Research article

Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces

  • Received: 21 May 2023 Revised: 03 July 2023 Accepted: 04 July 2023 Published: 13 July 2023
  • MSC : 46E30, 47B38

  • Let $ \mathbb{S}^{n-1} $ denotes the unit sphere in $ \mathbb{R}^n $ equipped with the normalized Lebesgue measure. Let $ \Phi \in L^r(\mathbb{S}^{n-1}) $ be a homogeneous function of degree zero. The variable Marcinkiewicz fractional integral operator is defined as

    $ \mu _{\Phi} (f)(z_1) = \left( \int \limits _0 ^ \infty \left|\int \limits _{|z_1-z_2| \leq s} \frac{\Phi(z_1-z_2)}{|z_1-z_2|^{n-1-\zeta(z_1)}}f(z_2)dz_2\right|^2 \frac{ds}{s^3}\right)^{\frac{1}{2}}. $

    The Marcinkiewicz fractional operator of variable order $ \zeta(z_1) $ is shown to be bounded from the grand Herz-Morrey spaces $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, \rho, q(\cdot)}(\mathbb{R}^n)} $ where

    $ \rho = (1+|z_1|)^{-\lambda} $

    and

    $ {1 \over q(z_1)} = {1 \over p(z_1)}-{\zeta(z_1) \over n} $

    when $ p(z_1) $ is not necessarily constant at infinity.

    Citation: Mehvish Sultan, Babar Sultan, Aziz Khan, Thabet Abdeljawad. Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(9): 22338-22353. doi: 10.3934/math.20231139

    Related Papers:

  • Let $ \mathbb{S}^{n-1} $ denotes the unit sphere in $ \mathbb{R}^n $ equipped with the normalized Lebesgue measure. Let $ \Phi \in L^r(\mathbb{S}^{n-1}) $ be a homogeneous function of degree zero. The variable Marcinkiewicz fractional integral operator is defined as

    $ \mu _{\Phi} (f)(z_1) = \left( \int \limits _0 ^ \infty \left|\int \limits _{|z_1-z_2| \leq s} \frac{\Phi(z_1-z_2)}{|z_1-z_2|^{n-1-\zeta(z_1)}}f(z_2)dz_2\right|^2 \frac{ds}{s^3}\right)^{\frac{1}{2}}. $

    The Marcinkiewicz fractional operator of variable order $ \zeta(z_1) $ is shown to be bounded from the grand Herz-Morrey spaces $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, p(\cdot)}(\mathbb{R}^n)} $ with variable exponent into the weighted space $ {M\dot{K} ^{\alpha(\cdot), u), \theta}_{\beta, \rho, q(\cdot)}(\mathbb{R}^n)} $ where

    $ \rho = (1+|z_1|)^{-\lambda} $

    and

    $ {1 \over q(z_1)} = {1 \over p(z_1)}-{\zeta(z_1) \over n} $

    when $ p(z_1) $ is not necessarily constant at infinity.



    加载中


    [1] M. Růžička, Electroreological fluids: modeling and mathematical theory, Springer, 2000. https://doi.org/10.1007/BFb0104029
    [2] L. Diening, M. Růžička, Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics, J. Reine Angew. Math., 563 (2003), 197–220. https://doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081
    [3] D. Cruz-Uribe, L. Diening, A. Fiorenza, A new proof of the boundedness of maximal operators on variable Lebesgue spaces, Boll. Unione Mat. Ital., 2 (2009), 151–173.
    [4] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 31 (2006), 239–264.
    [5] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable $L^p$ spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238.
    [6] L. Diening, Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$, Math. Inequal. Appl., 7 (2004), 245–253. https://doi.org/10.7153/mia-07-27 doi: 10.7153/mia-07-27
    [7] L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math., 34 (2009), 503–522.
    [8] V. Kokilashvili, S. Samko, On Sobolev theorem for Riesz-type potentials in the Lebesgue spaces with variable exponent, Z. Anal. Anwend., 22 (2003), 899–910. https://doi.org/10.4171/ZAA/1178 doi: 10.4171/ZAA/1178
    [9] A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents, J. Math. Anal. Appl., 394 (2012), 781–795. https://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
    [10] J. L. Wu. W. J. Zhao, Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces, Kyoto J. Math., 56 (2016), 831–845. https://doi.org/10.1215/21562261-3664932 doi: 10.1215/21562261-3664932
    [11] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [12] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Springer, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [13] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces. volume 1: variable exponent Lebesgue and amalgam spaces, Springer, 2016. https://doi.org/10.1007/978-3-319-21015-5
    [14] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral operators in non-standard function spaces, volume 2: variable exponent Hölder, Morrey-Campanato and grand spaces, Springer, 2016. https://doi.org/10.1007/978-3-319-21018-6
    [15] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslov. Math. J., 41 (1991), 592–618. https://doi.org/10.21136/CMJ.1991.102493 doi: 10.21136/CMJ.1991.102493
    [16] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaiki, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [17] B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [18] M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
    [19] S. Samko, Variable exponent Herz spaces, Mediterr. J. Math., 10 (2013), 2007–2025. https://doi.org/10.1007/s00009-013-0285-x doi: 10.1007/s00009-013-0285-x
    [20] H. Nafis, H. Rafeiro, M. A. Zaighum, Boundedness of the Marcinkiewicz integral on grand variable Herz spaces, J. Math. Inequal., 15 (2021), 739–753. https://doi.org/10.7153/jmi-2021-15-52 doi: 10.7153/jmi-2021-15-52
    [21] B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. Amer. Math. Soc., 161 (1971), 249–258. https://doi.org/10.1090/S0002-9947-1971-0285938-7 doi: 10.1090/S0002-9947-1971-0285938-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1085) PDF downloads(89) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog