf(y)dy. (5.1)

    When m=0 then I0ζ,b=Iζ and for, m=1 I1ζ,b=[b,Iζ]. According to Hardy-Littlewood-Sobolev theorem the fractional integral operator Iζ is bounded operator from Lebesgue spaces Lp1(Rn) to Lp2(Rn) when 0<p1<p2< and 1/p11/p2=ζ/n.

    Lemma 5.1. [19] Suppose that q1()P(Rn) satisfies (2.2), (2.3), 0<ζ<n/(q1)+ and 1/q1(x)1/q2(x)=ζ/n, bBMO(Rn) then

    Imζ,b(f)q2()CbmBMO(Rn)fq1(). (5.2)

    Theorem 5.1. Let 1<p<, bBMO(Rn), α,q2P0,(Rn), 1/q1(x)1/q2(x)=ζ/n. If 0<r<min{1/(q1)+,1(q2)+}, 0<ζ<nr, and

    nq1<a<nq1,nq1(0)<a(0)<nq1(0).

    Suppose that Imζ,b is higher order commutators of fractional integral operator bounded on Lebesgue spaces will be bounded from ˙Ka(),p),θq1()(Rn) to ˙Ka(),p),θq2()(Rn).

    Proof. Let f˙Ka(),p),θq2()(Rn), and f(x)=l=f(x)χl(x)=l=fl(x), we have

    Imζ,b(f)˙Ka(),p),θq2()   (Rn)=supϵ>0(ϵθkZ2ka()p(1+ϵ)χkImζ,bfp(1+ϵ)q2())1p(1+ϵ)supϵ>0(ϵθkZ2ka()p(1+ϵ)(l=χkImζ,bf(χl)p(1+ϵ)q2()))1p(1+ϵ)supϵ>0(ϵθkZ2ka()p(1+ϵ)(k2l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθkZ2ka()p(1+ϵ)(k+1l=k1χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθkZ2ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)=:E1+E2+E3.

    As operator Imζ,b is bounded on Lebesgue space q2() so for E2,

    E2supϵ>0(ϵθkZ2ka()p(1+ϵ)(k+1l=k1Imζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)supϵ>0(ϵθ1k=2ka()p(1+ϵ)(k+1l=k1Imζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθk=02ka()p(1+ϵ)(k+1l=k1Imζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ):=E21+E22.

    Here we use the fact 2kα(x)=2kα(0), k<0, xRk equivalent to say that

    2ka()fχkq1()=2kα(0)fχkq1(),
    E21supϵ>0(ϵθ1k=2ka()p(1+ϵ)(k+1l=k1Imζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=2kα(0)p(1+ϵ)(k+1l=k1fχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=2kα(0)p(1+ϵ)fχkp(1+ϵ)q1())1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθkZ2ka()p(1+ϵ)fχkp(1+ϵ)q1())1p(1+ϵ)=CbmBMO(Rn)f˙Ka(),p),θq1()(Rn).

    For E22, we use the fact 2kα(x)=2ka, k<0, xRk, we have,

    E22Csupϵ>0(ϵθk=02ka()p(1+ϵ)(k+1l=k1Imζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=02kap(1+ϵ)(k+1l=k1fχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=02kap(1+ϵ)fχkp(1+ϵ)q1())1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθkZ2ka()p(1+ϵ)fχkp(1+ϵ)q1())1p(1+ϵ)=CbmBMO(Rn)f˙Ka(),p),θq1()(Rn).

    For E1, we use the facts that, if xRk, yRl and lk2, then |xy||x|2k, we get

    E1supϵ>0(ϵθkZ2ka()p(1+ϵ)(k2l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ),

    by using size condition and Hölder's inequality, we get

    |Imζ,b(fχl)(x).χk(x)|CRl|fl(y)|[b(x)b(y)]m|xy|nζdy.χk(x)C2k(ζn)Rl|fl(y)|b(x)b(y)|mdy.χk(x)C2k(ζn)(|b(x)bBl|mRl|fl(y)|dy+Rl|fl(y)||b(y)bBl|mdy).χk(x)C2k(ζn)flq1()(|b(x)bBl|mχlq1()+((bbBl)mχlLq1()(Rn)).χk(x).

    Thus, from Lemma (2.3), and the fact that χlLs()χBlLs(), we get

    |Imζ,b(fχl)(x).χk(x)q2()C2k(ζn)flq1()((bbBl)mχkq2()χlq1()+((bbBl)mχlLq1()(Rn)χlq2())C2k(ζn)flq1()((kl)mbmBMO(Rn)χBkq2()χlq1()+bmBMO(Rn)χBlLq1()(Rn)χkq2())C2k(ζn)(kl)mbmBMO(Rn)flq1()χBlq1()χBkq2().

    It is known, see e.g., [19] that χBk(x)C2kζIζ(χBk)(x), which yields

    χBkq2()C2kζIζ(χBk)q2()C2kζχBkq1().

    As a result we get,

    2k(ζn)χBlq1()χBkq2()2k(ζn)χBlq1().2kζχBkq1()2knχBlq1()χBkq1().

    Consequently, we have

    2knχBlq1()χBkq1()C2kn2knq1(0)2lnq1(0)C2(lk)nq1(0), (5.3)

    splitting E1 by means of Minkowski's inequality we have

    E1supϵ>0(ϵθ1k=2ka()p(1+ϵ)(k2l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθk=02ka()p(1+ϵ)(k2l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ):=E11+E12,

    applying above results to E11,

    E11supϵ>0(ϵθ1k=2ka()p(1+ϵ)(k2l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)Csupϵ>0(ϵθ1k=2ka()p(1+ϵ)(k2l=2(lk)nq1(0)(kl)mbmBMO(Rn)fχlq1())p(1+ϵ))1p(1+ϵ)Csupϵ>0(ϵθ1k=2ka()p(1+ϵ)(k2l=2(lk)nq1(0)(kl)mbmBMO(Rn)fχlq1())p(1+ϵ))1p(1+ϵ),

    let b:=nq1(0)α(0), applying Hölder's inequality, Fubini's theorem for series and 2p(1+ϵ)<2p we get,

    Csupϵ>0(ϵθ1k=(k2l=2α(0)l(kl)mbmBMO(Rn)fχlq1()2b(lk))p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=(k2l=2α(0)lfχlq1()(kl)m2b(lk))p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=(k2l=2α(0)p(1+ϵ)lfχlp(1+ϵ)q1()(kl)p(1+ϵ)m/2)×2bp(1+ϵ)(lk)/2(k2l=(kl)p(1+ϵ)m/22bp(1+ϵ)(lk)/2)p(1+ϵ)p(1+ϵ))1p(1+ϵ)=CbmBMO(Rn)supϵ>0(ϵθ1k=k2l=2α(0)p(1+ϵ)lfχlp(1+ϵ)q1()(kl)p(1+ϵ)m/22bp(1+ϵ)(lk)/2)1p(1+ϵ)=CbmBMO(Rn)supϵ>0(ϵθ1l=2a()p(1+ϵ)lfχlp(1+ϵ)q1()1k=l+2(kl)p(1+ϵ)m/22bp(1+ϵ)(lk)/2)1p(1+ϵ)<CbmBMO(Rn)supϵ>0(ϵθ1l=2α(0)p(1+ϵ)lfχlp(1+ϵ)q1()1k=l+2(kl)pm/22bp(lk)/2)1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1l=2α(0)p(1+ϵ)lfχlp(1+ϵ)q1())1p(1+ϵ)=CbmBMO(Rn)supϵ>0(ϵθlZ2a()p(1+ϵ)lfχlp(1+ϵ)q1())1p(1+ϵ)CbmBMO(Rn)f˙Ka(),p),θq1()(Rn).

    Now for E12 using Minkowski's inequality we have

    E12supϵ>0(ϵθk=02ka()p(1+ϵ)(1l=χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθk=02ka()p(1+ϵ)(k2l=0χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ):=A1+A2.

    The estimate for A2 follows in a similar manner to E11 with q1(0) replaced by q1 and using the fact b:=nq1a>0. For A1 using Lemma (2.1) we have

    2knχBkq1()χBlLq1()(Rn)C2kn2knq12lnq1(0)C2knq12lnq1(0), (5.4)

    as anq1<0 we have

    A1Csupϵ>0(ϵθk=02kap(1+ϵ)(1l=χkImζ,bfχlq2())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=02kap(1+ϵ)(1l=(kl)m2(lnq1(0))2(knq1)fχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=0(1l=(kl)m2l(nq1(0)a)2k(nq1+a)2lafχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=0(1l=2alp(1+ϵ)((kl)m2l(nq1(0)a)2k(nq1+a))p(1+ϵ)/2)fχlp(1+ϵ)q1()×(1l=((kl)m2l(nq1(0)a)2k(nq1+a))p(1+ϵ)/2)p(1+ϵ)p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=01l=2alp(1+ϵ)fχlp(1+ϵ)q1()((kl)m2l(nq1(0)a)2k(nq1+a))p(1+ϵ)/2)1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1l=2alp(1+ϵ)fχlp(1+ϵ)q1()×k=l((kl)m2l(nq1(0)a)2k(nq1+a))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1l=2alp(1+ϵ)fχlp(1+ϵ)q1())1u(1+ψ)CbmBMO(Rn)f˙Ka(),p),θq1()(Rn).

    Now we estimate E3, for each kZ and lk+2 and a.e. xRk; splitting E3 by using Minkowski's inequality and using similar method of E1,E2 we have

    E3supϵ>0(ϵθkZ2ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)supϵ>0(ϵθ1k=2ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθk=02ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ):=E31+E32.

    For E31 by using Monkowski's inequality

    E31supϵ>0(ϵθ1k=2ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)E31supϵ>0(ϵθ1k=2ka()p(1+ϵ)(1l=k+2χkImζ,b(fχl)q1())p(1+ϵ))1p(1+ϵ)+supϵ>0(ϵθ1k=2ka()p(1+ϵ)(l=0χkImζ,b(fχl)q1())p(1+ϵ))1p(1+ϵ):=B1+B2.

    The estimate for B1 follows in a similar manner to E32 with q1 replaced by q1(0) and using the facts that nq1(0)+α(0)>0, nq1+a>0, For B2 using Lemma (2.1) and Hölder's inequality we have,

    2lnχkq1()χlLq1()(Rn)C2ln2knq1(0)2lnq1C2knq1(0)2lnq1, (5.5)
    B2Csupϵ>0(ϵθ1k=2ka(0)p(1+ϵ)(l=0χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=2ka(0)p(1+ϵ)(l=0(kl)m2l(nq1)2k(nq1(0))fχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=(l=02a(0)(kl)m2l(nq1a(0))2k(nq1(0)+a(0)fχlq1())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=(l=02a(0)(p(1+ϵ))((kl)m2l(nq1a(0))2k(nq1(0)+a(0))p(1+ϵ)/2)×fχlp(1+ϵ)q1()(l=0((kl)m2l(nq1a(0))2k(nq1(0)+a(0))p(1+ϵ)/2)p(1+ϵ)p(1+ϵ))1u(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθ1k=l=02a(0)(p(1+ϵ))fχlp(1+ϵ)/2q1()((kl)m2l(nq1a(0))2k(nq1(0)+a(0))p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθl=02a(0)(p(1+ϵ))fχlp(1+ϵ)q1()lk=((kl)m2l(nq1a(0))2k(nq1(0)+a(0))p(1+ϵ)/2)1p(1+ϵ)CbmBMO(Rn)f˙Ka(),p),θq1()   (Rn).

    Finally we will estimate E32,

    |Imζ,b(fχl)(x).χk(x)|CRl|fl(y)|[b(x)b(y)]m|xy|nζdy.χk(x)C2l(ζn)Rl|fl(y)|b(x)b(y)|mdy.χk(x)C2l(ζn)(|b(x)bBk|mRl|fl(y)|dy+Rl|fl(y)||b(y)bBk|mdy).χk(x)C2l(ζn)flq1()(|b(x)bBl|mχlq1()+((bbBl)mχlLq1()(Rn)).χk(x).

    Thus, from Lemma (2.3), and the fact that χlLs()χBlLs(), we get

    |Imζ,b(fχl)(x).χk(x)q2()C2l(ζn)flq1()((bbBk)mχkq2()χlq1()+((bbBk)mχlLq1()(Rn)χkq2())C2l(ζn)flq1()(bmBMO(Rn)χBkq2()χlq1()+(lk)mbmBMO(Rn)χBlLq1()(Rn)χkq2())C2l(ζn)(lk)mbmBMO(Rn)flq1()χBlq1()χBkq2().

    It is known, see e.g., [19], that χBl(x)C2lζIζ(χBl)(x), which yields

    χBlq2()C2lζIζ(χBl)q2()C2lζχBlq1().

    As a result we get,

    2l(ζn)χBlq1()χBkq2()2l(ζn)χBlq1().2kζχBkq1()2lnχBlq1()χBkq1().

    For E32 Lemma (2.2) yields

    2lnχBkq1()χBlLq1()(Rn)C2ln2knq12lnq1C2(kl)nq1, (5.6)

    we get

    E32Csupϵ>0(ϵθk=02ka()p(1+ϵ)(l=k+2χkImζ,b(fχl)q2())p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=0(l=k+2(lk)m2alfχlq1()2d(kl))p(1+ϵ))1p(1+ϵ),

    where d=nq1+a>0. Then we use Hölder's theorem for series and 2p(1+ϵ)<2p to obtain

    E32CbmBMO(Rn)supϵ>0(ϵθk=0(l=k+22ap(1+ϵ)lfχlp(1+ϵ)q1()(lk)mp(1+ϵ)/2)×2dp(1+ϵ)(kl)/2(l=k+2(lk)mp(1+ϵ)/22dp(1+ϵ)(kl)/2)p(1+ϵ)p(1+ϵ))1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθk=0l=k+22ap(1+ϵ)lfχlp(1+ϵ)q1()(lk)mp(1+ϵ)/22dp(1+ϵ)(kl)/2)1p(1+ϵ)CbmBMO(Rn)supϵ>0(ϵθl=02ap(1+ϵ)lfχlp(1+ϵ)q1()l2k=0(lk)mp(1+ϵ)/22dp(1+ϵ)(kl)/2)1p(1+ϵ)<CbmBMO(Rn)supϵ>0(ϵθlZ2ap(1+ϵ)lfχlp(1+ϵ)q1()l2k=(lk)mp(1+ϵ)/22dp(kl)/2)1p(1+ϵ)=CbmBMO(Rn)supϵ>0(ϵθlZ2a()p(1+ϵ)lfχlp(1+ϵ)q1())1p(1+ϵ)CbmBMO(Rn)f˙Ka(),p),θq1()(Rn).

    Combining the estimates for E1, E2 and E3 yields

    Imζ,bf˙Ka(),p),θq2()(Rn)CbmBMO(Rn)f˙Ka(),p),θq1()(Rn),

    which ends the proof.

    The authors A. ALoqaily and N. Mlaiki would like to thank Prince Sultan University for paying the APC for this work through TAS LAB.

    The authors declare no conflict of interest.



    [1] B. Sultan, F. M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [2] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [3] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, Birkhuser, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [4] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [5] A. Hussain, M. Asim, F. Jarad, Variable λ-central Morrey space estimates for the fractional Hardy operators and commutators, J. Math., 2022 (2022), 5855068. https://doi.org/10.1155/2022/5855068 doi: 10.1155/2022/5855068
    [6] M. Asim, A. Hussain, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. https://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
    [7] A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. Space., 2021 (2021), 9705250. https://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
    [8] K. P. Ho, Intrinsic square functions on Morrey and block spaces with variable exponents, Bull. Malays. Math. Sci. Soc., 40 (2017), 995–1010. https://doi.org/10.1007/s40840-016-0330-6 doi: 10.1007/s40840-016-0330-6
    [9] M. Izuki, Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization, Anal. Math., 36 (2010), 33–50. https://doi.org/10.1007/s10476-010-0102-8 doi: 10.1007/s10476-010-0102-8
    [10] M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponents, Math. Sci. Res. J., 13 (2009), 243–253.
    [11] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [12] A Meskhi, Integral operators in grand Morrey spaces, 2010, arXiv: 1007.1186.
    [13] H. Nafis, H. Rafeiro, M. Zaighum, A note on the boundedness of sublinear operators on grand variable Herz spaces, J. Inequal. Appl., 2020 (2020), 1. https://doi.org/10.1186/s13660-019-2265-6 doi: 10.1186/s13660-019-2265-6
    [14] O. Kováčik, J. Rákosník, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592–618.
    [15] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Perez, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. M., 31 (2006), 239–264.
    [16] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [17] A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
    [18] A. Hussain, A. Ajaib, Some results for the commutators of generalized Hausdorff operator, J. Math. Inequal., 13 (2019), 1129–1146. https://doi.org/10.7153/jmi-2019-13-80 doi: 10.7153/jmi-2019-13-80
    [19] W. L. Jiang, W. J. Zhao, Boundedness for higher order commutators of fractional integrals on variable exponent Herz-Morrey spaces, Mediterr. J. Math., 14 (2017), 198. https://doi.org/10.1007/s00009-017-1002-y doi: 10.1007/s00009-017-1002-y
    [20] H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
  • This article has been cited by:

    1. Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, 2023, 8, 2473-6988, 22338, 10.3934/math.20231139
    2. Pham Thi Kim Thuy, Kieu Huu Dung, Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents, 2024, 9, 2473-6988, 23060, 10.3934/math.20241121
    3. Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces, 2023, 8, 2473-6988, 26484, 10.3934/math.20231352
    4. Babar Sultan, Mehvish Sultan, Ilyas Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, 2023, 126, 10075704, 107464, 10.1016/j.cnsns.2023.107464
    5. Babar Sultan, Mehvish Sultan, Sobolev-type theorem for commutators of Hardy operators in grand Herz spaces, 2024, 76, 1027-3190, 1052, 10.3842/umzh.v76i7.7546
    6. Babar Sultan, Mehvish Sultan, Boundedness of commutators of rough Hardy operators on grand variable Herz spaces, 2024, 36, 0933-7741, 717, 10.1515/forum-2023-0152
    7. Babar Sultan, Mehvish Sultan, Qian-Qian Zhang, Nabil Mlaiki, Boundedness of Hardy operators on grand variable weighted Herz spaces, 2023, 8, 2473-6988, 24515, 10.3934/math.20231250
    8. M. Sultan, B. Sultan, A. Hussain, Grand Herz–Morrey Spaces with Variable Exponent, 2023, 114, 0001-4346, 957, 10.1134/S0001434623110305
    9. Waqar Afzal, Mujahid Abbas, Daniel Breaz, Luminiţa-Ioana Cotîrlă, Fractional Hermite–Hadamard, Newton–Milne, and Convexity Involving Arithmetic–Geometric Mean-Type Inequalities in Hilbert and Mixed-Norm Morrey Spaces ℓq(·)(Mp(·),v(·)) with Variable Exponents, 2024, 8, 2504-3110, 518, 10.3390/fractalfract8090518
    10. Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad, Boundedness of commutators of variable Marcinkiewicz fractional integral operator in grand variable Herz spaces, 2024, 2024, 1029-242X, 10.1186/s13660-024-03169-3
    11. Mehvish Sultan, Babar Sultan, Estimate for the Intrinsic Square Function on $$p$$-Adic Herz Spaces with Variable Exponent, 2024, 16, 2070-0466, 82, 10.1134/S2070046624010072
    12. Babar SULTAN, Mehvish SULTAN, Ferit GÜRBÜZ, BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces, 2023, 72, 1303-5991, 1000, 10.31801/cfsuasmas.1328691
    13. Babar Sultan, Mehvish Sultan, Boundedness of higher order commutators of Hardy operators on grand Herz-Morrey spaces, 2024, 190, 00074497, 103373, 10.1016/j.bulsci.2023.103373
    14. Samia Bashir, Babar Sultan, Amjad Hussain, Aziz Khan, Thabet Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, 2023, 8, 2473-6988, 22178, 10.3934/math.20231130
    15. Babar Sultan, Mehvish Sultan, Sobolev-Type Theorem for Commutators of Hardy Operators in Grand Herz Spaces, 2024, 0041-5995, 10.1007/s11253-024-02381-0
    16. Babar Sultan, Mehvish Sultan, Amjad Hussain, Boundedness of the Bochner–Riesz Operators on the Weighted Herz–Morrey Type Hardy Spaces, 2025, 19, 1661-8254, 10.1007/s11785-025-01671-0
    17. Waqar Afzal, Mujahid Abbas, Mutum Zico Meetei, Saïd Bourazza, Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces, 2025, 13, 2227-7390, 917, 10.3390/math13060917
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1880) PDF downloads(156) Cited by(17)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog