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Abstract: In the recent years, the study of the Hankel determinant problems have been widely
investigated by many researchers. We were essentially motivated by the recent research going on
with the Hankel determinant and other coefficient bounds problems. In this research article, we
first considered the subclass of analytic starlike functions connected with the domain of the tangent
function. We then derived the initial four sharp coeflicient bounds, the sharp Fekete-Szego inequality,
and the sharp second and third order Hankel determinant for the defined class. Also, we derived
sharp estimates like sharp coefficient bounds, Fekete-Szego estimate, and sharp second order Hankel
determinant for the functions having logarithmic coefficient and for the inverse coefficient, respectively,
for the defined functions class.
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1. Introduction

We present some important and basic concepts in this study section to help you better understand
the main findings. To begin with the most basic definition, we employ the sign A. The family ‘A of all
holomorphic functions defined in Q is

Q={k:k€C and [« <1}.
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Furthermore, if ‘A contains w (k), the relations
w(0)=0 and w (0) =1,

are satisfied. Taylor and Maclaurin’s series for functions belonging to family A is
WK =k+ Y dK"  (KEQ). (1.1)
n=2

Furthermore, the distinct family S contains all of the univalent functions of family ‘A. Even
though function theory was first introduced in 1851, Biberbach [1] established the coefficient
conjecture in 1916, which helped the subject become more well-known as a possible field for future
research. De-Branges [2] proved this conjecture in 1985. From 1916 until 1985, a large number of
mathematicians tried to prove or disprove the Bieberbach conjecture. Consequently, they identified
multiple subfamilies within the class S of normalized univalent functions, each of which is associated
with a different image domain. Families of starlike and convex functions, 8* and K, respectively,
are the most fundamental and significant subclasses of the functions class S. From an analytical

perspective,
S* = {w €S: Re(Kw (I;)) > O},

w (K

W:{weS:Re(M)>O}.

w (k)

and

In 1992, Ma and Minda defined [3]

kw (K)

w (k)

With Re (¢) > 0 in Q, additionally, with ¢'(0) > 0, the image domain is starlike with regard to
#(0) = 1, and the under unit disc the function ¢ maps € onto a star-shaped region. The image domain
1s symmetric about the real axis. Several subfamilies of the function class A are generalized by the set
S*(¢), for example:

i If

S*(¢) = {a) EA: < ¢(K)}. (1.2)

1+01K
1+02K’

P(x) =

with —1 < 0, < O £ 1, then

1
S'[0,,0,] = S*( * 0”‘),

1+ 02K
where S*[O1, O,] is the family of Janowski starlike functions, for further details, see [4].

ii. Select ¢(k) = V1 + k, and we get the class §%., defined and studied by Sokol et al. [5].

iii. Regarding the function

#(k) = 1 +sinh™ 'k,

we obtain the family S, initialized by Kumar and Arora [6].

iv. If

P(x) = ¢,
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then the family $*(¢) turns into S}, which is examined and defined by Mendiratta [7].
v. In the case where ¢(k) = 1 + sin (x), the class S, is the reduction of the class S* (¢). The S,
family, presented by Cho et al. [8] as:

Kkw' (k)
w(K)

S;‘inz{weﬂ: <1 +sin (), (KEQ)}, (1.3)

indicates that the ration “2% lies in an eight-shaped region.
w(K)

vi.The family S;  is obtained if we choose ¢(k) = cos (k), which was first proposed by Bano and
Raza [9].

vii. Choose ¢(k) = sec h (k) , and we derive a class S7,,, which Al-Shbeil et al. [10] introduced.

For the given parameters n, r € N, the " Hankel determinant #,. , was defined by [11] as follows:

dn dn+l .. . dn+r—1
dn+1
7_[r, n(w) =
dn+r—1 . R dn+2(r—1)

For the given values of n, r and d; = 1 the second and third Hankel determinants are defined as

1 d d, d
Hoa@ =| o g |=d-d Ho@=| 2 | =ddi - i, (14)
and
1 dy ds
Hoi(w) = | dy dy dy | =ds(dods — d3) - du (ds — dods) + ds (ds — ). (1.5)
dy dy ds

This technique has shown to be successful when examining power series with integral coefficients
and singularities by taking the Hankel determinant into account; see [12]. Bounds of H, ,(w) for
several kinds of univalent functions have been examined recently. Noonan and Thomas [13], Hayman
[14], and Ohran et al. [15] evaluated the boundaries related to the third Hankel determinant. For the
details the study of the Hankel determinant, we refer the reader to see [16-22].

In this study, we consider the subsequent subclass of analytic functions:

St =

tan

{a) ca: kw' (k) 2+ tan (k)

o ® < > } (k € Q). (1.6)

*

Khan et al. [16] introduced and examined the class S, .

derived.

Also the Hankel determinant problem was

2. Set of Lemmas
The following is a list of useful lemmas that we use in our main finding.

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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The set of all analytic functions p with a positive real component is denoted by £, and its series

representation is seen below:

p(K):1+Zc,,K”, K € Q.

n=1

Lemma 2.1. If p € P, then the forgoing estimations hold:

leel < 2, k>1,

Cran — MCkCp] < 2, O<u <1,

and for n € C, we have
|e2 = net| < 2max {1, 12 — 1]}.

For the inequalities (2.2), (2.3), see [11], and (2.4) is provided in [23].
Lemma 2.2. [24]If p € P and has the form (2.1), then

laic? — aacicr + azes| < 2lay| + 2l — 2| + 2]y — @y + asl,
where ay, @y, and as are real numbers.
Lemma 2.3. [25] Let ay, by, d,, and e| address the approximations a,, e, € (0, 1), and
Be1 (1 - en)|(@iby = 2d1)* + (ar (e + ar) = by’

+a;(1—-ay) (b - 261611)2
<4a*(1-a)’e (1-e)).

If h € P and is of the form (2.1), then

<2

3
a’lc‘l1 + elcg + 2a;cic3 — Eblc%cz -y

2.1

(2.2)

(2.3)

(2.4)

(2.5)

Lemma 2.4. [26] Let p € P and x, 6, and p with |x| < 1,|0] < 1 and |p| < 1 belong to Q, then we have

2cz:c%+x(4—c%),

4cs :2x(4— 2)c1 —x2(4—c%)c1 +25(1 —|x|2)(4—c%)+c?,

8c4:c‘11 ( ) [2(x2—3x+3)+4x]—4(4—c%)(1—|x|2)
[c1 (x=1)+x8% - (1 |5|2)p].

3. Coefficient bounds for the family S’

tan

Theorem 3.1. Let w € S

tan*®

Then the following estimates hold:

L[ [24-1
s - ad3] < ¢ {1'T

2

3.1
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and |
|dads — ds4| < G

The bounds are sharp for functions defined below for n = 2 and 3, respectively:

2t

wA@:KGmJnCma)»m:1+%w+u-Jmn:Lz&4 (3.2)
0 n

Proof. Let w € S;,,. Then, by property of Schwarz function u (), so that u (0) = 0 and |u (k)| < |«|, we

tan*

have
ko' (k) 2+ tan (u (k)

w(K) 2

Given that the function with positive real p(x) and u(k) has a one-to-one relationship, we have

)K4+---. (3.3)

M@:pw—l
p)+1
Now,
24t 1 1 1
M =1+ chk + (L_LCZ - gcf) K*
BRI SR B U
—C; — —CoC —C3 | K
1270 47T 4
NIRRT, 1o,
Thus
kw' (k)
) L+ dok + (2ds — &3) & + (d3 = 3dods + 3dy) €

+(~d3 + Ad3ds - 4dad,y - 2d5 + 4ds)K* + - - - . (3.4)

On comparing (3.3) and (3.4), we have

dy = %Cl,
d; %cz - %c?,
ds = %c? - 95—60201 + 11—26‘3,
d5 =~ 1;1264ll ’ 726986%62 ) %6361 B %865
From (3.5) and (3.6), we have
|d3 —/ld§| = % cy— %c? .

AIMS Mathematics
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(3.5)
(3.6)
(3.7)

! Ca. (3.8)
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By applying (2.4) to the above equation, we get

s o)

Also, from (3.5), (3.6), and (3.7), we have

1 ]13
|d2d3 - d4| = E ‘EC? — CyC1 + 3.
Then, by Lemma 2.2, we have

1

ldads — dy| < 5
Corollary 3.2. Let w € S;,,,. Then,
1

s 3| < 7.

The result is sharp for the function defined in (3.2), forn = 2
Theorem 3.3. Let w € S;,,. Then,

tan*

1
|dads - ] < — 3
The result is sharp for the function defined in (3.2), forn = 2
Proof. From (3.5), (3.6), and (3.7), we have

25 1 1 1
dody — d?| = |—=—=c} — —=CPcr + — — —d3l.
o = ds| = [G5t ~ Tz ciea + g1 ~ g3
Now, using Lemma 2.4, with ¢; = ¢ and |x| = y, we have
13 1 1 1 2
2 4 2 2\ .2 2 2 2\2 2
d2d4—d3| o16¢ +@c (4—c )y +%c(4—c )(l—y )+ﬁ(4_6) y
=F(cy).
Now, partially differentiating with regard to y, the following can be found
0F (c,y) _ 1 2 2
T (€2 (- +4c+12).

Clearly we see that aF(‘ ey 5 0 for all ye€[0,1]and c € [0,2], and we have

1 1 1

Fel) = —ct e —2 4 —

@D = 5516 ~96° " 16
= I'(c).

I (¢) < 0 for ¢ = 0, so the maximum attained at ¢; = 0 is

1
|dads - 5] < £

O

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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Theorem 3.4. Let w € Sy, Then,
1
|7‘{3,1 (a))| < 6_4
The result is sharp for the function defined in (3.2), for n = 3.
Proof. From (1.5), we have

Hs) () = —dsd; + 2dydsdy — ds + dsds — dj.
Taking c¢; = c in the identities (3.5), (3.6), (3.7) and (3.8), we have

1
Ha1 (W) = =oo77e |-31104ctes + 768cie; — 9012¢ie, — 25920c3

—36864c3 + 20218 + 12816¢%c; + 41472¢yc4 + 46 080clczc3] :

Furthermore, by using 4 — ¢? = ¢ in Lemma 2.4, we have

1

5308416
—2496¢3t (1 - |x|2) 5+ 288c22x* — 4320022 X% + 3564222

~5184c%1x” + 5184%c’t (1 — |x) 67
=5184 (1 = |67) pc’t (1 = |x?) = 1152¢x* (1 — [xP) 6

7{3,1 (w) =

+3456¢x (1 = |x|?) 6 — 32408 %% + 1036872 x> — 10368xx (1 — |x|*) 6>
(1 - IxP) B

+10368 (1 — |6) p’x (1 = [x*) - 92167 (1 - |x|2)2 52] .

Let

dy (¢, x) +dy (¢, x) 5 +d3 (c, ) 8 + @ (¢, x,6)p) .

1
Hs1 (@) = 5358316 (

where
dy (c, x) = —169¢° + (4 = ?) {-1296¢*x* + 2544c*x> — 666¢*x — 51847
+(4 - c?) (288c7x* - 1080c%x + 3564%x” — 2592},
dy (c,x) = (4= ) (1 - )
 (5184¢’x = 2496¢° + (4 — 7) (—1152¢x” + 3456¢x)).
ds (c,x) = (4= ) (1 - 1) (5184%c” - (4 - ¢?) (115247 + 9216)),
@ (c,x,0) = (4 = ) (1= |xP) (1 - 16F) (10368 (4 — ) x — 5184c?).

Let [x| = 7, 16| = y and |p| < 1, then

H;,1 (w) = (Idi (e, D)1 + 1z (e, DNy + Ids (e, DIy + 1@ (e, 7, 6)l)

1
5308416

1
< -
< S308416" &7

AIMS Mathematics

(3.9)

[—169c6 —1296¢*tx3 + 2544¢4tx% — 6664 tx + 5184c3tx (1 - |x|2) 5

(3.10)
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where
C(c.t.y) = hi (e, 1) + (e, D)y + b3 (e, 1)y + ha (e, 1) (1 =),

with
hi (. 7) = 169¢° + (4 = ) {1296¢*7° + 2544¢*7? + 666¢*T + 5184c*7
+(4 = c?) (288c77* + 1080 + 3564c*7” + 25927°)
hy (¢, 7) =192 (4 - 02) (1 - T2) (27c3r +13¢% + (4 - cz) (6CT2 + 18CT)) ,
hy (e, 7) = 576 (4 = ) (1= 7%) (97® + (4 = ¢?) (272 + 16)),
ha(c,7)=5184(4 =) (1 -7) (1 - IoF) (2(4 - &) 7+ ).

In order to determine, the value which is maximum for the function I'(c, 7, y) in the closed cuboid
[0,2] x [0, 1] X [0, 1], we need to show it in the following three manners.
I. Interior points of cuboid

We now determine I'(c, 7, y) greatest value inside the cuboid. Assume (c, 7,y) € [0, 2)x [0, 1)% (0, 1).
By differentiating I'(c, 7, y) with regard to y, we get

ar' (c,t,y)

vE 36 (4 - c?) (1 - 72) {(192 (27C3T + 1367 + (4 - cz) (6m2 + 18(:7)))
+1152y (r = 1) (9¢* +2(4 - ) (r - 8))}.

BF(c T<5)

Putting =0, gives

273 + 1363 + (4 - cz) (6CT2 + ISCT)
6(tr—1)(-9c2+2(4-c?)(8-1))
if y; is a critical point inside A, then y; € (0, 1), this is only feasible if

y: :yl’

276t +13¢* + (4 = ) (6¢7” + 18c7) = 12 (4 = ) (= 1) (8 = 7) < 54> (1 - 1), (3.11)
and
2 g 8(8—-1)
(25 -21)°
In order to determine the critical point, we must come up with a solution that meets both of the
(3.11) and (3.12) inequalities. Assume I'(7) = (g(sg__;:), implies I (7) = (25__722T)2 < 0, is decreasing
function, so

(3.12)

2, 64
¢ 25

The straightforward computations show that, for 7 € [277, 1) (3.11) is not held. Hence, it may be
said that the cuboid [0, 2) X [27 , ) % (0, 1) is devoid of critical points for the function I'(c, 7, y). Assume
that (c, 7, y) is a critical point of I" in the cuboid’s interior that satisfies the requirements 7 € [O, 27) and

y €(0,1), which lead us to ¢> > g (27—7) = ‘666712 Furthermore, it is evident that

7
h(c,7) < hy (c E) =v;(c).

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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Since 1 —72 < 1and 0 < 7 < 5, we have

2
s3] t-fef 2] ()

729 7
= —h —_— = .
680 2(C’27) v2(e)
Similarly, we obtain
729 7 _
hj(c,7) < @hj (C, E) =v;(c), j=3,4

Consequently,

T(c,7,y) S vi(€) +v4(0)y + v (©)y + (13(c) —=vs (©)y* = ¥ (c,y).

669

Differentiating with reference to “y”, we get

0¥ (c,y)
6—y = (c) +2(v3(c) —v4(0))y.
y
Consider
846 080 5524 480 8560 640 1672
h3(c)—h4(c):( 21 - <1 3+ 21 )SO, force(w/m,Z).

Next, for all ¢ € (w/%ﬂ) and y € (0, 1), we get

oY
5y = (©+2(s(c)=valc)y
ly
> vy (c) +2(v3(c) —valc))
232192 5 1692160 , 613376 ,

c + c +
81 81 81
11048960 , N 1261 568 17121280
- c c

+
81 81 81

> 0.

Thus, we obtain where

232192 5 1692160 , 613376 ,

Y =
(¢) 21 c o+ 21 ¢+ 21 c
11048960 , 1261568 17 121280
— c + C + .
81 81 81

For each point ¢, where ¢ € ( A/ %, 2), it should be seen that
T (c) # 0.

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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Moreover, it showing that the the maximum value 116139 can be obtained as ¢ = 1 for the function
Y (c).
Y(c,y) WY, )=vi(c)+va(c)+v3(c) =Y (c).
I1. Cuboid all six faces
Now, we have to determine the given function I'(c, 7, y) maximum value on all six faces of the
cuboid A.
(1). Upon letting ¢ = 0 : I'(0, 7, y), we have

hy(t,y) = —184327% + 1658887°y* — 124 4167° — 129 0247%y?
—165 8887y + 165 8887 + 147 456y°.

Then
Ohy (1,y)

dy
It indicates that inside the interval (0, 1) x (0, 1), 4; has no optimal points.
(it). If we take ¢ = 2, we have

=36864y (1~ 1) (-T* + 7t +8) £0  (ye (0, 1).

re,r,y) =10816.

(itt). If we take 7 = 0,I'(c, 0, y) turns into

hy(c,y) = 169¢® — 24967y + 14 400c*y? — 5184¢*
+9984c%y — 94 464c*y* + 20736 + 147 456y°.

Then ahza;yc’y) =0, gives

1363
_ =y 3.13
YT 6252 -64) ° ©-13)
For the provided range of y,yy € (0,1),if ¢ > ¢y = 1. 6.
Also, % = 0, gives
6¢ (—2080c3y +9600c*y* + 4992¢y — 3456¢% + 169¢* — 31 488y* + 6912) = 0. (3.14)

Putting (3.13) in (3.14), we obtain
228 150¢° — 13738 752¢” +92275200¢° — 217 645 056¢> + 169 869 312¢ = 0.

When we solve for ¢ inside the interval (0, 2), we get ¢ ~ 1.325 1. According to this, I'(c, 0, y) does
not have an ideal solution.
(in). If we take T = 1 : ['(c, 1, y) turns into

hs (¢) = 595¢% — 24 024¢* + 78 912¢% + 41 472,

Ohs

then 2

= 0 gives a critical point ¢ ~ 1.325 5, where &3 attains its maximum value, that is,

hs (c) <1091 80.

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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(v). If we take y = 0 : I'(¢, 7,0) becomes

hy(c,T) = 288c7* — 21657 + 1020¢°7? — 666¢°T + 169¢°
—-2304c*t* — 11232¢*% — 18336¢* % + 13032¢*r
—5184c* + 4608c>* + 79488c% T + 57 024772
—82944¢%t +20736¢* — 124 4167° + 165 888,

Thus,
% = 17287t = 12967 + 612072 — 3996¢° + 1014¢°
C
—921631* — 449281 — 7334437 + 52 12803
—20736¢> + 9216¢7* + 158 976¢7> + 114 048¢72
—165888ct + 41472¢
and

or

The computational analysis of the system of equations
solutions in (0, 2) x (0, 1).
(vt). Finally, If we take y = 1 : I'(c, 7, 1), transforms to

oy
ac

Ohy _ 6 (4 B 2) —192¢*73 + 108c¢*1? — 340c*t + 111c* + 768273
¢ +6048c%7% + 4752¢*t — 1728¢% — 155527> + 6912 |

=0and %LT“ = (O reveals that there are no

hs(c,7) = 288c%7* — 2167 + 1020c°7* — 666¢°T + 169¢°
—1152¢°7* + 17287 + 3648¢° 1% — 17281
—2496¢° — 3456¢*t* + 4320c* T — 31 584c¢*1?
—2520c*t + 9216¢* + 9216¢°t* + 69126373
—-19200¢° > — 6912¢* T + 9984¢° + 13 8241
—24192¢%7° + 142 272¢* 7 + 20736 — 73 728¢°
—18432¢ct* — 55296¢7> + 18432¢7” + 55 296¢T — 1843274

+4147273 — 1290247 + 147 456

It follows that

ohs
oc

= 17287t = 12967 + 612072 — 3996¢°

+1014¢° — 5760c*t* + 8640c*r® + 18 240c¢*r*
—8640c*t — 12480c¢* — 13 824c*t* + 17280
—126336¢* 7% — 10080c° 1 + 36 864¢> + 27 648c%7*
+20736¢%* 7 — 57600c* 7> — 207367 + 299522

+27 648ct* — 48 384T’ + 284 544c¢1 + 41472ct
—147456¢ — 184327* — 552967° + 184327° + 552967

AIMS Mathematics

Volume 9, Issue 8, 20721-20741.



20732

and

Oh
8—5 = 6(4-c)[-192¢* + 108c*7* - 340c* + 111c* + 768¢*7°
"

—864c°1> — 1216¢° T + 288¢% + 1536¢%7° — 172812
+9168¢%T + 864¢? — 3072¢t> — 6912¢7> + 1536¢1
+2304c¢ — 30727 + 51847% — 10 7527] )

The computation also shows that there are no solutions in (0, 2) x (0, 1) for the system of equations

Ohs Ohs
% =0 and a7 =0.
II1. On the twelve edges of the cuboid

The last task is to determine I'(c, 7, y) maximum values along each of the twelve edges.
(#). t=0andy =0:I(c,0,0) transform to

['(c,0,0) = 169¢® — 5184¢* + 20736¢% = he (¢),

then
() = 0,

showing that the maximum value
he (c) < 22337,

can be obtained for the critical point ¢ = 1.499.

(it). Ont=0and y = 1: I'(c, 0, 1) becomes

I(e,0,1) = (13¢* - 96¢ + 384)2 = I (c),
then
h; (c) =0,

showing that the maximum value
h7 (c) < 147456,

can be obtained for the critical point ¢ = 0.
(itt). OnTt=0and ¢ = 0 : I'(0, 0, y) becomes

hg (y) = 147 456y°.
Clearly, %f’” > ( is an increasing function at [0, 1], so the maximum attained at 7 = 1
hg (1) < 147 456.
Since I'(¢c, 1, 1) and I'(c, 1, 0) are the function where the term 7 is not involved, that is

he (¢) =T(c, 1,1) =T(c, 1,0) = 595¢° — 24 024¢* + 78 912¢% + 41472.

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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Putting
dhs () _
dc

we have the critical point ¢ = 1.325 5 and the maximum value of /g (¢) is

0,

hy (¢) < 1091 80.
(in). Lett=1andc =0:1(0,1,y), we have
['0,1,y) = hyo(y) = 41472.
(v). Putting ¢ = 2, we have
re,ny)=Ir2,1,y)=I2,q,1) =1(2,4,0) = 10816.
(oi). fc=0and y = 0:T(0,1,0), we have
hiy (1) = —414727 (372 - 4).

Clearly,
W, (t) = 165888 — 37324877,

Thus, we know that 4, (7) = 0 gives 7 ~ 0.666 7, at which h,; (7) obtain its maximum value, which
is given by
h11 (T) < 73728.

(vit). fc=0andy = 1: T'(0, 7, 1) we have
hiy (1) = —184327% + 414727 — 129 0247* + 147 456.

Then,
W, (1) = =73 7287 + 12441677 — 258 048r.

Thus, we know that /7, (r) = 0 gives 7 = 0, at which A, (7) obtain its maximum value, which is
given by

Thus, it can be seen that
I'(c,7,y) < 147456.

According to (3.10), we thus obtain the following inequality.

1
|7"{3’1 ((1))| < 1_6
O

AIMS Mathematics Volume 9, Issue 8, 20721-20741.
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4. Logarithmic coefficient functionals for the class S;,

The logarithmic coefficients of a given function w , represented by vy, = v, (w), are defined by

1 w (k) - N
Elog( p )ZZ’)/,,K .

n=1

The Hankel determinant, whose entries are the logarithmic coefficients, is naturally taken into
consideration. In [27,28], Kowalczyk first introduced the Hankel determinant containing logarithmic

coeflicients as the elements, which is given by

Yn Yn+1 e Yn+q-1
Yn+1 Yni2 0 Vneg
Hn,q ((1)) =1 . . .
yn+q—1 7n+q Tt ')’n+2q—2
In particular, it is noted that
Hn,q ((.U) — ‘ Y1 Y2
Y2 V3
= |717’3 - 7% | .

The logarithmic coefficients of w, if it is represented by (1.1), are as follows:

1 1
Ye=3 (d5 — dydy + dsd; — §d§ - —d;‘).

Theorem 4.1. Let w called member of S;,,. Then

These outcomes are sharp for functions defined in (3.2) for n = 1, 2, 3, 4 respectively.

4.1)

4.2)

4.3)

4.4)
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Proof. Applying (3.5) to (3.8), then to (4.1) , then to (4.4), we have

1
Y= gcla
_ 1 1,
271672 R
= —c] — —CC] + —C3,
V3T T g T
1, N 1, 1 1, N 1
= ———C] + —=C{Cy — —C3¢] — —C>, + —
YT TR T 3 T R T g2 T 3
Applying (2.2) to (4.5), we have
1
lyil < 1
To find bound of y,, apply (2.3) to (4.6), we have
1
lyal < 3
Applying (2.5) to (4.7), we get
1
< —
lysl < 7’
and
1 4 2 1,
lyal = 3 g6 TG tac o -
1
< 16 (using Lemma (2.3).

Theorem 4.2. Let w € S

wn- Lhen for complex number A, we have

1
|72 - /lyﬂ < gmax{l, %}

The function defined in (3.2), for n = 2 yields a sharp result.
Proof. From (4.5) and (4.6), we have

1
2 = 1| = T

Applying (2.4) to the preceding equation yields the desired outcome.

Theorem 4.3. Let w € S

tan*®

Then
1
— < —,
My —»ls 35
The outcome is sharp for function defined in (3.2) for n = 3.

AIMS Mathematics

(4.5)
(4.6)

4.7)

Cq. (48)
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Proof. From (4.5) ,(4.6) and (4.7) , we have

| = 1141 ; 19 N
Y1Y2— V3 24 961 160201 csl,

thus, by Lemma 2.2, we have

ly1y2 —y3l < 12

Theorem 4.4. Let w € S, . Then

tan*
lyivs - 73| < L
764
The outcome is sharp for function defined in (3.2) for n = 2.
Proof. From (4.5) ,(4.6) and (4.7), we have

|77 —)’2|=‘—c4—iczc +Lcc —ch
3772 7 o216 1 768 17 102777 25672

Now using Lemma 2.4, with ¢; = ¢, |«| = 1 and |x] = y, we have

Y13 =7 S et + e (4= )+ se(4- ) (1)

1 22 2 _
+@(4—c) y =G (y,c) (say).

Further,
9G (.00 1 Lo
Gy ErRAG) (- +4c +12),
clearly the ‘QG(y 9 > 0inye€[0,1] somaximum attained at y = 1, i.e.,
1 1 1
Gl,o)= ——c*——+—=H
(9= 516" 383 Teoa - 1O
Further,

1
23046(‘"2 - 12),

since H’ (c) = 0 has three roots namely ¢ = 0, -2 V3 and 2 V3. The only root lies in the interval [0, 2]
is 0. Also, one may check easily that H " (¢) < 0 for ¢ = 0, thus maximum attained at ¢ = 0, that is

H' (¢c) =

1
HQO) < —.
©) < 64

O
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5. Inverse coeflicient functionals for the class S

tan

For every univalent function £ defined in A, the well-known Kdebe 1/4-theorem guarantees that its
inverse ¢! exists at least on a disc of radius 1/4 with Taylor’s series representation form

E'wy=w+ ;Anw", (IWI < %) (5.1)

Using the representation & (f‘l (w)) = w, we obtain

Ay = —d,, (5.2)
Az = —ds + 2d5, (5.3)
Ay = —dy + 5dyds - 5d;. (5.4)

In recent years, scholars have shown a strong fascination in comprehending the geometric behavior
of the inverse function. For instance, Krzyz et al. [29] derived the upper bounds of the initial coefficient
for inverse function £~! when & € S* (8) with 0 < 8 < 1. Furthermore, Ali [30] determined the first four
initial sharp coefficients bounds and sharp Fekete—Szego inequality for the class SS*(¢) (0 < < 1)
of a strongly starlike function of the inverse function. The papers [31, 32], provide further information
on the research of inverse coeflicients.

Theorem 5.1. Let w € A member of S;,,. Then

tan*

These outcomes are sharp for functions defined in (3.2) for n = 1,2, 3 respectively.

Proof. Applying (3.5) to (3.7), then to (5.2), then to (5.4), we have

Ay = —ch’ (5.5)
5 1
Az = 3—20% - gcz, (5.6)
19 5 1
4 = —mci + ﬂCZCl - 56‘3. (57)
Applying (2.2) to (5.5), we have
1
|As] < 7
To find bound of Aj, apply (2.3) to (5.6) , we have
1
|As] < 7
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Applying (2.5) to (5.7), we get

1
|A4] < 3

Theorem 5.2. Let w € S

- Lhen for complex number A, we have

1 20-11
|A3 - M%| < Z max {1, %} .
The function defined in (3.2), for n = 2, yields a sharp result.
Proof. From (5.5) and (5.6), we have

5-22
G

1
|A3—/1A%|:§ Cy) —

Applying (2.4) to the preceding equation yields the desired outcome. O

Theorem 5.3. Let w € S&, . Then

tan*
1
|AsA; — Ayl < 5
The outcome is sharp for function defined in (3.2) for n = 3.
Proof. From (5.5) ,(5.6) and (5.7), we have

107 , 17 1
— —CC1 + —cC3f,

11521~ 96 12

|A2A; — A4l =

applying Lemma 2.2, we achieve the intended outcomes. m|
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