Research article Special Issues

Commensalism and syntrophy in the chemostat: a unifying graphical approach

  • Received: 19 March 2024 Revised: 17 May 2024 Accepted: 28 May 2024 Published: 04 June 2024
  • MSC : 37N25, 92D25, 34D23, 34D15

  • The aim of this paper is to show that Tilman's graphical method for the study of competition between two species for two resources can be advantageously used for the study of commensalism or syntrophy models, where a first species produces the substrate necessary for the growth of the second species. The growth functions of the species considered are general and include both inhibition by the other substrate and inhibition by the species' limiting substrate, when it is at a high concentration. Because of their importance in microbial ecology, models of commensalism and syntrophy, with or without self-inhibition, have been the subject of numerous studies in the literature. We obtain a unified presentation of a large number of these results from the literature. The mathematical model considered is a differential system in four dimensions. We give a new result of local stability of the positive equilibrium, which has only been obtained in the literature in the case where the removal rates of the species are identical to the dilution rate and the study of stability can be reduced to that of a system in two dimensions. We describe the operating diagram of the system: this is the bifurcation diagram which gives the asymptotic behavior of the system when the operating parameters are varied, i.e., the dilution rate and the substrate inlet concentrations.

    Citation: Tewfik Sari. Commensalism and syntrophy in the chemostat: a unifying graphical approach[J]. AIMS Mathematics, 2024, 9(7): 18625-18669. doi: 10.3934/math.2024907

    Related Papers:

  • The aim of this paper is to show that Tilman's graphical method for the study of competition between two species for two resources can be advantageously used for the study of commensalism or syntrophy models, where a first species produces the substrate necessary for the growth of the second species. The growth functions of the species considered are general and include both inhibition by the other substrate and inhibition by the species' limiting substrate, when it is at a high concentration. Because of their importance in microbial ecology, models of commensalism and syntrophy, with or without self-inhibition, have been the subject of numerous studies in the literature. We obtain a unified presentation of a large number of these results from the literature. The mathematical model considered is a differential system in four dimensions. We give a new result of local stability of the positive equilibrium, which has only been obtained in the literature in the case where the removal rates of the species are identical to the dilution rate and the study of stability can be reduced to that of a system in two dimensions. We describe the operating diagram of the system: this is the bifurcation diagram which gives the asymptotic behavior of the system when the operating parameters are varied, i.e., the dilution rate and the substrate inlet concentrations.



    加载中


    [1] J. Monod, La technique de culture continue: théorie et applications, In: A. Lwoff, A. Ullmann, Selected papers in molecular biology by Jacques Monod, Academic Press, 1978,184–204. http://dx.doi.org/10.1016/B978-0-12-460482-7.50023-3
    [2] S. Di, A. Yang, Analysis of productivity and stability of synthetic microbial communities, J. R. Soc. Interface, 16 (2019), 20180859. http://dx.doi.org/10.1098/rsif.2018.0859 doi: 10.1098/rsif.2018.0859
    [3] T. Großkopf, O. S. Soyer, Synthetic microbial communities, Curr. Opin. Microbiol, 18 (2014), 72–77. http://dx.doi.org/10.1016/j.mib.2014.02.002 doi: 10.1016/j.mib.2014.02.002
    [4] S. G. Hays, W. G. Patrick, M. Ziesack, N. Oxman, P. A. Silver, Better together: engineering and application of microbial symbioses, Curr. Opin. Biotechnol., 36 (2015), 40–49. http://dx.doi.org/10.1016/j.copbio.2015.08.008 doi: 10.1016/j.copbio.2015.08.008
    [5] H. Song, M. Z. Ding, X. O. Jia, Q. Ma, Y. J. Yuan, Synthetic microbial consortia: from systematic analysis to construction and applications, Chem. Soc. Rev., 43 (2014), 6954–6981. http://dx.doi.org/10.1039/C4CS00114A doi: 10.1039/C4CS00114A
    [6] P. J. Reilly, Stability of commensalistic systems, Biotechnol. Bioeng., 16 (1974), 1373–1392. http://dx.doi.org/10.1002/bit.260161006 doi: 10.1002/bit.260161006
    [7] G. Stephanopoulos, The dynamic of commensalism, Biotechnol. Bioeng., 23 (1981), 2243–2255. http://dx.doi.org/10.1002/bit.260231008 doi: 10.1002/bit.260231008
    [8] A. Burchard, Substrate degradation by a mutualistic association of two species in the chemostat, J. Math. Bio., 32 (1994), 465–489. http://dx.doi.org/10.1007/BF00160169 doi: 10.1007/BF00160169
    [9] R. Kreikenbohm, E. Bohl, A mathematical model of syntrophic cocultures in the chemostat, FEMS Microbiol. Ecol., 38 (1986), 131–140. http://dx.doi.org/10.1111/j.1574-6968.1986.tb01722.x doi: 10.1111/j.1574-6968.1986.tb01722.x
    [10] M. El Hajji, F. Mazenc, J. Harmand, A mathematical study of a syntrophic relationship of a model of anaerobic digestion process, Math. Biosci. Eng., 7 (2010), 641–656. http://dx.doi.org/10.3934/mbe.2010.7.641 doi: 10.3934/mbe.2010.7.641
    [11] T. Sari, M. El-Hajji, J. Harmand, The mathematical analysis of a syntrophic relationship between two microbial species in a chemostat, Math. Biosci. Eng., 9 (2012), 627–645. http://dx.doi.org/10.3934/mbe.2012.9.627 doi: 10.3934/mbe.2012.9.627
    [12] T. Sari, J. Harmand, A model of a syntrophic relationship between two microbial species in a chemostat including maintenance, Math. Biosci., 275 (2016), 1–9. http://dx.doi.org/10.1016/j.mbs.2016.02.008 doi: 10.1016/j.mbs.2016.02.008
    [13] T. G. Wilkinson, H. H. Topiwala, G. Hamer, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioeng., 16 (1974), 41–59. http://dx.doi.org/10.1002/bit.260160105 doi: 10.1002/bit.260160105
    [14] A. Xu, J. Dolfing, T. Curtis, G. Montague, E. Martin, Maintenance affects the stability of a two-tiered microbial 'food chain', J. Theor. Biol., 276 (2011), 35–41. http://dx.doi.org/10.1016/j.jtbi.2011.01.026 doi: 10.1016/j.jtbi.2011.01.026
    [15] D. Tilman, Resources: a graphical-mechanistic approach to competition and predation, Am. Nat., 116 (1980), 362–393. http://dx.doi.org/10.1086/283633 doi: 10.1086/283633
    [16] D. Tilman, Resource competition and community structure, Vol. 17, Princeton: Princeton University Press, 1982. http://dx.doi.org/10.1515/9780691209654
    [17] M. M. Ballyk, G. S. K. Wolkowicz, Classical and resource-based competition: a unifying graphical approach, J. Math. Biol., 62 (2011), 81–109. http://dx.doi.org/10.1007/s00285-010-0328-x doi: 10.1007/s00285-010-0328-x
    [18] S. Pavlou, Computing operating diagrams of bioreactors, J. Biotechnol., 71 (1999), 7–16. http://dx.doi.org/10.1016/s0168-1656(99)00011-5 doi: 10.1016/s0168-1656(99)00011-5
    [19] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995.
    [20] J. Harmand, C. Lobry, A. Rapaport, T. Sari, The chemostat: mathematical theory of microorganism cultures, John Wiley & Sons, 2017.
    [21] J. Jost, J. Drake, A. Fredrickson, H. Tsuchiya, Interactions of Tetrahymena pyriformis, Escherichia coli, Azotobacter Vinelandii, and glucose in a minimal medium, J. Bacteriol., 113 (1973), 834–840. http://dx.doi.org/10.1128/jb.113.2.834-840.1973 doi: 10.1128/jb.113.2.834-840.1973
    [22] R. E. Lenski, S. E. Hattingh, Coexistence of two competitors on one resource and one inhibitor: a chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122 (1986), 83–93. http://dx.doi.org/10.1016/S0022-5193(86)80226-0 doi: 10.1016/S0022-5193(86)80226-0
    [23] M. J. Wade, R. W. Pattinson, N. G. Parker, J. Dolfing, Emergent behaviour in a chlorophenol-mineralising three-tiered microbial 'food web', J. Theor. Biol., 389 (2016), 171–186. http://dx.doi.org/10.1016/j.jtbi.2015.10.032 doi: 10.1016/j.jtbi.2015.10.032
    [24] A. Bornhöft, R. Hanke-Rauschenbach, K. Sundmacher, Steady-state analysis of the anaerobic digestion model No. 1 (ADM1), Nonlinear Dyn., 73 (2013), 535–549. http://dx.doi.org/10.1007/s11071-013-0807-x doi: 10.1007/s11071-013-0807-x
    [25] Z. Khedim, B. Benyahia, B. Cherki, T. Sari, J. Harmand, Effect of control parameters on biogas production during the anaerobic digestion of protein-rich substrates, Appl. Math. Model., 61 (2018), 351–376. http://dx.doi.org/10.1016/j.apm.2018.04.020 doi: 10.1016/j.apm.2018.04.020
    [26] M. Weedermann, G. Seo, G. Wolkowics, Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition, J. Biol. Dyn., 7 (2013), 59–85. http://dx.doi.org/10.1080/17513758.2012.755573 doi: 10.1080/17513758.2012.755573
    [27] M. Weedermann, G. Wolkowicz, J. Sasara, Optimal biogas production in a model for anaerobic digestion, Nonlinear Dyn., 81 (2015), 1097–1112. http://dx.doi.org/10.1007/s11071-015-2051-z doi: 10.1007/s11071-015-2051-z
    [28] Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, Steady state analysis of a syntrophic model: the effect of a new input substrate concentration, Math. Model. Nat. Phenom., 13 (2018), 31. http://dx.doi.org/10.1051/mmnp/2018037 doi: 10.1051/mmnp/2018037
    [29] R. Fekih-Salem, Y. Daoud, N. Abdellatif, T. Sari, A mathematical model of anaerobic digestion with syntrophic relationship, substrate inhibition and distinct removal rates, SIAM J. Appl. Dyn. Syst., 20 (2021), 621–1654. http://dx.doi.org/10.1137/20M1376480 doi: 10.1137/20M1376480
    [30] T. Sari, Best operating conditions for biogas production in some simple anaerobic digestion models, Processes, 10 (2022), 258. http://dx.doi.org/10.3390/pr10020258 doi: 10.3390/pr10020258
    [31] T. Sari, B. Benyahia, The operating diagram for a two-step anaerobic digestion model, Nonlinear Dyn., 105 (2021), 2711–2737. http://dx.doi.org/10.1007/s11071-021-06722-7 doi: 10.1007/s11071-021-06722-7
    [32] S. Nouaoura, R. Fekih-Salem, N. Abdellatif, T. Sari, Operating diagrams for a three-tiered microbial food web in the chemostat, J. Math. Biol., 85 (2022), 44. http://dx.doi.org/10.1007/s00285-022-01812-5 doi: 10.1007/s00285-022-01812-5
    [33] M. Dellal, M. Lakrib, T. Sari, The operating diagram of a model of two competitors in a chemostat with an external inhibitor, Math. Biosci., 302 (2018), 27–45. http://dx.doi.org/10.1016/j.mbs.2018.05.004 doi: 10.1016/j.mbs.2018.05.004
    [34] B. Bar, T. Sari, The operating diagram for a model of competition in a chemostat with an external lethal inhibitor, Discrete Contin. Dyn. Syst. B, 25 (2020), 2093–2120. http://dx.doi.org/10.3934/dcdsb.2019203 doi: 10.3934/dcdsb.2019203
    [35] M. Dali-Youcef, T. Sari, The productivity of two serial chemostats, Int. J. Biomath., 16 (2023), 2250113. http://dx.doi.org/10.1142/S1793524522501133 doi: 10.1142/S1793524522501133
    [36] N. Abdellatif, R. Fekih-Salem, T. Sari, Competition for a single resource and coexistence of several species in the chemostat, Math. Biosci. Eng., 13 (2016), 631–652.
    [37] R. Fekih-Salem, C. Lobry, T. Sari, A density-dependent model of competition for one resource in the chemostat. Math. Biosci., 286 (2017), 104–122. http://dx.doi.org/10.1016/j.mbs.2017.02.007 doi: 10.1016/j.mbs.2017.02.007
    [38] T. Mtar, R. Fekih-Salem, T. Sari, Mortality can produce limit cycles in density-dependent models with a predator-prey relationship, Discrete Contin. Dyn. Syst. B, 27 (2022), 7445–7467. http://dx.doi.org/10.3934/dcdsb.2022049 doi: 10.3934/dcdsb.2022049
    [39] B. Benyahia, T. Sari, B. Cherki, J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, J. Process Contr., 22 (2012), 1008–1019. http://dx.doi.org/10.1016/j.jprocont.2012.04.012 doi: 10.1016/j.jprocont.2012.04.012
    [40] I. Simeonov, S. Stoyanov, modeling and dynamic compensator control of the anaerobic digestion of organic wastes, Chem. Biochem. Eng. Q., 17 (2003), 285–292.
    [41] R. Kreikenbohm, E. Bohl, Bistability in the chemostat, Ecol. Model., 43 (1988), 287–301. http://dx.doi.org/10.1016/0304-3800(88)90009-9 doi: 10.1016/0304-3800(88)90009-9
    [42] M. El-Hajji, How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat, Int. J. Biomath., 11 (2018), 1850111. https://doi.org/10.1142/S1793524518501115 doi: 10.1142/S1793524518501115
    [43] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755–763. http://dx.doi.org/10.1007/BF00173267 doi: 10.1007/BF00173267
    [44] H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1993), 351–380. http://dx.doi.org/10.1216/rmjm/1181072470 doi: 10.1216/rmjm/1181072470
    [45] M. J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, et al., Perspectives in mathematical modeling for microbial ecology, Ecol. Model., 321 (2016), 64–74. http://dx.doi.org/10.1016/j.ecolmodel.2015.11.002 doi: 10.1016/j.ecolmodel.2015.11.002
    [46] G. Bastin, D. Dochain, On-line estimation and adaptive control of bioreactors, Process Measurement and Control, Elsevier, 1990. http://dx.doi.org/10.1016/C2009-0-12088-3
    [47] O. Bernard, Z. Hadj-Sadock, D. Dochain, A. Genovesi, J. P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnol. Bioeng., 75 (2001), 424–438. http://dx.doi.org/10.1002/bit.10036 doi: 10.1002/bit.10036
    [48] I. Simeonov, S. Diop, Stability analysis of some nonlinear anaerobic digestion models, Int. J. Bioautomation, 14 (2010) 37–48.
    [49] M. Sbarciog, M. Loccufier, E. Noldus, Determination of appropriate operating strategies for anaerobic digestion systems, Bioch. Eng. J., 51 (2010), 180–188. http://dx.doi.org/10.1016/j.bej.2010.06.016 doi: 10.1016/j.bej.2010.06.016
    [50] M. Weedermann, Analysis of a model for the effects of an external toxin on anaerobic digestion, Math. Biosci. Eng., 9 (2012), 445–459. http://dx.doi.org/10.3934/mbe.2012.9.445 doi: 10.3934/mbe.2012.9.445
    [51] T. Bayen, P. Gajardo, On the steady state optimization of the biogas production in a two-stage anaerobic digestion model, J. Math. Biol., 78 (2019), 1067–1087. http://dx.doi.org/10.1007/s00285-018-1301-3 doi: 10.1007/s00285-018-1301-3
    [52] M. J. Wade, Not just numbers: mathematical modeling and its contribution to anaerobic digestion processes, Processes, 8 (2020), 888. http://dx.doi.org/10.3390/pr8080888 doi: 10.3390/pr8080888
    [53] M. El Hajji, Mathematical modeling for anaerobic digestion under the influence of leachate recirculation, AIMS Math., 8 (2023), 30287–30312. https://doi.org/10.3934/math.20231547 doi: 10.3934/math.20231547
    [54] E. Harvey, J. Heys, T. Gedeon, Quantifying the effects of the division of labor in metabolic pathways, J. Theor. Biol., 360 (2014), 222–242. http://dx.doi.org/10.1016/j.jtbi.2014.07.011 doi: 10.1016/j.jtbi.2014.07.011
    [55] R. Fekih-Salem, N. Abdellatif, A. Yahmadi, Effect of inhibition on a syntrophic relationship model in the anaerobic digestion process, Proceedings of the 8th conference on Trends in Applied Mathematics in Tunisia, Algeria, Morocco, 2017, {391–396}.
    [56] E. I. P. Volcke, M. Sbarciog, E. J. L. Noldus, B. De Baets, M. Loccufier, Steady-state multiplicity of two-step biological conversion systems with general kinetics, Math. Biosci., 228 (2010), 160–170. http://dx.doi.org/10.1016/j.mbs.2010.09.004 doi: 10.1016/j.mbs.2010.09.004
    [57] N. Ben Ali, Analyse mathématique de la stabilité d'une communauté microbienne synthétique, MS. Thesis, École Nationale d'Ingénieurs de Tunis, Université de Tunis El Manar, 2019.
    [58] A. H. Albargi, M. El Hajji, Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process, Math. Biosci. Eng., 20 (2023), 6591–6611. http://dx.doi.org/10.3934/mbe.2023283 doi: 10.3934/mbe.2023283
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(557) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(22)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog