
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(7): 18608–18624.
DOI: 10.3934/math.2024906
Received: 08 January 2024
Revised: 27 March 2024
Accepted: 02 April 2024
Published: 03 June 2024

Research article

Sufficiency criteria for a class of convex functions connected with tangent
function

Muhammad Ghaffar Khan1, Sheza.M. El-Deeb2,3, Daniel Breaz4,∗, Wali Khan Mashwani1 and
Bakhtiar Ahmad5

1 Institute of Numerical Sciences, Kohat University of Sciences and Technology, Kohat 26000,
Pakistan

2 Department of Mathematics, College of Science, Qassim University, P.O. Box 6644, Buraydah
51452, Saudi Arabia

3 Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
4 Department of Mathematics, “1 Decembrie 1918” University of Alba-Iulia, 510009 Alba Iulia,

Romania
5 Govt. Degree College Mardan, Pakistan

* Correspondence: Email: dbreaz@uab.ro.

Abstract: The research here was motivated by a number of recent studies on Hankel inequalities and
sharp bounds. In this article, we define a new subclass of holomorphic convex functions that are related
to tangent functions. We then derive geometric properties like the necessary and sufficient conditions,
radius of convexity, growth, and distortion estimates for our defined function class. Furthermore, the
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1. Introduction

First, some fundamental ideas must be explained in order to fully comprehend the basic concepts
utilized throughout the attainment of our major findings. For this, let A denote the family of all
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holomorphic (regular) functions f defined in the open unit disc D = {z : z ∈ C and |z| < 1}, whose
Taylor series representation is given as follows:

f (z) = z +

∞∑
j=2

ξ jz j, z ∈ D. (1.1)

A subfamily containing all of the univalent functions of the familyA in D is denoted by S. A useful
technique for examining different inclusion and radii concerns for families of holomorphic functions
is known as subordination. A function f is subordinate to g in D written as f ≺ g, if there exists a
Schwarz function ω, which is regular in D and ω(0) = 0 with |ω(z)| < 1, such that f (z) = g(ω (z)). In
addition, if the function g is univalent in D then we have

f (0) = g (0) and f (D) ⊂ g (D) .

The known subclasses of S are represented by the letters S∗, C, K and R. These subclasses include
starlike, convex, close to convex, and functions with bounded turnings. Two regular functions, f and

ς, are convolved in D, the series representation of f is provided in (1.1) and ς = z +
∞∑
j=2

b jz j is defined

as follows:

( f ∗ ς) (z) = z +

∞∑
j=2

ξ jb jz j, z ∈ D. (1.2)

The integrated families of starlike and convex functions were developed in 1985 by Padmanabhan
and Parvatham [1] who utilized the theory of convolution along with the function z

(1−z)a , where a ∈ R.
By taking a regular function φ(z) with φ(0) = 1, and h (z) ∈ A,, Shanmugam [2] expanded on the
concept presented in [1] and introduced the generic form of the function class S∗h(φ) as follows:

S∗h(φ) =

{
f ∈ A :

z( f ∗ h)′

( f ∗ h)
≺ φ(z), z ∈ D

}
. (1.3)

By taking h (z) = z
1−z or z

(1−z)2 , we derive the famous classes S∗(φ) and C(φ) of Ma and Minda type
starlike and convex functions defined in [3]. Further, by choosing φ(z) = 1+z

1−z these classes can be
reduced to S∗ and C.

By limiting φ(z) in the generic form of S∗(φ) and C(φ), numerous scholars have defined and
investigated a variety of intriguing subclasses of analytic and univalent functions in the recent past.
Here, we highlight few of them.

Let φ(z) = 1+Fz
1+Gz , −1 ≤ G < F ≤ 1. Then S∗[F,G] = S∗

(
1+Fz
1+Gz

)
is the class of Janowski starlike

functions; see [4]. For φ(z) = cos z, the class S∗cos z was studied by Bano and Raza [5], while for
φ(z) = cosh z, the function class S∗cosh z was introduced and studied by Alotaibi et al. [6]. For φ(z) = ez,

the class S∗e was defined and studied by Mendiratta et al. [7]. For φ(z) = 1 + sin z, the class S∗ (φ)
reduces to S∗sin, as presented and examined by Cho et al. [8]. For φ(z) = 1 + z − 1

3z3, we get the family
S∗nep that was examined by Wani and Swaminathan [9]. For φ(z) = 1 + sinh−1 (z), the family S∗ (φ) was
established and studied by Kumar and Arora [10] for more details see [11]. For φ(z) = 2

1+e−z , the class
S∗ (φ) reduces to S∗sig; see [12] and [13,14]. For φ(z) =

√
1 + z, we obtain the family S∗

(√
1 + z

)
= S∗L

as studied by Sokol and Stankiewicz [15]. The class S∗tanh z = S∗ (φ(z)) , for φ(z) = 1 + tanh z, was
established by Ullah et al. [16] see also [17].
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For the given parameters n, r ∈ N, the rth Hankel determinantHr, n was defined in [18] as follows:

Hr, n( f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξn ξn+1 . . . ξn+r−1

ξn+1 . . . . .

. . . . . .

. . . . . .

. . . . . .

ξn+r−1 . . . . ξn+2(r−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For the given values of n, r and ξ1 = 1 the second and third Hankel determinants are defined as
follows:

H2,1( f ) =

∣∣∣∣∣∣ 1 ξ2

ξ2 ξ3

∣∣∣∣∣∣ = ξ3 − ξ
2
2, H2,2( f ) =

∣∣∣∣∣∣ ξ2 ξ3

ξ3 ξ4

∣∣∣∣∣∣ = ξ2ξ4 − ξ
2
3. (1.4)

This technique has proven to be usful when examining power series with integral coefficients and
singularities by taking the Hankel determinant into account; see [19]. Bounds of Hr, n( f ) for several
kinds of univalent functions have been examined recently. For a detailed study on the Hankel
determinant, we refer the reader to [20–22].

Scholars in the field of geometric function theory of complex analysis are still motivated by the
study of coefficient problems, which include the Fekete–Szegö and Hankel determinant problems.
To encourage and motivate interested readers, we have included numerous recent works (see, e.g.,
[20–22]) on a variety of the Fekete–Szegö and Hankel determinant problems, along with ongoing
applications of the q-calculus in the study of other analytic or meromorphic univalent and multivalent
function classes. Motivated and inspired by the work mentioned above, in this article, we first define
a new subclass of holomorphic convex functions that are related to the tangent functions. We then
derive geometric properties like the necessary and sufficient conditions, radius of convexity, growth,
and distortion estimates for our defined function class. Furthermore, the sharp coefficient bounds,
sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal inequalities are
given. Moreover, we calculate the sharp coefficient bounds, sharp Fekete-Szegö inequality, and sharp
second-order Hankel determinant for the functions whose coefficients are logarithmic.

We present the following subfamily of holomorphic functions.

Definition 1.1. Let f ∈ A, be given in (1.1). Then f ∈ Ctan if the following condition holds true:

f∈ Ctan ⇐⇒ f ∈ A and
(z f ′(z))′

f ′(z)
≺ 1 +

tan z
2

, z ∈ D. (1.5)

Geometrically, the family Ctan comprises all of the functions f that lie within the image domain of
1 + tan z

2 , for a specified radius.

2. Set of lemmas

We utilize the following lemmas in our major conclusion.
Let P stand for the family of all holomorphic functions p that have a positive real portion and are

represented by the following series:

p (κ) = 1 +

∞∑
j=1

c jz j, κ ∈ Ω. (2.1)
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Lemma 2.1. If p ∈ P, then the following estimations hold:∣∣∣c j

∣∣∣ ≤ 2, j ≥ 1, (2.2)∣∣∣c j+n − µc jcn

∣∣∣ < 2, 0 < µ ≤ 1, (2.3)

and for η ∈ C, we have ∣∣∣c2 − ηc2
1

∣∣∣ < 2 max {1, |2η − 1|} . (2.4)

Regarding the inequalities (2.2)–(2.4) are detailed in [23].

Lemma 2.2. [24] If p ∈ P and it has the form (2.1), then

|α1c3
1 − α2c1c2 + α3c3| ≤ 2|α1| + 2|α2 − 2α1| + 2|α1 − α2 + α3|, (2.5)

where α1, α2 and α3 are real numbers.

Lemma 2.3. [25] Let χ1, σ1, ψ1 and %1 satisfy the inequalities for χ1, %1 ∈ (0, 1) and

8%1 (1 − %1)
[
(χ1σ1 − 2ψ1)2 + (χ1 (%1 + χ1) − σ1)2

]
+ χ1 (1 − χ1) (σ1 − 2%1χ1)2

≤ 4χ2
1 (1 − χ1)2 %1 (1 − %1) .

If h ∈ P and is of the form (2.1), then∣∣∣∣∣ψ1c4
1 + %1c2

2 + 2χ1c1c3 −
3
2
σ1c2

1c2 − c4

∣∣∣∣∣ ≤ 2.

Lemma 2.4. Let p ∈ P and x and z belong to Λ, then, we have

2c2 = c2
1 + x

(
4 − c2

1

)
,

4c3 = 2x
(
4 − c2

1

)
c1 − x2

(
4 − c2

1

)
c1 + 2z

(
1 − |x|2

) (
4 − c2

1

)
+ c3

1,

where c2 and c3 are discussed in [26] and [27] respectively.

The goal of the current study was to derive the necessary and sufficient conditions, radius of
convexity, growth and distortion estimates, sharp coefficient bounds, sharp Fekete-Szegö inequality,
Krushkal inequality, and logarithmic coefficient estimates for the subclass Ctan of class A which is
related to tangent functions.

3. Main results

Theorem 3.1. Let f ∈ Ctan be as given in (1.1). Then

1
z

[
f (z) ∗

(
z − Mz2

(1 − z)3

)]
, 0, (3.1)

where

M =
4 + tanh

(
eiθ

)
2

. (3.2)
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Proof. Because f ∈ Ctan is analytic in D, 1
z f (z) , 0 for all z in D then, by using the definition of

subordination and (1.5), we have
(z f ′(z))′

f ′(z)
= 1 + tanhω (z) , (3.3)

where ω (z) is the Schwarz function. Let ω (z) = eiθ, −π ≤ θ ≤ π. Then (3.3) becomes

z f ′′ (z)
f ′ (z)

,
tan

(
eiθ

)
2

,

which implies that

z2 f ′′ (z) − z f ′ (z)
tan

(
eiθ

)
2

, 0. (3.4)

It can be easily seen that

z2 f ′′ (z) + z f ′ (z) = f (z) ∗
z (1 + z)
(1 − z)3 and z f ′ (z) = f (z) ∗

z
(1 − z)2 . (3.5)

Using (3.5), and through some simple calculations (3.4) becomes

f (z) ∗
(
z − Mz2

(1 − z)3

)
, 0. (3.6)

From (3.6), we will obtain (3.1), where M is given in (3.2). �

Theorem 3.2. Let f ∈ A. Then f ∈ Ctan if

∞∑
n=2

2n
(
2 + tan

(
eiθ

))
− 4n2

tan (eiθ)

 ξnzn−1 − 1 , 0. (3.7)

Proof. If f ∈ Ctan then from Theorem 3.1, we have

1
z

[
f (z) ∗

(
z − Mz2

(1 − z)3

)]
, 0,

where M is given in (3.2). The above relation implies that

1
z

[(
f (z) ∗

z
(1 − z)3

)
−

(
f (z) ∗

Mz2

(1 − z)3

)]
, 0.

Since z2 = z (1 + z) − z, so we have

1
z

[(
f (z) ∗

z
(1 − z)3

)
− M

(
f (z) ∗

z (1 + z)
(1 − z)3 − f (z) ∗

z
(1 − z)3

)]
, 0. (3.8)

Now applying (3.5) and some properties of convolution, (3.8), reduces to

1
z

[(
1
2

z2 f ′′ (z) + z f ′ (z)
)
− M

(
z2 f ′′ (z)

)]
, 0.

Using (1.1) and after some simplification, we obtain (3.7). �
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Theorem 3.3. Let f ∈ A be as given in (1.1). Then f ∈ Ctan if

∞∑
n=2


∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣
 |ξn| < 1. (3.9)

Proof. To demonstrate the necessary outcome, we employ relation (3.7) as follows:∣∣∣∣∣∣∣∣1 −
∞∑

n=2

4n2 − 2n
(
2 + tan

(
eiθ

))
tan (eiθ)

ξnzn−1

∣∣∣∣∣∣∣∣
> 1 −

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| |z|n−1 . (3.10)

From (3.9), we have

1 −
∞∑

n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| > 0. (3.11)

From (3.10) and (3.11), we obtain the intended outcome by applying Theorem 3.2. �

Theorem 3.4. Let f ∈ Ctan. Then f is convex and of order α, 0 ≤ α < 1 and |z| < r1, where

r1 = inf
n≥2


∣∣∣∣4 + n (n − 3) tan

(
eiθ

)∣∣∣∣
|2 tan (eiθ)|

(1 − α)
n (n − α)


1

n−1

. (3.12)

Proof. It is sufficient to show that ∣∣∣∣∣ (z f ′(z))′

f ′(z)
− 1

∣∣∣∣∣ ≤ 1 − α. (3.13)

From (1.1), we have ∣∣∣∣∣z f ′′ (z)
f ′ (z)

∣∣∣∣∣ ≤
∞∑

n=2
n (n − 1) ξn |z|n−1

1 −
∞∑

n=2
nξn |z|n−1

. (3.14)

(3.14) is bounded above by 1 − α, if
∞∑

n=2

[
n (n − 1) + n (1 − α)

1 − α

]
|ξn| |z|n−1

≤ 1. (3.15)

But by Theorem 3.1, the above inequality is true if

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| < 1. (3.16)

Then the inequality (3.15), becomes[
n (n − α)

1 − α

]
|z|n−1

≤

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ .
AIMS Mathematics Volume 9, Issue 7, 18608–18624.
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Simple math yields

r1 = inf
n≥2


∣∣∣∣∣∣∣∣
(1 − α)

(
4n − 2

(
2 + tan

(
eiθ

)))
(n − α) tan (eiθ)

∣∣∣∣∣∣∣∣


1
n−1

.

The desired outcome is demonstrated. �

4. Growth and distortion estimates

Theorem 4.1. Let f ∈ Ctan and |z| = r. Then

r −

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
8 − 4 tan (eiθ)

∣∣∣∣∣∣∣∣ r2 ≤ | f (z)| ≤ r +

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
8 − 4 tan (eiθ)

∣∣∣∣∣∣∣∣ r2. (4.1)

Proof. Consider that

| f (z)| =

∣∣∣∣∣∣∣z +

∞∑
n=2

ξnzn

∣∣∣∣∣∣∣
≤ r +

∞∑
n=2

|ξn| rn.

Since rn ≤ r2 for n ≥ 2 and r < 1, we have

| f (z)| ≤ r + r2
∞∑

n=2

|ξn| . (4.2)

Similarly

| f (z)| ≥ r − r2
∞∑

n=2

|ξn| . (4.3)

Now, applying (3.9) implies that

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| < 1.

Since ∣∣∣∣∣∣∣∣
16 − 4

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣
∞∑

n=2

|ξn| ≤

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| ,

we get ∣∣∣∣∣∣∣∣
8 − 4 tan

(
eiθ

)
tan (eiθ)

∣∣∣∣∣∣∣∣
∞∑

n=2

|ξn| < 1,

One can easily write this as follows:

∞∑
n=2

|ξn| <

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
16 − 4 (2 + tan (eiθ))

∣∣∣∣∣∣∣∣ ,
Placing this value in (4.2) and (4.3) the necessary inequality is obtained. �
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Theorem 4.2. Let f ∈ Ctan and |z| = r. Then,

1 − 2

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
8 − 4 tan (eiθ)

∣∣∣∣∣∣∣∣ r ≤ | f ′ (z)| ≤ 1 + 2

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
8 − 4 tan (eiθ)

∣∣∣∣∣∣∣∣ r.
Proof. Consider that

| f ′ (z)| =

∣∣∣∣∣∣∣1 +

∞∑
n=2

nξnzn

∣∣∣∣∣∣∣
≤ 1 +

∞∑
n=2

|ξn| rn−1.

Since rn−1 ≤ r for n ≥ 2 and r < 1, we have

| f ′ (z)| ≤ 1 + 2r
∞∑

n=2

|ξn| . (4.4)

Similarly

| f ′ (z)| ≥ 1 − 2r
∞∑

n=2

|ξn| . (4.5)

Now, applying (3.9) implies that

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| < 1.

Since ∣∣∣∣∣∣∣∣
16 − 4

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣
∞∑

n=2

|ξn| ≤

∞∑
n=2

∣∣∣∣∣∣∣∣
4n2 − 2n

(
2 + tan

(
eiθ

))
tan (eiθ)

∣∣∣∣∣∣∣∣ |ξn| ,

we get ∣∣∣∣∣∣∣∣
8 − 4 tan

(
eiθ

)
tan (eiθ)

∣∣∣∣∣∣∣∣
∞∑

n=2

|ξn| < 1,

one can easily write this as follows:

∞∑
n=2

|ξn| <

∣∣∣∣∣∣∣∣
tan

(
eiθ

)
8 − 4 tan (eiθ)

∣∣∣∣∣∣∣∣ .
Setting this value in (4.4) and (4.5) , we accomplish what is needed. �

Theorem 4.3. For f (z) ∈ Ctan, the coefficient bounds are given by

|ξ2| ≤
1
4
, (4.6)

AIMS Mathematics Volume 9, Issue 7, 18608–18624.



18616

|ξ3| ≤
1

12
, (4.7)

|ξ4| ≤
1

24
, (4.8)

|ξ5| ≤
1

24
. (4.9)

and ∣∣∣ξ3 − ηξ
2
2

∣∣∣ ≤ 1
12

max
{

1,
∣∣∣∣∣3η − 2

4

∣∣∣∣∣} . (4.10)

The above outcomes (4.6)–(4.9) are sharp for the functions given below:

f1 (z) =

z∫
0

exp

z∫
0

tan x
2

x
dx = z +

1
4

z2 +
1

24
z3 + · · · , (4.11)

f2 (z) =

z∫
0

exp

z∫
0

tan x2

2

x
dx = z +

z3

12
+

z5

160
+ · · · , (4.12)

f3 (z) =

z∫
0

exp

z∫
0

tan x3

2

x
dx = z +

z4

24
+

z7

504
+ · · · , (4.13)

f4 (z) =

z∫
0

exp

z∫
0

tan x4

2

x
dx = z +

z5

40
+

z9

1152
+ · · · . (4.14)

And the bound (4.10) is extreme for the function defined in (4.12) .

Proof. Because f (z) ∈ Ctan, we have the definition

(z f ′(z))′

f ′(z)
≺

2 + tan (z)
2

,

which can be written as
(z f ′(z))′

f ′(z)
=

2 + tan (ω (z))
2

,

where ω (z) is the holomorphic function with the following properties:

ω (0) = 0 and |ω (z)| < 1.

Now let
(z f ′(z))′

f ′(z) = 1 + 2ξ2z +
(
6ξ3 − 4ξ2

2

)
z2 +

(
12ξ4 − 18ξ2ξ3 + 8ξ3

2

)
z3 + · · · , (4.15)

and

1 +
tan (ω (z))

2
= 1 +

1
4

c1z +

(
1
4

c2 −
1
8

c2
1

)
z2 +

(
1
12

c3
1 −

1
4

c2c1 +
1
4

c3

)
z3

AIMS Mathematics Volume 9, Issue 7, 18608–18624.
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+

(
−

1
16

c4
1 +

1
4

c2
1c2 −

1
4

c3c1 −
1
8

c2
2 +

1
4

c4

)
z4 + . . . . (4.16)

Comparing (4.15) and (4.16), we have

ξ2 =
1
8

c1, (4.17)

ξ3 =
1

24
c2 −

1
96

c2
1, (4.18)

ξ4 =
17

4608
c3

1 −
5

384
c2c1 +

1
48

c3. (4.19)

ξ5 = −
1

80

(
157

1152
c4

1 −
29
48

c2
1c2 +

2
3

c3c1 +
3
8

c2
2 − c4

)
. (4.20)

Then by applying (2.2) to (4.17) , we have

|ξ2| ≤
1
4

.

And applying (2.3) with n = k = 1 to (4.18) , we get

|ξ3| ≤
1

12
.

For (4.19), applying Lemma 2.2 yields

|ξ4| ≤
1

24
.

And for (4.20) , we have

|ξ5| =

∣∣∣∣∣− 1
80

∣∣∣∣∣ ∣∣∣∣∣ 157
1152

c4
1 −

29
48

c2
1c2 +

2
3

c3c1 +
3
8

c2
2 − c4

∣∣∣∣∣
≤

1
40

(by Lemma 2.3).

Now from (4.17) and (4.18) , we have∣∣∣ξ3 − ηξ
2
2

∣∣∣ =
1

24

∣∣∣∣∣c2 −
3η − 2

4
c2

1

∣∣∣∣∣ .
And applying (2.4) to the above relation, we achieve our goals. �

The following outcome occurs if we set η = 1 in the above result.

Remark 4.4. If we set η = 1 in (4.10), we get the following result∣∣∣ξ3 − ξ
2
2

∣∣∣ ≤ 1
12
.

The outcome is precise for the function defined in (4.12), and it cannot be further enhanced.

Theorem 4.5. Let f (z) ∈ Ctan. Then

|ξ2ξ3 − ξ4| ≤
1

24
.

The outcome is sharp for the function defined in (4.13).
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Proof. From (4.17)–(4.19) , we have

|ξ2ξ3 − ξ4| =

∣∣∣∣∣ 23
4608

c3
1 +

7
384

c2c1 −
1
48

c3

∣∣∣∣∣ .
Applying Lemma 2.2, we achieve the intended outcomes. �

Theorem 4.6. Let f (z) ∈ Ctan. Then ∣∣∣ξ2ξ4 − ξ
2
3

∣∣∣ ≤ 1
144

.

The outcome is sharp for the function defined in (4.12) .

Proof. From (4.17)–(4.19), we have∣∣∣ξ2ξ4 − ξ
2
3

∣∣∣ =

∣∣∣∣∣ 13
36 864

c4
1 −

7
9216

c2
1c2 +

1
384

c3c1 −
1

576
c2

2

∣∣∣∣∣ .
Now using Lemma 2.4, with c1 = c and |x| = y, we have∣∣∣ξ2ξ4 − ξ

2
3

∣∣∣ ≤ 7
36 864

c4 +
1

1536
c2

(
4 − c2

)
y2 +

1
18 432

c2
(
4 − c2

)
y

+
1

768
c
(
1 − y2

) (
4 − c2

)
+

1
2304

(
4 − c2

)2
y2

= G (y, c) (say).

Further,
∂G (y, c)

∂y
=

1
18 432

(
4 − c2

) ((
64 + 8c2 − 48c

)
y + c2

)
> 0.

Clearly ∂G(y,c)
∂y > 0 in y ∈ [0, 1] so the maximum is attained at y = 1, i.e.,

G (1, c) =
7

36 864
c4 +

1
1536

c2
(
4 − c2

)
+

1
18 432

c2
(
4 − c2

)
+

1
2304

(
4 − c2

)2
= H (c) .

Further,

H′ (c) = −
1

3072
c
(
c2 + 4

)
,

since H′ (c) = 0 has three roots namely c = 0, −2i and 2i. The only root lying in the interval [0, 2] is 0.
Also, one may check easily that H

′′ (c) ≤ 0 for c = 0; thus, the maximum is attained at c = 0, that is∣∣∣ξ2ξ4 − ξ
2
3

∣∣∣ ≤ 1
144

.

�

5. Krushkal inequality

Here, we will provide direct evidence of the inequality∣∣∣ξp
n − ξ

p(n−1)
2

∣∣∣ ≤ 2p(n−1)
− np,

over the class Ctan for the choice of n = 4, p = 1, and for n = 5, p = 1. For a class of univalent
functions as a whole, Krushkal introduced and demonstrated this inequality in [28]. For some recent
investigations into the Krushkal inequality, we refer the readers to [14, 29].
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Theorem 5.1. For f (z) ∈ Ctan, we have ∣∣∣ξ4 − ξ
3
2

∣∣∣ ≤ 1
24
.

The outcome is sharp for the function defined in (4.13) .

Proof. From (4.17) and (4.19) , we have∣∣∣ξ4 − ξ
3
2

∣∣∣ =

∣∣∣∣∣ 1
576

c3
1 −

5
384

c2c1 +
1

48
c3

∣∣∣∣∣ .
By applying Lemma 2.2, we get ∣∣∣ξ4 − ξ

3
2

∣∣∣ ≤ 1
24
.

�

Theorem 5.2. For f (z) ∈ Ctan, we have ∣∣∣ξ5 − ξ
4
2

∣∣∣ ≤ 1
40
.

The outcome is sharp for the function defined in (4.14) .

Proof. From (4.17) and (4.20), we have∣∣∣ξ5 − ξ
4
2

∣∣∣ =

∣∣∣∣∣− 1
80

∣∣∣∣∣ ∣∣∣∣∣ 359
2304

c4
1 −

29
48

c2
1c2 +

2
3

c3c1 +
3
8

c2
2 − c4

∣∣∣∣∣
≤

1
40

(by Lemma 2.3).

�

6. Logarithmic coefficients for the family Ctan

The logarithmic coefficients of f ∈ S denoted by κn = κn ( f ) , are defined by the following series
expansion:

log
f (z)

z
= 2

∞∑
n=1

κnzn.

For the function f given by (1.1) , the logarithmic coefficients are as follows:

κ1 =
1
2
ξ2, (6.1)

κ2 =
1
2

(
ξ3 −

1
2
ξ2

2

)
, (6.2)

κ3 =
1
2

(
ξ4 − ξ2ξ3 +

1
3
ξ3

2

)
, (6.3)

κ4 =
1
2

(
ξ5 − ξ2ξ4 − ξ

2
2ξ3 −

1
2
ξ2

3 −
1
4
ξ4

2

)
. (6.4)
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Theorem 6.1. If f has the form (1.1) and belongs to Ctan, then

|κ1| ≤
1
8
,

|κ2| ≤
1

24
,

|κ3| ≤
1

48
,

|κ4| ≤
1

80
.

The bounds of Theorem 6.1 are precise and cannot be improved further.

Proof. Now from (6.1) to (6.4) and (4.17) to (4.20) , we get

κ1 =
1

16
c1, (6.5)

κ2 =
1

48
c2 −

7
768

c2
1, (6.6)

κ3 =
13

4608
c3

1 −
7

768
c2c1 +

1
96

c3, (6.7)

κ4 = −
1561

1474 560
c4

1 +
413

92 160
c2

1c2 −
7

1280
c3c1 −

1
360

c2
2 +

1
160

c4, (6.8)

Applying (2.2) to (6.5), we get

|κ1| ≤
1
8
.

From (6.6), using (2.3), we get

|κ2| ≤
1

24
.

Applying Lemma 2.2 to (6.7), we get

|κ3| ≤
1

48
.

Also, applying Lemma 2.3 to (6.8) , we get

|κ4| ≤
1

80
.

Proof for sharpness: Since

log
f1 (z)

z
= 2

∞∑
n=2

κ ( f1) zn =
1
4

z + · · · ,

log
f2 (z)

z
= 2

∞∑
n=2

κ ( f2) zn =
1

12
z2 + · · · ,

log
f3 (z)

z
= 2

∞∑
n=2

κ ( f2) zn =
1

24
z3 + · · · ,
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log
f4 (z)

z
= 2

∞∑
n=2

κ ( f2) zn =
1

40
z4 + · · · ,

it follows that these inequalities can be obtained for the functions denoted by fn (z) for n = 1, 2, 3 and 4
as defined in (4.11) to (4.14). �

Theorem 6.2. Let f ∈ Ctan. Then for a complex number λ, we have

∣∣∣κ2 − λκ
2
1

∣∣∣ ≤ 1
24

max
{

1,
|3λ − 1|

8

}
.

The result is the best possible.

Proof. From (6.5) and (6.6) , we have∣∣∣κ2 − λκ
2
1

∣∣∣ =
1
48

∣∣∣∣∣c2 −
7 + 3λ

16
c2

1

∣∣∣∣∣ .
Applying (2.4) to the preceding equation yields the desired outcome. �

Theorem 6.3. Let f ∈ Ctan. Then

|κ1κ2 − κ3| ≤
1

48
.

The outcome is extremal.

Proof. From (6.5)–(6.7), we have

|κ1κ2 − κ3| =

∣∣∣∣∣ 125
36 864

c3
1 −

1
96

c2c1 +
1

96
c3

∣∣∣∣∣ .
Applying Lemma 2.2, we achieve the intended outcomes. �

Theorem 6.4. Let f ∈ Ctan. Then ∣∣∣κ1κ3 − κ
2
2

∣∣∣ ≤ 1
576

.

The outcome is sharp.

Proof. From (6.5)–(6.7) , we have∣∣∣κ1κ3 − κ
2
2

∣∣∣ =

∣∣∣∣∣ 55
589 824

c4
1 −

7
36 864

c2
1c2 +

1
1536

c3c1 −
1

2304
c2

2

∣∣∣∣∣ .
Now using Lemma 2.4, with c1 = c, |z| = 1 and |x| = y, we have∣∣∣κ1κ3 − κ

2
2

∣∣∣ ≤ 31
589 824

c4 +
1

6144
c2

(
4 − c2

)
y2 +

1
73 728

c2
(
4 − c2

)
y

+
1

3072
c
(
1 − y2

) (
4 − c2

)
+

1
9216

(
4 − c2

)2
y2

= G (y, c) (say).
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Further,
∂G (y, c)

∂y
=

1
73 728

(
4 − c2

) (
64y + 8c2y − 48cy + c2

)
.

Clearly, ∂G(y,c)
∂y > 0 in y ∈ [0, 1] so the maximum is attained at y = 1, i.e.,

G (1, c) =
31

589 824
c4 +

1
6144

c2
(
4 − c2

)
+

1
73 728

c2
(
4 − c2

)
+

1
9216

(
4 − c2

)2
= H (c) .

Further,

H′ (c) = −
1

49 152
c
(
3c2 + 16

)
,

since H′ (c) = 0 has only one solution c = 0, that lies in the interval [0, 2] . Also, one may check easily
that H

′′ (c) ≤ 0 for c = 0; thus, the maximum can be attained at c = 0, that is

H (0) ≤
1

576
.

�

7. Conclusions

In this study, we were motivated by the recent research and the sharp bounds of Hankel inequalities,
and have have defined a new subclass of holomorphic convex functions that are related to the tangent
functions. We then derived geometric properties like the necessary and sufficient conditions, radius
of convexity, growth, and distortion estimates for our defined function class. Furthermore, the sharp
coefficient bounds, sharp Fekete-Szegö inequality, sharp 2nd order Hankel determinant, and Krushkal
inequalities have been given. Moreover, we have calculated the sharp coefficient bounds, sharp Fekete-
Szegö inequality, and sharp second-order Hankel determinant for the functions whose coefficients are
logarithmic. Hopefully, this work will open new directions for those working in geometric function
theory and related areas. One can extend the work here by replacing the ordinal derivative with a
certain q-derivative operator.
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