This work presents a discussion of Ambrosetti-Prodi-type second-order periodic problems. In short, the existence, non-existence, and multiplicity of solutions will be discussed on the parameter λ. The arguments rely on a Nagumo condition, to guarantee an apriori bound on the first derivative, lower and upper-solutions method, and the Leray-Schauder's topological degree theory. There are two types of new results based on the parameter's variation: An existence and non-existence theorem and a multiplicity theorem, proving the existence of a bifurcation point. An application to a damped and forced pendulum is studied, suggesting a method to estimate the critical values of the parameter.
Citation: Feliz Minhós, Nuno Oliveira. On periodic Ambrosetti-Prodi-type problems[J]. AIMS Mathematics, 2023, 8(6): 12986-12999. doi: 10.3934/math.2023654
[1] | Xue Geng, Liang Guan, Dianlou Du . Action-angle variables for the Lie-Poisson Hamiltonian systems associated with the three-wave resonant interaction system. AIMS Mathematics, 2022, 7(6): 9989-10008. doi: 10.3934/math.2022557 |
[2] | Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Generalized Buchdahl equations as Lie–Hamilton systems from the "book" and oscillator algebras: quantum deformations and their general solution. AIMS Mathematics, 2025, 10(3): 6873-6909. doi: 10.3934/math.2025315 |
[3] | Cenap Özel, Habib Basbaydar, Yasar Sñzen, Erol Yilmaz, Jung Rye Lee, Choonkil Park . On Reidemeister torsion of flag manifolds of compact semisimple Lie groups. AIMS Mathematics, 2020, 5(6): 7562-7581. doi: 10.3934/math.2020484 |
[4] | Wen Teng, Jiulin Jin, Yu Zhang . Cohomology of nonabelian embedding tensors on Hom-Lie algebras. AIMS Mathematics, 2023, 8(9): 21176-21190. doi: 10.3934/math.20231079 |
[5] | Junyuan Huang, Xueqing Chen, Zhiqi Chen, Ming Ding . On a conjecture on transposed Poisson n-Lie algebras. AIMS Mathematics, 2024, 9(3): 6709-6733. doi: 10.3934/math.2024327 |
[6] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[7] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[8] | Simone Fiori . Coordinate-free Lie-group-based modeling and simulation of a submersible vehicle. AIMS Mathematics, 2024, 9(4): 10157-10184. doi: 10.3934/math.2024497 |
[9] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[10] | Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Exact solutions and superposition rules for Hamiltonian systems generalizing time-dependent SIS epidemic models with stochastic fluctuations. AIMS Mathematics, 2023, 8(10): 24025-24052. doi: 10.3934/math.20231225 |
This work presents a discussion of Ambrosetti-Prodi-type second-order periodic problems. In short, the existence, non-existence, and multiplicity of solutions will be discussed on the parameter λ. The arguments rely on a Nagumo condition, to guarantee an apriori bound on the first derivative, lower and upper-solutions method, and the Leray-Schauder's topological degree theory. There are two types of new results based on the parameter's variation: An existence and non-existence theorem and a multiplicity theorem, proving the existence of a bifurcation point. An application to a damped and forced pendulum is studied, suggesting a method to estimate the critical values of the parameter.
Nonlinear differential equations are important mathematical tools for describing natural phenomena. The integrability and exact solutions of nonlinear evolution equations have always been of great concern to scientists [1,2]. The exact solution of nonlinear models plays an important role in describing some complex nonlinear phenomena. Some researchers have worked on solving the exact analytic solutions of the nonlinear extended models. They proposed many methods and also obtained more new types of exact solutions [3,4,5,6,7].
The study of integrable systems is an important research topic in disciplines such as physics and mathematics. The trace identity proposed by Tu is a simple and powerful tool for generating integrable hierarchies of soliton equations and their corresponding Hamiltonian structures [8]. By using the trace identity, based on Lie algebras, some isospectral integrable hierarchies and the corresponding Hamiltonian structures were constructed [9,10,11,12,13]. Some methods had been developed in deriving (2+1)-dimensional integrable systems, such as the TAH scheme. The TAH scheme is an effective method for generating (2+1)-dimensional soliton hierarchies. Based on this method, some (2+1)-dimensional integrable hierarchies and the corresponding Hamiltonian structures were obtained [14,15,16,17,18,19].
In order to obtain more integrable sysytems, Zhang et al. proposed an approach for generating nonisospectral integrable hierarchies under the assumption λt=∑i≥0ki(t)λ−i [20,21]. By using this method, [22,23] constructed some multi-component integrable hierarchies associated with multi-component non-semisimple Lie algebras. Moreover, based on Lie superalgebras, [24,25] investigated some nonisospectral super integrable hierarchies and the corresponding super Hamiltonian structures.
Matrix spectral problems and zero curvature equations play an important role in exploring the mathematical properties of associated soliton equations [26,27]. The semi-direct sum decomposition of Lie algebras provide a helpful way to construct the integrable couplings of soliton systems [28,29,30].
This paper is arranged as follows. In Section 2, based on Lie algebra sp(4), we construct the generalized Lie algebra Gsp(4), and obtain the nonisospectral integrable hierarchies and their Hamiltonian structures. In Section 3, based on the semi-direct sum decomposition of Lie algebras, the nonisospectral integrable coupling hierarchies and the corresponding Hamiltonian structures are obtained. In Sections 4 and 5, we obtain the nonisospectral integrable hierarchies and their coupling systems associated with the generalized Lie algebra Gso(5). In Section 6, by using sp(4)≅so(3,2), we obtain that there are the same integrable hierarchies of these two generalized Lie algebras, and there are also the same integrable couplings.
The compact real form sp(4) of complex symplectic Lie algebra sp(4,R) is defined as [31,32]
sp(4)={x∈gl(4,R)|Hx+xTH=0}, |
where H=(0I2−I20), I2 is the 2×2 identity matrix, and xT represents the transposition of x. We introduce the generalized Lie algebra sp(4), that admits a basis set as follows:
E1=e11−e33, E2=e22−e44, E3=e12−e43, E4=εe21−εe34,E5=εe14+εe23, E6=e32+e41, E7=εe13, E8=e31, E9=εe24, E10=e42, | (2.1) |
where ε∈R, and eij is a 4×4 matrix with 1 in the (i,j)-th position and zero elsewhere, which satisfy the commutative relations
[E1,E2]=0, [E1,E3]=E3, [E1,E4]=−E4, [E1,E5]=E5, [E1,E6]=−E6,[E1,E7]=2E7, [E1,E8]=−2E8, [E1,E9]=[E1,E10]=0, [E2,E3]=−E3,[E2,E4]=E4, [E2,E5]=E5, [E2,E6]=−E6, [E2,E7]=[E2,E8]=0,[E2,E9]=2E9, [E2,E10]=−2E10, [E3,E4]=ε(E1−E2), [E3,E5]=2E7,[E3,E6]=−2E10, [E3,E7]=0, [E3,E8]=−E6, [E3,E9]=E5, [E3,E10]=0,[E4,E5]=2E9, [E4,E6]=−2εE8, [E4,E7]=E5, [E4,E8]=[E4,E9]=0,[E4,E10]=−εE6, [E5,E6]=ε(E1+E2), [E5,E7]=0, [E5,E8]=E4, [E5,E9]=0,[E5,E10]=εE3, [E6,E7]=−εE3, [E6,E8]=[E6,E10]=0, [E6,E9]=−E4,[E7,E8]=εE1, [E7,E9]=[E7,E10]=[E8,E9]=[E8,E10]=0, [E9,E10]=εE2. |
We can construct different generalized Lie algebras Gsp(4) by adding the real number ε to different elements of the Lie algebra sp(4). Here, we will only discuss one of these cases.
Consider the linear nonisospectral problem
{φx=U1φ,φt=V1φ,λt=∑i≥0ki(t)λ−i, |
where
U1=(λ0εu3εu10λεu1εu5u4u2−λ0u2u60−λ),V1=(acεgεeεdbεeεphf−a−εdfq−c−b)=∑i≥0(aiciεgiεeiεdibiεeiεpihifi−ai−εdifiqi−ci−bi)λ−i. | (2.2) |
By solving stationary the zero curvature representation
V1x=∂U1∂λλt+[U1,V1], | (2.3) |
we can obtain
{aix=εu1fi−εu2ei+εu3hi−εu4gi+ki(t),bix=εu1fi−εu2ei+εu5qi−εu6pi+ki(t),cix=εu1qi−εu2gi+εu3fi−εu6ei,dix=u1hi−u2pi−u4ei+u5fi,eix=2λei−u1ai−u1bi−εu3di−u5ci,fix=−2λfi+u2ai+u2bi+u4ci+εu6di,gix=2λgi−2u1ci−2u3ai,hix=−2λhi+2εu2di+2u4ai,pix=2λpi−2εu1di−2u5bi,qix=−2λqi+2u2ci+2u6bi. | (2.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0, |
one has
a1=b1=k1(t)x, c1=ε2∂−1(u1u6+u2u3)(β−α), g1=u3α, p1=u5β, q1=u6β,d1=12∂−1(u1u4+u2u5)(α−β), e1=12u1(α+β), f1=12u2(α+β), h1=u4α,e2=14u1x(α+β)+ε4[u3∂−1(u1u4+u2u5)−u5∂−1(u1u6+u2u3)](α−β)+u1k1(t)x,f2=−14u2x(α+β)+ε4[u4∂−1(u1u6+u2u3)−u6∂−1(u1u4+u2u5)](β−α)+u2k1(t)x,g2=12u3xα+ε2u1∂−1(u1u6+u2u3)(β−α)+u3k1(t)x,h2=−12u4xα+ε2u2∂−1(u1u4+u2u5)(β−α)+u4k1(t)x,p2=12u5xβ−ε2u1∂−1(u1u4+u2u5)(β−α)+u5k1(t)x,q2=−12u6xβ+ε2u2∂−1(u1u6+u2u3)(β−α)+u6k1(t)x,⋯⋯ |
where α(t) is an integral constant. Noting that
V(n)1+=n∑i=0(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T, V(n)1−=∞∑i=n+1(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T,λ(n)+,x=n∑i=0ki(t)λn−i, λ(n)−,x=∞∑i=n+1ki(t)λn−i, |
it follows that one has
−V(n)1+,x+∂U1∂λλ(n)t,++[U1,V(n)1+]=(0,0,0,0,−2en+1,2fn+1,−2gn+1,2hn+1,−2pn+1,2qn+1)T. |
According to (2.4), it is easy to show that we have the recursion relations
(2εfn+12εen+1εhn+1εgn+1εqn+1εpn+1)=L1(2εfn2εenεhnεgnεqnεpn)+(2εu22εu1εu4εu3εu6εu5)kn(t)x, |
where the recurrence operator L1 is defined as
L1=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), |
and
l11=−∂2+ε2(2u2∂−1u1+u4∂−1u3+u6∂−1u5),l12=−ε2(2u2∂−1u2+u4∂−1u6+u6∂−1u4),l21=εu1∂−1u1+ε2(u3∂−1u5+u5∂−1u3), l22=∂2−εu1∂−1u2−ε2(u3∂−1u4+u5∂−1u6),l31=12l15=ε2(u2∂−1u5+u4∂−1u1), l32=12l14=−ε2(u2∂−1u4+u4∂−1u2),l41=12l23=ε2(u1∂−1u3+u3∂−1u1), l42=12l26=−ε2(u1∂−1u6+u3∂−1u2),l51=12l13=ε2(u2∂−1u3+u6∂−1u1), l52=12l16=−ε2(u2∂−1u6+u6∂−1u2),l61=12l25=ε2(u1∂−1u5+u5∂−1u1), l62=12l24=−ε2(u1∂−1u4+u5∂−1u2),l33=−∂2+εu2∂−1u1+εu4∂−1u3, l34=−εu4∂−1u4, l35=0, l36=−εu2∂−1u2,l43=εu3∂−1u3, l44=∂2−εu1∂−1u2−εu3∂−1u4, l45=εu1∂−1u1, l46=0,l53=0, l54=−εu2∂−1u2, l55=−∂2+εu2∂−1u1+εu6∂−1u5, l56=−εu6∂−1u6,l63=εu1∂−1u1, l64=0, l65=εu5∂−1u5, l66=∂2−εu1∂−1u2−εu5∂−1u6. |
Taking V(n)1=V(n)1,+, then the zero curvature equation
−V(n)1x+∂U1∂uut+∂U1∂λλ(n)t,++[U1,V(n)1]=0 |
leads to the following nonisospectral hierarchy
utn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1)=J1(2εfn+12εen+1εhn+1εgn+1εqn+1εpn+1)=J1L1(2εfn2εenεhnεgnεqnεpn)+J1(2εu22εu1εu4εu3εu6εu5)kn(t)x, | (2.5) |
where the Hamiltonian operator J1 is
J1=1ε(0−10000100000000−20000200000000−2000020). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V1,∂U1∂λ⟩=2a+2b, ⟨V1,∂U1∂u1⟩=2εf, ⟨V1,∂U1∂u2⟩=2εe,⟨V1,∂U1∂u3⟩=εh, ⟨V1,∂U1∂u4⟩=εg, ⟨V1,∂U1∂u5⟩=εq, ⟨V1,∂U1∂u6⟩=εp. |
Substituting the above formulas into the trace identity yields
δδu∫(2a+2b)dx=λ−γ∂∂λλγ(2εf2εeεhεgεqεp). |
Balancing coefficients of each power of λ in the above equality gives rise to
δδu∫(2an+1+2bn+1)dx=(γ−n)(2εfn2εenεhnεgnεqnεpn). |
Taking n=1, gives γ=0. Thus, we see
ut=J1δH(1)n+1δu=J1L1δH(1)nδu+J1M1kn(t)x, H(1)n+1=−2∫(an+2+bn+2n+1)dx, n≥0, |
where M1=(2εu2,2εu1,εu4,εu3,εu6,εu5)T.
We generalize the semisimple Lie algebra g to the non-semisimple Lie algebra ˉg. This has the block matrix form [29,30]
M(A,B)=(AεBBA), | (3.1) |
where ε∈R, which is different from Section 2, and A,B are two arbitrary matrices with the same order. Non-semisimple Lie algebra ˉg has two subalgebras ˜g={M(A,O)} and ~gc={M(O,B)}, that forms the semi-direct sum of Lie algebras ˉg=˜g⊕s~gc. That is, [˜g,~gc]={[A,B]|A∈˜g,B∈~gc}, [˜g,˜g]⊆˜g, [~gc,~gc]⊆˜g, [˜g,~gc]⊆~gc.
We introduce the enlarged spectral problems
{φx=ˉUφ=(U1εU2U2U1),φt=ˉVφ=(V1εV2V2V1),λt=∑i≥0ki(t)λ−i. |
From the corresponding enlarged stationary zero curvature equation
ˉVx=∂ˉU∂λλt+[ˉU,ˉV], | (3.2) |
it is easy to have
{V1,x=[U1,V1]+ε[U2,V2],V2,x=[U2,V1]+[U1,V2]. |
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra sp(4). We consider the nonisospectral problem
{φx=ˉU1φ,φt=ˉV1φ,λt=∑i≥0ki(t)λ−i, |
where
ˉU1=(U′1εU′2U′2U′1),U′1=(λ0u3u10λu1u5u4u2−λ0u2u60−λ),U′2=(00u′3u′100u′1u′5u′4u′200u′2u′600),ˉV1=(V′1εV′2V′2V′1),V′1=(acgedbephf−a−dfq−c−b),V′2=(a′c′g′e′d′b′e′p′h′f′−a′−d′f′q′−c′−b′), | (3.3) |
where u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are different from (2.2).
We solve the enlarged stationary zero curvature equation by means of
ˉV1x=∂ˉU1∂λλt+[ˉU1,ˉV1], | (3.4) |
which yields
{aix=u1fi−u2ei+u3hi−u4gi+εu′1f′i−εu′2e′i+εu′3h′i−εu′4g′i+ki(t),bix=u1fi−u2ei+u5qi−u6pi+εu′1f′i−εu′2e′i+εu′5q′i−εu′6p′i+ki(t),cix=u1qi−u2gi+u3fi−u6ei+εu′1q′i−εu′2g′i+εu′3f′i−εu′6e′i,dix=u1hi−u2pi−u4ei+u5fi+εu′1h′i−εu′2p′i−εu′4e′i+εu′5f′i,eix=2λei−u1ai−u1bi−u3di−u5ci−εu′1a′i−εu′1b′i−εu′3d′i−εu′5c′i,fix=−2λfi+u2ai+u2bi+u4ci+u6di+εu′2a′i+εu′2b′i+εu′4c′i+εu′6d′i,gix=2λgi−2u1ci−2u3ai−2εu′1c′i−2εu′3a′i,hix=−2λhi+2u2di+2u4ai+2εu′2d′i+2εu′4a′i,pix=2λpi−2u1di−2u5bi−2εu′1d′i−2εu′5b′i,qix=−2λqi+2u2ci+2u6bi+2εu′2c′i+2εu′6b′i, | (3.5) |
and
{a′ix=u1f′i−u2e′i+u3h′i−u4g′i+u′1fi−u′2ei+u′3hi−u′4gi+ki(t),b′ix=u1f′i−u2e′i+u5q′i−u6p′i+u′1fi−u′2ei+u′5qi−u′6pi+ki(t),c′ix=u1q′i−u2g′i+u3f′i−u6e′i+u′1qi−u′2gi+u′3fi−u′6ei,d′ix=u1h′i−u2p′i−u4e′i+u5f′i+u′1hi−u′2pi−u′4ei+u′5fi,e′ix=2λe′i−u1a′i−u1b′i−u3d′i−u5c′i−u′1ai−u′1bi−u′3di−u′5ci,f′ix=−2λf′i+u2a′i+u2b′i+u4c′i+u6d′i+u′2ai+u′2bi+u′4ci+u′6di,g′ix=2λg′i−2u1c′i−2u3a′i−2u′1ci−2u′3ai,h′ix=−2λh′i+2u2d′i+2u4a′i+2u′2di+2u′4ai,p′ix=2λp′i−2u1d′i−2u5b′i−2u′1di−2u′5bi,q′ix=−2λq′i+2u2c′i+2u6b′i+2u′2ci+2u′6bi. | (3.6) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0,a′0=α′(t), b′0=β′(t), c′0=d′0=e′0=f′0=g′0=h′0=p′0=q′0=0, |
one has
a1=b1=k1(t)x, e1=12u1(α+β)+ε2u′1(α′+β′), f1=12u2(α+β)+ε2u′2(α′+β′),g1=u3α+εu′3α′, h1=u4α+εu′4α′, p1=u5β+εu′5β′, q1=u6β+εu′6β′,c1=12∂−1(u1u6+u2u3+εu′1u′6+εu′2u′3)(β−α)+ε2∂−1(u1u′6+u2u′3+u′1u6+u′2u3)(β′−α′),d1=12∂−1(u1u4+u2u5+εu′1u′4+εu′2u′5)(α−β)+ε2∂−1(u1u′4+u2u′5+u′1u4+u′2u5)(α′−β′),a′1=b′1=k1(t)x, e′1=12u′1(α+β)+12u1(α′+β′), f′1=12u′2(α+β)+12u2(α′+β′),g′1=u′3α+u3α′, h′1=u′4α+u4α′, p′1=u′5β+u5β′, q′1=u′6β+u6β′,c′1=12∂−1(u1u′6+u2u′3+u′1u6+u′2u3)(β−α)+12∂−1(u1u6+u2u3+εu′1u′6+εu′2u′3)(β′−α′),d′1=12∂−1(u1u′4+u2u′5+u′1u4+u′2u5)(α−β)+12∂−1(u1u4+u2u5+εu′1u′4+εu′2u′5)(α′−β′),⋯⋯ |
where α(t), β(t) are integral constants.
From the nonisospectral zero curvature equation
∂ˉU1∂uut+∂ˉU1∂λλt−ˉV(n)1x+[ˉU1,ˉV(n)1]=0, |
we can obtain the following integrable couplings:
ˉutn=(ˉu1ˉu2)tn, ˉu1tn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1), ˉu2tn=(u′1u′2u′3u′4u′5u′6)tn=(−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1). | (3.7) |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V′1,∂U′2∂λ⟩+⟨V′2,∂U′1∂λ⟩=2(a′+b′), ⟨V′1,∂U′2∂u1⟩+⟨V′2,∂U′1∂u1⟩=2f′,⟨V′1,∂U′2∂u2⟩+⟨V′2,∂U′1∂u2⟩=2e′, ⟨V′1,∂U′2∂u3⟩+⟨V′2,∂U′1∂u3⟩=h′,⟨V′1,∂U′2∂u4⟩+⟨V′2,∂U′1∂u4⟩=g′, ⟨V′1,∂U′2∂u5⟩+⟨V′2,∂U′1∂u5⟩=q′,⟨V′1,∂U′2∂u6⟩+⟨V′2,∂U′1∂u6⟩=p′, ⟨V′1,∂U′2∂u′1⟩+⟨V′2,∂U′1∂u′1⟩=2f,⟨V′1,∂U′2∂u′2⟩+⟨V′2,∂U′1∂u′2⟩=2e, ⟨V′1,∂U′2∂u′3⟩+⟨V′2,∂U′1∂u′3⟩=h,⟨V′1,∂U′2∂u′4⟩+⟨V′2,∂U′1∂u′4⟩=g, ⟨V′1,∂U′2∂u′5⟩+⟨V′2,∂U′1∂u′5⟩=q,⟨V′1,∂U′2∂u′6⟩+⟨V′2,∂U′1∂u′6⟩=p. |
Substituting the above formulas into the trace identity, and balancing the coefficients of each power of λ, we give the first form
δδˉu∫2(a′n+1+b′n+1)dx=(γ−n)(M1M2), | (3.8) |
where
M1=(2f′n2e′nh′ng′nq′np′n), M2=(2fn2enhngnqnpn). |
At the same time, we also have
⟨V′1,∂U′1∂λ⟩+ε⟨V′2,∂U′2∂λ⟩=2(a+b), ⟨V′1,∂U′1∂u1⟩+ε⟨V′2,∂U′2∂u1⟩=2f,⟨V′1,∂U′1∂u2⟩+ε⟨V′2,∂U′2∂u2⟩=2e, ⟨V′1,∂U′1∂u3⟩+ε⟨V′2,∂U′2∂u3⟩=h,⟨V′1,∂U′1∂u4⟩+ε⟨V′2,∂U′2∂u4⟩=g, ⟨V′1,∂U′1∂u5⟩+ε⟨V′2,∂U′2∂u5⟩=q,⟨V′1,∂U′1∂u6⟩+ε⟨V′2,∂U′2∂u6⟩=p, ⟨V′1,∂U′1∂u′1⟩+ε⟨V′2,∂U′2∂u′1⟩=2εf′,⟨V′1,∂U′1∂u′2⟩+ε⟨V′2,∂U′2∂u′2⟩=2εe′, ⟨V′1,∂U′1∂u′3⟩+ε⟨V′2,∂U′2∂u′3⟩=εh′,⟨V′1,∂U′1∂u′4⟩+ε⟨V′2,∂U′2∂u′4⟩=εg′, ⟨V′1,∂U′1∂u′5⟩+ε⟨V′2,∂U′2∂u′5⟩=εq′,⟨V′1,∂U′1∂u′6⟩+ε⟨V′2,∂U′2∂u′6⟩=εp′. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the second form
δδu∫2(an+1+bn+1)dx=(γ−n)(M2εM1), |
where M1, M2 are defined as (3.8).
So, we can obtain the Hamiltonian structures of integrable couplings, which consists of the following two components. The first component has the form
ˉutn=(ˉu1ˉu2)tn=ˉJ1(K1K2)=ˉJ1δˉH1,mδˉu, K1=(2f′n+12e′n+1h′n+1g′n+1q′n+1p′n+1), K2=(2fn+12en+1hn+1gn+1qn+1pn+1), |
where ˉJ1=(OJ1J1O), and J1 is defined as (2.5). The second component has the form
ˉutn=(ˉu1ˉu2)tn=ˉJ2(K2εK1)=ˉJ2δˉH2,mδˉu, ˉJ2=(J1OO1εJ1). |
From (3.5) and (3.6), we can obtain the recursion relations
(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1)=ˉL1(−2en2fn−2gn2hn−2pn2qn−2e′n2f′n−2g′n2h′n−2p′n2q′n)+(−2u1−2εu′12u2+2εu′2−2u3−2εu′32u4+2εu′4−2u5−2εu′52u6+2εu′6−2u1−2u′12u2+2u′2−2u3−2u′32u4+2u′4−2u5−2u′52u6+2u′6)kn(t)x, |
where the recurrence operator ˉL1 is defined as
ˉL1=(L′1L′21εL′2L′1), L′1=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), L′2=(l′11l′12l′13l′14l′15l′16l′21l′22l′23l′24l′25l′26l′31l′32l′33l′34l′35l′36l′41l′42l′43l′44l′45l′46l′51l′52l′53l′54l′55l′56l′61l′62l′63l′64l′65l′66), |
and
l11=12(∂−2u1∂−1u2−u3∂−1u4−u5∂−1u6−2εu′1∂−1u′2−εu′3∂−1u′4−εu′5∂−1u′6),l12=−12(2u1∂−1u1+u3∂−1u5+u5∂−1u3+2εu′1∂−1u′1+εu′3∂−1u′5+εu′5∂−1u′3),l13=12l51=−12(u1∂−1u4+u5∂−1u2+εu′1∂−1u′4+εu′5∂−1u′2),l14=12l32=−12(u1∂−1u3+u3∂−1u1+εu′1∂−1u′3+εu′3∂−1u′1),l15=12l31=−12(u1∂−1u6+u3∂−1u2+εu′1∂−1u′6+εu′3∂−1u′2),l16=12l52=−12(u1∂−1u5+u5∂−1u1+εu′1∂−1u′5+εu′5∂−1u′1),l′11=−ε2(2u1∂−1u′2+u3∂−1u′4+u5∂−1u′6+2u′1∂−1u2+u′3∂−1u4+u′5∂−1u6),l′12=−ε2(2u1∂−1u′1+u3∂−1u′5+u5∂−1u′3+2u′1∂−1u1+u′3∂−1u5+u′5∂−1u3),l′13=12l′51=−ε2(u1∂−1u′4+u5∂−1u′2+u′1∂−1u4+u′5∂−1u2),l′14=12l′32=−ε2(u1∂−1u′3+u3∂−1u′1+u′1∂−1u3+u′3∂−1u1),l′15=12l′31=−ε2(u1∂−1u′6+u3∂−1u′2+u′1∂−1u6+u′3∂−1u2),l′16=12l′52=−ε2(u1∂−1u′5+u5∂−1u′1+u′1∂−1u5+u′5∂−1u1),l21=12(2u2∂−1u2+u4∂−1u6+u6∂−1u4+2εu′2∂−1u′2+εu′4∂−1u′6+εu′6∂−1u′4),l22=12(−∂+2u2∂−1u1+u4∂−1u3+u6∂−1u5+2εu′2∂−1u′1+εu′4∂−1u′3+εu′6∂−1u′5),l23=12l41=12(u2∂−1u4+u4∂−1u2+εu′2∂−1u′4+εu′4∂−1u′2),l24=12l62=12(u2∂−1u3+u6∂−1u1+εu′2∂−1u′3+εu′6∂−1u′1),l25=12l61=12(u2∂−1u6+u6∂−1u2+εu′2∂−1u′6+εu′6∂−1u′2),l26=12l42=12(u2∂−1u5+u4∂−1u1+εu′2∂−1u′5+εu′4∂−1u′1),l′21=ε2(2u2∂−1u′2+u4∂−1u′6+u6∂−1u′4+2u′2∂−1u2+u′4∂−1u6+u′6∂−1u4),l′22=ε2(2u2∂−1u′1+u4∂−1u′3+u6∂−1u′5+2u′2∂−1u1+u′4∂−1u3+u′6∂−1u5),l′23=12l′41=ε2(u2∂−1u′4+u4∂−1u′2+u′2∂−1u4+u′4∂−1u2),l′24=12l′62=ε2(u2∂−1u′3+u6∂−1u′1+u′2∂−1u3+u′6∂−1u1),l′25=12l′61=ε2(u2∂−1u′6+u6∂−1u′2+u′2∂−1u6+u′6∂−1u2),l′26=12l′42=ε2(u2∂−1u′5+u4∂−1u′1+u′2∂−1u5+u′4∂−1u1), l35=0,l33=∂2−u1∂−1u2−u3∂−1u4−εu′1∂−1u′2−εu′3∂−1u′4, l34=−(u3∂−1u3+εu′3∂−1u′3),l36=−(u1∂−1u1+εu′1∂−1u′1), l′33=−ε(u1∂−1u′2+u3∂−1u′4+u′1∂−1u2+u′3∂−1u4),l′34=−ε(u3∂−1u′3+u3∂−1u′3), l′35=0, l′36=−ε(u1∂−1u′1+u1∂−1u′1),l43=u4∂−1u4+εu′4∂−1u′4, l44=−∂2+u4∂−1u3+u2∂−1u1+εu′4∂−1u′3+εu′2∂−1u′1,l45=u2∂−1u2+εu′2∂−1u′2, l46=0, l′43=ε(u4∂−1u′4+u′4∂−1u4),l′44=ε(u4∂−1u′3+u2∂−1u′1+u′4∂−1u3+u′2∂−1u1), l′45=ε(u2∂−1u′2+u2∂−1u′2), l′46=0,l54=−(u1∂−1u1+εu′1∂−1u′1), l55=∂2−u1∂−1u2−u5∂−1u6−εu′1∂−1u′2−εu′5∂−1u′6,l56=−(u5∂−1u5+εu′5∂−1u′5), l53=l′53=0, l′54=−ε(u1∂−1u′1+u′1∂−1u1),l′55=−ε(u1∂−1u′2+u5∂−1u′6+u′1∂−1u2+u′5∂−1u6), l′56=−ε(u5∂−1u′5+u5∂−1u′5),l63=u2∂−1u2+εu′2∂−1u′2, l64=l′64=0, l65=u6∂−1u6+εu′6∂−1u′6,l66=−∂2+u2∂−1u1+u6∂−1u5+εu′2∂−1u′1+εu′6∂−1u′5, l′63=ε(u2∂−1u′2+u′2∂−1u2),l′65=ε(u6∂−1u′6+u′6∂−1u6), l′66=ε(u2∂−1u′1+u6∂−1u′5+u′2∂−1u1+u′6∂−1u5). |
In this section, based on Lie algebra so(5) [31,33], we introduce the generalized Lie algebra Gso(5), that admits a basis set as follows:
E1=e22−e44, E2=e33−e55, E3=εe32−εe45, E4=e23−e54, E5=e52−e43,E6=εe25−εe34, E7=e13+e51, E8=εe15+εe31, E9=εe12+εe41, E10=e14+e21, | (4.1) |
where eij is a 5×5 matrix with 1 in the (i,j)-th position and zero elsewhere, which satisfy the commutative relations
[E1,E2]=0, [E1,E3]=−E3, [E1,E4]=E4, [E1,E5]=−E5, [E1,E6]=E6,[E1,E7]=[E1,E8]=0, [E1,E9]=−E9, [E1,E10]=E10, [E2,E3]=E3,[E2,E4]=−E4, [E2,E5]=−E5, [E2,E6]=E6, [E2,E7]=−E7, [E2,E8]=E8,[E2,E9]=[E2,E10]=0, [E3,E4]=ε(E2−E1), [E3,E5]=[E3,E6]=0, [E3,E7]=−E9,[E3,E8]=[E3,E9]=0, [E3,E10]=E8, [E4,E5]=[E4,E6]=[E4,E7]=0,[E4,E8]=εE10, [E4,E9]=−εE7, [E4,E10]=0, [E5,E6]=−ε(E1+E2), [E5,E7]=0,[E5,E8]=−E9, [E5,E9]=0, [E5,E10]=E7, [E6,E7]=εE10, [E6,E8]=[E6,E10]=0,[E6,E9]=−εE8, [E7,E8]=−εE2, [E7,E9]=εE5, [E7,E10]=−E4, [E8,E9]=εE3,[E8,E10]=−E6, [E9,E10]=−εE1. |
Consider the nonisospectral problem
{φx=U2φ,φt=V2φ,λt=∑i≥0ki(t)λ−i, |
where
U2=(0εu5u3u6εu4u6λ00εu2εu40λ−εu20εu50−u1−λ0u3u100−λ),V2=(0εpgqεhqad0εfεhεcb−εf0εp0−e−a−εcge0−d−b)=∑i≥0(0εpigiqiεhiqiaidi0εfiεhiεcibi−εfi0εpi0−ei−ai−εcigiei0−di−bi)λ−i, | (4.2) |
here u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are different from (2.2) and (3.3).
By solving the stationary zero curvature representation
V2x=∂U2∂λλt+[U2,V2], | (4.3) |
we can obtain
{aix=−εu1fi+εu2ei−εu5qi+εu6pi+ki(t),bix=−εu1fi+εu2ei−εu3hi+εu4gi+ki(t),cix=εu4pi−εu5hi,dix=−u3qi+u6gi,eix=−2λei+u1ai+u1bi+εu3pi−εu5gi,fix=2λfi−u2ai−u2bi−u4qi+u6hi,gix=−λgi+u1qi+u3bi+εu5di−u6ei,hix=λhi−εu2pi−u4bi+εu5fi−u6ci,pix=−λpi−u1hi+u3ci+u4ei+u5ai,qix=λqi+εu2gi−εu3fi−εu4di−u6ai. | (4.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0, |
one has
a1=b1=k1(t)x, c1=ε∂−1u4u5(α−β),d1=∂−1u3u6(β−α), e1=12u1(α+β),f1=12u2(α+β), g1=u3β, h1=u4β, p1=u5α, q1=u6α,e2=−14u1x(α+β)+ε2u3u5(α−β)+u1k1(t)x,f2=14u2x(α+β)+12u4u6(α−β)+u2k1(t)x,g2=−u3xβ+12u1u6(α−β)+εu5∂−1u3u6(β−α)+u3k1(t)x,h2=u4xβ+ε2u2u5(α−β)+εu6∂−1u4u5(α−β)+u4k1(t)x,p2=−u5xα+12u1u4(α−β)+εu3∂−1u4u5(α−β)+u5k1(t)x,q2=u6xα+ε2u2u3(α−β)+εu4∂−1u3u6(β−α)+u6k1(t)x,⋯⋯ |
where α(t) is an integral constant. Noting that
V(n)2+=n∑i=0(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T, V(n)2−=∞∑i=n+1(ai,bi,ci,di,ei,fi,gi,hi,pi,qi)T,λ(n)+,x=n∑i=0ki(t)λn−i, λ(n)−,x=∞∑i=n+1ki(t)λn−i, |
it follows that one has
−V(n)2+,x+∂U2∂λλ(n)t,++[U2,V(n)2+]=(0,0,0,0,2en+1,−2fn+1,gn+1,−hn+1,pn+1,−qn+1)T. |
According to (4.4), it is easy to show that we have the recursion relations
(2εfn+12εen+12εhn+12εgn+12εqn+12εpn+1)=L2(2εfn2εen2εhn2εgn2εqn2εpn)+(2εu22εu12εu42εu32εu62εu5)kn(t)x, |
where the recurrence operator L2 is defined as
L2=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), |
and
l11=∂2−εu2∂−1u1, l12=εu2∂−1u2, l13=−ε2u2∂−1u3−u62, l14=ε2u2∂−1u4,l15=−ε2u2∂−1u5+u42, l16=ε2u2∂−1u6, l21=−εu1∂−1u1, l22=−∂2+εu1∂−1u2,l23=−ε2u1∂−1u3, l24=ε2u1∂−1u4−ε2u5, l25=−ε2u1∂−1u5, l26=ε2u1∂−1u6+ε2u3,l31=−εu4∂−1u1−εu5, l32=εu4∂−1u2, l33=∂−εu4∂−1u3−εu6∂−1u5, l35=0,l34=εu4∂−1u4, l36=εu2+εu6∂−1u4, l41=−εu3∂−1u1, l42=εu3∂−1u2−u6,l43=−εu3∂−1u3, l44=−∂+εu3∂−1u4+εu5∂−1u6, l45=u1−εu5∂−1u3, l46=0,l51=εu3−εu6∂−1u1, l52=εu6∂−1u2, l53=0, l54=−εu2+εu4∂−1u6,l55=∂−εu4∂−1u3−εu6∂−1u5, l56=εu6∂−1u6, l61=−εu5∂−1u1, l62=u4+εu5∂−1u2,l63=−u1−εu3∂−1u5, l64=0, l65=−εu5∂−1u5, l66=−∂+εu3∂−1u4+εu5∂−1u6. |
Taking V(n)2=V(n)2,+, the zero curvature equation
−V(n)2x+∂U2∂uut+∂U2∂λλ(n)t,++[U2,V(n)2]=0 |
leads to the nonisospectral hierarchy
utn=(u1u2u3u4u5u6)tn=(2en+1−2fn+1gn+1−hn+1pn+1−qn+1)=J2(2εfn+12εen+12εhn+12εgn+12εqn+12εpn+1)=J2L2(2εfn2εen2εhn2εgn2εqn2εpn)+J2(2εu22εu12εu42εu32εu62εu5)kn(t)x, | (4.5) |
where the Hamiltonian operator J2 is
J2=1ε(010000−100000000120000−1200000000120000−120). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V2,∂U2∂λ⟩=2a+2b, ⟨V2,∂U2∂u1⟩=2εf, ⟨V2,∂U2∂u2⟩=2εe,⟨V2,∂U2∂u3⟩=2εh, ⟨V2,∂U2∂u4⟩=2εg, ⟨V2,∂U2∂u5⟩=2εq, ⟨V2,∂U2∂u6⟩=2εp. |
Substituting the above formulas into the trace identity and balancing coefficients of each power of λ gives rise to
δδu∫(2an+1+2bn+1)dx=(γ−n)(2εfn2εen2εhn2εgn2εqn2εpn). |
Taking n=1, gives γ=0. Thus, we see
ut=J2δH(2)n+1δu=J2L2δH(2)nδu+J2M2kn(t)x, H(2)n+1=−2∫(an+2+bn+2n+1)dx, n≥0, |
where M2=(2εu2,2εu1,2εu4,2εu3,2εu6,2εu5)T.
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra so(5). We consider the nonisospectral problem
{φx=ˉU2φ, ˉU2=(U′3εU′4U′4U′3),φt=ˉV2φ, ˉV2=(V′3εV′4V′4V′3),λt=∑i≥0ki(t)λ−i, |
where
U′3=(0u5u3u6u4u6λ00u2u40λ−u20u50−u1−λ0u3u100−λ),U′4=(0u′5u′3u′6u′4u′6000u′2u′400−u′20u′50−u′100u′3u′1000),V′3=(0pgqhqad0fhcb−f0p0−e−a−cge0−d−b),V′4=(0p′g′q′h′q′a′d′0f′h′c′b′−f′0p′0−e′−a′−c′g′e′0−d′−b′), | (5.1) |
where u1,u2,⋯,u6,u′1,u′2,⋯,u′6, and a,b,c,d,e,f,g,h,p,q,a′,b′,c′,d′,e′,f′,g′,h′,p′,q′ are different from (2.2), (3.3), and (4.2).
We solve the stationary zero curvature equation by means of
ˉV2x=∂ˉU2∂λλt+[ˉU2,ˉV2] | (5.2) |
which yields
{aix=−u1fi+u2ei−u5qi+u6pi−εu′1f′i+εu′2e′i−εu′5q′i+εu′6p′i+ki(t),bix=−u1fi+u2ei−u3hi+u4gi−εu′1f′i+εu′2e′i−εu′3h′i+εu′4g′i+ki(t),cix=u4pi−u5hi+εu′4p′i−εu′5h′i,dix=−u3qi+u6gi−εu′3q′i+εu′6g′i,eix=−2λei+u1ai+u1bi+u3pi−u5gi+εu′1a′i+εu′1b′i+εu′3p′i−εu′5g′i,fix=2λfi−u2ai−u2bi−u4qi+u6hi−εu′2a′i−εu′2b′i−εu′4q′i+εu′6h′i,gix=−λgi+u1qi+u3bi+u5di−u6ei+εu′1q′i+εu′3b′i+εu′5d′i−εu′6e′i,hix=λhi−u2pi−u4bi+u5fi−u6ci−εu′2p′i−εu′4b′i+εu′5f′i−εu′6c′i,pix=−λpi−u1hi+u3ci+u4ei+u5ai−εu′1h′i+εu′3c′i+εu′4e′i+εu′5a′i,qix=λqi+u2gi−u3fi−u4di−u6ai+εu′2g′i−εu′3f′i−εu′4d′i−εu′6a′i, | (5.3) |
and
{a′ix=−u1f′i+u2e′i−u5q′i+u6p′i−u′1fi+u′2ei−u′5qi+u′6pi+ki(t),b′ix=−u1f′i+u2e′i−u3h′i+u4g′i−u′1fi+u′2ei−u′3hi+u′4gi+ki(t),c′ix=u4p′i−u5h′i+u′4pi−u′5hi,d′ix=−u3q′i+u6g′i−u′3qi+u′6gi,e′ix=−2λe′i+u1a′i+u1b′i+u3p′i−u5g′i+u′1ai+u′1bi+u′3pi−u′5gi,f′ix=2λf′i−u2a′i−u2b′i−u4q′i+u6h′i−u′2ai−u′2bi−u′4qi+u′6hi,g′ix=−λg′i+u1q′i+u3b′i+u5d′i−u6e′i+u′1qi+u′3bi+u′5di−u′6ei,h′ix=λh′i−u2p′i−u4b′i+u5f′i−u6c′i−u′2pi−u′4bi+u′5fi−u′6ci,p′ix=−λp′i−u1h′i+u3c′i+u4e′i+u5a′i−u′1hi+u′3ci+u′4ei+u′5ai,q′ix=λq′i+u2g′i−u3f′i−u4d′i−u6a′i+u′2gi−u′3fi−u′4di−u′6ai. | (5.4) |
By taking initial values
a0=α(t), b0=β(t), c0=d0=e0=f0=g0=h0=p0=q0=k0(t)=0,a′0=α′(t), b′0=β′(t), c′0=d′0=e′0=f′0=g′0=h′0=p′0=q′0=0, |
one has
a1=b1=k1(t)x, e1=12u1(α+β)+ε2u′1(α′+β′), f1=12u2(α+β)+ε2u′2(α′+β′),g1=u3β+εu′3β′, h1=u4β+εu′4β′, p1=u5α+εu′5α′, q1=u6α+εu′6α′,c1=∂−1(u4u5+εu′4u′5)(α−β)+ε∂−1(u4u′5+u′4u5)(α′−β′),d1=∂−1(u3u6+εu′3u′6)(β−α)+ε∂−1(u3u′6+u′3u6)(β′−α′),a′1=b′1=k1(t)x, e′1=12u′1(α+β)+12u1(α′+β′), f′1=12u′2(α+β)+12u2(α′+β′),g′1=u′3β+u3β′, h′1=u′4β+u4β′, p′1=u′5α+u5α′, q′1=u′6α+u6α′,c′1=∂−1(u4u′5+u′4u5)(α−β)+∂−1(u4u5+εu′4u′5)(α′−β′),d′1=∂−1(u3u′6+u′3u6)(β−α)+∂−1(u3u6+εu′3u′6)(β′−α′),⋯⋯ |
where α(t), β(t) are integral constants.
From the nonisospectral zero curvature equation
∂ˉU2∂uut+∂ˉU2∂λλt−ˉV(n)2x+[ˉU2,ˉV(n)2]=0, |
we can obtain the following integrable couplings
ˉutn=(ˉu3ˉu4)tn, ˉu3tn=(u1u2u3u4u5u6)tn=(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1), ˉu4tn=(u′1u′2u′3u′4u′5u′6)tn=(−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1). |
To furnish Hamiltonian structures, we use the trace identity, and have
⟨V′3,∂U′4∂λ⟩+⟨V′4,∂U′3∂λ⟩=2(a′+b′), ⟨V′3,∂U′4∂u1⟩+⟨V′4,∂U′3∂u1⟩=2f′,⟨V′3,∂U′4∂u2⟩+⟨V′4,∂U′3∂u2⟩=2e′, ⟨V′3,∂U′4∂u3⟩+⟨V′4,∂U′3∂u3⟩=2h′,⟨V′3,∂U′4∂u4⟩+⟨V′4,∂U′3∂u4⟩=2g′, ⟨V′3,∂U′4∂u5⟩+⟨V′4,∂U′3∂u5⟩=2q′,⟨V′3,∂U′4∂u6⟩+⟨V′4,∂U′3∂u6⟩=2p′, ⟨V′3,∂U′4∂u′1⟩+⟨V′4,∂U′3∂u′1⟩=2f,⟨V′3,∂U′4∂u′2⟩+⟨V′4,∂U′3∂u′2⟩=2e, ⟨V′3,∂U′4∂u′3⟩+⟨V′4,∂U′3∂u′3⟩=2h,⟨V′3,∂U′4∂u′4⟩+⟨V′4,∂U′3∂u′4⟩=2g, ⟨V′3,∂U′4∂u′5⟩+⟨V′4,∂U′3∂u′5⟩=2q,⟨V′3,∂U′4∂u′6⟩+⟨V′4,∂U′3∂u′6⟩=2p. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the first form
δδˉu∫2(a′n+1+b′n+1)dx=(γ−n)(M3M4), | (5.5) |
where
M3=(2f′n2e′n2h′n2g′n2q′n2p′n), M4=(2fn2en2hn2gn2qn2pn). |
At the same time, we also have
⟨V′3,∂U′3∂λ⟩+ε⟨V′4,∂U′4∂λ⟩=2(a+b), ⟨V′3,∂U′3∂u1⟩+ε⟨V′4,∂U′4∂u1⟩=2f,⟨V′3,∂U′3∂u2⟩+ε⟨V′4,∂U′4∂u2⟩=2e, ⟨V′3,∂U′3∂u3⟩+ε⟨V′4,∂U′4∂u3⟩=2h,⟨V′3,∂U′3∂u4⟩+ε⟨V′4,∂U′4∂u4⟩=2g, ⟨V′3,∂U′3∂u5⟩+ε⟨V′4,∂U′4∂u5⟩=2q,⟨V′3,∂U′3∂u6⟩+ε⟨V′4,∂U′4∂u6⟩=2p, ⟨V′3,∂U′3∂u′1⟩+ε⟨V′4,∂U′4∂u′1⟩=2εf′,⟨V′3,∂U′3∂u′2⟩+ε⟨V′4,∂U′4∂u′2⟩=2εe′, ⟨V′3,∂U′3∂u′3⟩+ε⟨V′4,∂U′4∂u′3⟩=2εh′,⟨V′3,∂U′3∂u′4⟩+ε⟨V′4,∂U′4∂u′4⟩=2εg′, ⟨V′3,∂U′3∂u′5⟩+ε⟨V′4,∂U′4∂u′5⟩=2εq′,⟨V′3,∂U′3∂u′6⟩+ε⟨V′4,∂U′4∂u′6⟩=2εp′. |
Substituting the above formulas into the trace identity, and balancing coefficients of each power of λ, we give the second form
δδu∫2(an+1+bn+1)dx=(γ−n)(M4εM3), |
where M3, M4 are defined as (5.5).
So, we can obtain the Hamiltonian structures of integrable couplings, that consists of the following two components. The first component has the form
ˉutn=(ˉu3ˉu4)tn=ˉJ3(K3K4)=ˉJ3δˉH3,mδˉu, K3=(2f′n+12e′n+12h′n+12g′n+12q′n+12p′n+1), K4=(2fn+12en+12hn+12gn+12qn+12pn+1), |
where ˉJ3=(OJ2J2O), and J2 is defined as (4.5). The second component has the form
ˉutn=(ˉu3ˉu4)tn=ˉJ4(K4εK3)=ˉJ4δˉH4,mδˉu, ˉJ4=(J2OO1εJ2). |
From (5.3) and (5.4), we obtain the following recursion relations
(−2en+12fn+1−2gn+12hn+1−2pn+12qn+1−2e′n+12f′n+1−2g′n+12h′n+1−2p′n+12q′n+1)=ˉL2(−2en2fn−2gn2hn−2pn2qn−2e′n2f′n−2g′n2h′n−2p′n2q′n)+(2u2+2u′22u1+2u′12u4+2u′42u3+2u′32u6+2u′62u5+2u′52u2+2εu′22u1+2εu′12u4+2εu′42u3+2εu′32u6+2εu′62u5+2εu′5)kn(t)x, |
where the recurrence operator ˉL2 is defined as
ˉL2=(L′3L′41εL′4L′3), L′3=(l11l12l13l14l15l16l21l22l23l24l25l26l31l32l33l34l35l36l41l42l43l44l45l46l51l52l53l54l55l56l61l62l63l64l65l66), L′4=(l′11l′12l′13l′14l′15l′16l′21l′22l′23l′24l′25l′26l′31l′32l′33l′34l′35l′36l′41l′42l′43l′44l′45l′46l′51l′52l′53l′54l′55l′56l′61l′62l′63l′64l′65l′66), |
and
l11=∂2−u2∂−1u1−εu′2∂−1u′1, l12=u2∂−1u2+εu′2∂−1u′2, l13=−12(u2∂−1u3+εu′2∂−1u′3+u6),l14=12(u2∂−1u4+εu′2∂−1u′4),l15=−12(u2∂−1u5+εu′2∂−1u′5−u4),l16=12(u2∂−1u6+εu′2∂−1u′6),l′11=−u2∂−1u′1−u′2∂−1u1, l′12=u2∂−1u′2+u′2∂−1u2, l′13=−12(u2∂−1u′3+u′2∂−1u3+u′6),l′14=12(u2∂−1u′4+u′2∂−1u4), l′15=−12(u2∂−1u′5+u′2∂−1u5−u′4), l′16=12(u2∂−1u′6+u′2∂−1u6),l21=−u1∂−1u1−εu′1∂−1u′1, l22=−∂2+u1∂−1u2+εu′1∂−1u′2, l23=−12(u1∂−1u3+εu′1∂−1u′3),l24=12(u1∂−1u4+εu′1∂−1u′4−u5),l25=−12(u1∂−1u5+εu′1∂−1u′5),l26=12(u1∂−1u6+εu′1∂−1u′6+u3),l′21=−u1∂−1u′1−u′1∂−1u1, l′22=u1∂−1u′2+u′1∂−1u2, l′23=−12(u1∂−1u′3+u′1∂−1u3),l′24=12(u1∂−1u′4+u′1∂−1u4−u′5),l′25=−12(u1∂−1u′5+u′1∂−1u5),l′26=12(u1∂−1u′6+u′1∂−1u6+u′3),l31=−u4∂−1u1−εu′4∂−1u′1−u5, l32=u4∂−1u2+εu′4∂−1u′2, l35=l′35=0, |
l33=∂−u4∂−1u3−u6∂−1u5−εu′4∂−1u′3−εu′6∂−1u′5, l34=u4∂−1u4+εu′4∂−1u′4,l36=u6∂−1u4+εu′6∂−1u′4+u2,l′31=−u4∂−1u′1−u′4∂−1u1−u′5,l′32=u4∂−1u′2+u′4∂−1u2,l′33=−u4∂−1u′3−u6∂−1u′5−u′4∂−1u3−u′6∂−1u5, l′34=u4∂−1u′4+u′4∂−1u4,l′36=u6∂−1u′4+u′6∂−1u4+u′2,l41=−u3∂−1u1−εu′3∂−1u′1,l42=u3∂−1u2+εu′3∂−1u′2−u6,l43=−u3∂−1u3−εu′3∂−1u′3, l44=−∂+u3∂−1u4+u5∂−1u6+εu′3∂−1u′4+εu′5∂−1u′6,l45=−u5∂−1u3+εu′5∂−1u′3+u1, l′41=−u3∂−1u′1−u′3∂−1u1, l46=l′46=0,l′42=u3∂−1u′2+u′3∂−1u2−u′6, l′43=−u3∂−1u′3−u′3∂−1u3, l53=l′53=0,l′44=u3∂−1u′4+u5∂−1u′6+u′3∂−1u4+u′5∂−1u6, l′45=−u5∂−1u′3+u′5∂−1u3+u′1,l51=−u6∂−1u1−εu′6∂−1u′1+u3,l52=u6∂−1u2+εu6∂−1u′2,l54=u4∂−1u6+εu′4∂−1u′6−u2,l55=∂−u4∂−1u3−u6∂−1u5−εu′4∂−1u′3−εu′6∂−1u′5, l56=u6∂−1u6+εu′6∂−1u′6,l′51=−u6∂−1u′1−u′6∂−1u1+u′3, l′52=u6∂−1u′2+u′6∂−1u2, l′54=u4∂−1u′6+u′4∂−1u6−u′2,l′55=−u4∂−1u′3−u6∂−1u′5−u′4∂−1u3−u′6∂−1u5, l′56=u6∂−1u′6+u′6∂−1u6,l61=−u5∂−1u1−εu′5∂−1u′1,l62=u5∂−1u2+εu5∂−1u′2+u4,l63=−u3∂−1u5−εu′3∂−1u′5−u1,l64=0, l65=−u5∂−1u5−εu′5∂−1u′5, l66=−∂+u3∂−1u4+u5∂−1u6+εu′3∂−1u′4+εu′5∂−1u′6,l′61=−u5∂−1u′1−u′5∂−1u1, l′62=u5∂−1u′2+u′5∂−1u2+u′4, l′63=−u3∂−1u′5−u′3∂−1u5−u′1,l′64=0, l′65=−u5∂−1u′5−u′5∂−1u5, l′66=u3∂−1u′4+u5∂−1u′6+u′3∂−1u4+u′5∂−1u6. |
Lie algebra so(3,2) is defined as [31]
so(3,2)={x∈gl(5,R∣x=−I32xTI32,tr(x)=0}, |
where I32=(−I300I2).
So, elements of Lie algebra so(3,2) have the form
(X1X2XT2X3), |
where XT1=−X1, XT3=−X3, and X1,X2,X3 are 3×3, 3×2, and 2×2 real matrices, respectively. It is easy to get the elements of Lie algebra so(3,2) with the form
(0λ1λ2λ5λ6−λ10λ3λ7λ8−λ2−λ30λ9λ10λ5λ7λ90λ4λ6λ8λ10−λ40). |
We can obtain the bases of Lie algebra so(3,2) as
E1=e12−e21, E2=e13−e31, E3=e23−e32, E4=e45−e54, E5=e14+e41,E6=e15+e51, E7=e24+e42, E8=e25+e52, E9=e34+e43, E10=e35+e53, | (6.1) |
where eij is a 5×5 matrix with 1 in the (i,j)-th position and zero elsewhere. Next, we consider the generalized Lie algebra Gso(3,2), that admits a basis set as follows:
E′1=E7+E10, E′2=−E7+E10, E′3=−E1+E5, E′4=εE1+εE5, E′5=εE2−εE6,E′6=−E2−E6, E′7=εE3−εE4−εE8+εE9, E′8=−E3+E4−E8+E9,E′9=−εE3−εE4+εE8+εE9, E′10=E3+E4+E8+E9, | (6.2) |
where Ei,i=1,2,⋯,10 are defined as (6.1), and satisfy the following commutative relations:
[E′1,E′2]=0, [E′1,E′3]=E′3, [E′1,E′4]=−E′4, [E′1,E′5]=E′5, [E′1,E′6]=−E′6,[E′1,E′7]=2E′7, [E′1,E′8]=−2E′8, [E′1,E′9]=[E′1,E′10]=0, [E′2,E′3]=−E′3,[E′2,E′4]=E′4, [E′2,E′5]=E′5,[E′2,E′6]=−E′6,[E′2,E′7]=[E′2,E′8]=0,[E′2,E′9]=2E′9,[E′2,E′10]=−2E′10, [E′3,E′4]=εE′1−εE′2, [E′3,E′5]=E′7, [E′3,E′6]=−E′10, [E′3,E′7]=0,[E′3,E′8]=−2E′6, [E′3,E′9]=2E′5, [E′3,E′10]=0, [E′4,E′5]=εE′9, [E′4,E′6]=−εE′8,[E′4,E′7]=2εE′5, [E′4,E′8]=[E′4,E′9]=0, [E′4,E′10]=−2εE′6, [E′5,E′6]=εE′1+εE′2,[E′5,E′7]=0, [E′5,E′8]=2E′4, [E′5,E′9]=0, [E′5,E′10]=2εE′3, [E′6,E′7]=−2εE′3,[E′6,E′8]=[E′6,E′10]=0, [E′6,E′9]=−2E′4, [E′7,E′8]=4εE′1, [E′7,E′9]=[E′7,E′10]=0,[E′8,E′9]=[E′8,E′10]=0, [E′9,E′10]=4εE′2. |
Consider the nonisospectral problem
{φx=U3φ,φt=V3φ,λt=∑i≥0ki(t)λ−i, |
where
U3=λ(E′1+E′2)+√2u1E′5+√22u2E′6+u3E′7+u44E′8+u52E′9+u62E′10,V3=aE′1+bE′2+√2cE′3+√22dE′4+√2eE′5+√22fE′6+gE′7+h4E′8+p2E′9+q2E′10, | (6.3) |
where u1,u2,⋯,u6 and a,b,c,d,e,f,g,h,p,q are the same as (2.2).
By solving the stationary zero curvature representation
V3x=∂U3∂λλt+[U3,V3], | (6.4) |
we can obtain the same equation as (2.4). This means that integrable hierarchies obtained from the linear nonisospectral problems {φx=U3φ,φt=V3φ,λt=∑i≥0ki(t)λ−i are the same as (2.5).
If we consider the spectral matrix U1 and time spectral matrix V1 in Lie algebra Gsp(4), and choose spectral matrices U3 and V3 in Lie algebra Gso(3,2), then from zero curvature equations V1x=∂U1∂λλt+[U1,V1] and V3x=∂U3∂λλt+[U3,V3], we can obtain the same nonisospectral integrable hierarchies. So, based on sp(4)≅so(3,2), as long as we select the corresponding spectral problem between Lie algebras Gsp(4) and Gso(3,2), and we can obtain the same hierarchies.
In this section, we will construct the nonisospectral integrable coupling hierarchies associated with Lie algebra so(3,2). We consider the nonisospectral problem
{φx=ˉU3φ,φt=ˉV3φ,λt=∑i≥0ki(t)λ−i, |
where
ˉU3=(U′5εU′6U′6U′5), ˉV3=(V′5εV′6V′6V′5), | (6.5) |
and
U′5=2λE10+√2(u1−u22)E2−√2(u1+u22)E6+(u3−u44−u52+u62)E3+(−u3+u44−u52+u62)E4+(−u3−u44+u52+u62)E8+(u3+u44+u52+u62)E9,U′6=√2(u′1−u′22)E2−√2(u′1+u′22)E6+(u′3−u′44−u′52+u′62)E3+(−u′3+u′44−u′52+u′62)E4+(−u′3−u′44+u′52+u′62)E8+(u′3+u′44+u′52+u′62)E9,V′5=√2(d2−c)E1+√2(e−f2)E2+(g−h4−p2+q2)E3+(−g+h4−p2+q2)E4+√2(c+d2)E5−√2(e+f2)E6+(a−b)E7+(−g−h4+p2+q2)E8+(g+h4+p2+q2)E9+(a+b)E10,V′6=√2(d′2−c′)E1+√2(e′−f′2)E2+(g′−h′4−p′2+q′2)E3+(−g′+h′4−p′2+q′2)E4+√2(c′+d′2)E5−√2(e′+f′2)E6+(a′−b′)E7+(−g′−h′4+p′2+q′2)E8+(g′+h′4+p′2+q′2)E9+(a′+b′)E10, |
where u1,u2,⋯,u6,u′1,u′2,⋯,u′6, and a,b,c,d,e,f,g,h,p,q,a′,b′,c′,d′,e′,f′,g′,h′,p′,q′ are the same as (3.3).
Solving the stationary zero curvature equation
ˉV3x=∂ˉU3∂λλt+[ˉU3,ˉV3], | (6.6) |
we can obtain the same equations as (3.5) and (3.6). This means that integrable coupling systems obtained from the linear nonisospectral problems {φx=ˉU3φ,φt=ˉV3φ,λt=∑i≥0ki(t)λ−i are the same as (3.7).
If we consider the spectral matrix ˉU1 and time spectral matrix ˉV1 in Lie algebra sp(4), and choose spectral matrices ˉU3 and ˉV3 in Lie algebra so(3,2), then from zero curvature equations ˉV1x=∂ˉU1∂λλt+[ˉU1,ˉV1] and ˉV3x=∂ˉU3∂λλt+[ˉU3,ˉV3], we can obtain the same nonisospectral integrable coupling systems. So, based on sp(4)≅so(3,2), as long as we select the corresponding spectral problem between Lie algebras sp(4) and so(3,2), we can obtain the same integrable couplings.
By adding any real number ε, we construct the generalized Lie algebras Gsp(4), Gso(5), and Gso(3,2). Based on these three Lie algebras, we introduce the spectral parameter λt=∑i≥0ki(t)λ−i, and obtain the nonisospectral integrable hierarchies and their Hamiltonian structures of these three Lie algebras. Additionally, based on the semi-direct sum decomposition of Lie algebras, we derive the integrable coupling systems associated with Lie algebras sp(4), so(5), and so(3,2). At the same time, we use sp(4)≅so(3,2), and further discuss the relationship between the integrable couplings systems corresponding to these two Lie algebras.
Baiying He: Conceived of the study, Completed the computations, Writing-original draft; Siyu Gao: Writing review and editing, Writing-original draft. All authors have read and approved the final version of the manuscript for publication.
The authors would like to thank the referee for valuable comments and suggestions on this paper, which have considerably improved its presentation and quality.
This work is partially supported by National Natural Science Foundation of China (Nos.12001467 and 12471024) and Nanhu Scholars Program for Young Scholars of XYNU.
The authors declare that they have no conflicts of interest.
[1] |
A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pur. Appl., 93 (1972), 231–246. https://doi.org/10.1007/BF02412022 doi: 10.1007/BF02412022
![]() |
[2] |
V. Ambrosio, T. Isernia, The critical fractional Ambrosetti-Prodi problem, Rend. Circ. Mat. Palerm., 71 (2022), 1107–1132. https://doi.org/10.1007/s12215-022-00757-4 doi: 10.1007/s12215-022-00757-4
![]() |
[3] |
C. Bereanu, J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian, Nonlinear Differ. Equ. Appl., 15 (2008), 159–168. https://doi.org/10.1007/s00030-007-7004-x doi: 10.1007/s00030-007-7004-x
![]() |
[4] | C. de Coster, P. Habets, Two-point boundary value problems: Lower and upper solutions, Elsevier, 2006. |
[5] |
L. Ding, M. Sun, R. Tian, A remark on the Ambrosetti-Prodi type problem, Appl. Math. Lett., 111 (2021), 106648. https://doi.org/10.1016/j.aml.2020.106648 doi: 10.1016/j.aml.2020.106648
![]() |
[6] |
Z. Diab, J. L. Guirao, J. A. Vera, A Note on the periodic solutions for a class of third order differential equations, Symmetry, 13 (2021), 31. https://doi.org/10.3390/sym13010031 doi: 10.3390/sym13010031
![]() |
[7] | M. R. Grossinho, F. Minhós, Upper and lower solutions for higher order boundary value problems, Nonlinear Stud., 12 (2005), 165–176. |
[8] |
C. Fabry, J. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, B. Lond. Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173
![]() |
[9] |
G. Feltrin, E. Sovrano, F. Zanolin, Periodic solutions to parameter-dependent equations with a φ-Laplacian type operator, Nonlinear Differ. Equ. Appl., 26 (2019), 38. https://doi.org/10.1007/s00030-019-0585-3 doi: 10.1007/s00030-019-0585-3
![]() |
[10] | J. Fialho, F. Minhós, On higher order fully periodic boundary value problems, J. Math. Anal. Appl., 395 (2012) 616–625, https://doi.org/10.1016/j.jmaa.2012.05.061 |
[11] |
S. R. Grace, S. Abbas, M. Sajid, Oscillation of nonlinear even order differential equations with mixed neutral terms, Math. Method. Appl. Sci., 45 (2022), 1063–1071, https://doi.org/10.1002/mma.7834 doi: 10.1002/mma.7834
![]() |
[12] |
Y. Li, Positive periodic solutions for fully third-order ordinary differential equations, Comput. Math. Appl., 59 (2010), 3464–3471. https://doi.org/10.1016/j.camwa.2010.03.035 doi: 10.1016/j.camwa.2010.03.035
![]() |
[13] |
F. Minhós, On some third order nonlinear boundary value problems: Existence, location and multiplicity results, J. Math. Anal. Appl., 339 (2008), 1342–1353. https://doi.org/10.1016/j.jmaa.2007.08.005 doi: 10.1016/j.jmaa.2007.08.005
![]() |
[14] |
F. Minhós, N. Oliveira, Periodic third-order problems with a parameter, Axioms, 10 (2021), 222. https://doi.org/10.3390/axioms10030222 doi: 10.3390/axioms10030222
![]() |
[15] |
F. Minhós, N. Oliveira, Bifurcation results for periodic third-order Ambrosetti-Prodi-type problems, Axioms, 11 (2022), 387. https://doi.org/10.3390/axioms11080387 doi: 10.3390/axioms11080387
![]() |
[16] |
J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc., 8 (2006), 375–388. https://doi.org/10.4171/JEMS/58 doi: 10.4171/JEMS/58
![]() |
[17] |
F. Obersnel, P. Omari, On the periodic Ambrosetti-Prodi problem for a class of ODEs with nonlinearities indefinite in sign, Appl. Math. Lett., 111 (2021), 106622, https://doi.org/10.1016/j.aml.2020.106622 doi: 10.1016/j.aml.2020.106622
![]() |
[18] |
N. S. Papageorgiou, V. D. Rădulescu, J. Zhang, Ambrosetti-Prodi problems for the Robin (p,q)-Laplacian, Nonlinear Anal. Real, 67 (2022), 103640. https://doi.org/10.1016/j.nonrwa.2022.103640 doi: 10.1016/j.nonrwa.2022.103640
![]() |
[19] | E. Sovrano, Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete Cont. Dyn. S, 11 (2018), 345–355. https://doi.org/10.3934/dcdss.2018019 |
[20] |
M. Senkyrik, Existence of multiple solutions for a third order three-point regular boundary value problem, Math. Bohem., 119 (1994), 113–121. https://doi.org/10.21136/MB.1994.126080 doi: 10.21136/MB.1994.126080
![]() |
[21] |
C. Tunç, On existence of periodic solutions to certain nonlinear third order differential equations, Proyecciones J. Math., 28 (2009), 125–132. http://dx.doi.org/10.4067/S0716-09172009000200002 doi: 10.4067/S0716-09172009000200002
![]() |
[22] | Z. Wang, Y. Mo, Bifurcation from infinity and multiple solutions of third order periodic boundary value problems, Appl. Math. E-Notes, 12 (2012), 118–128. |