Research article

One class class of coupled system fractional impulsive hybrid integro- differential equations

  • Received: 20 March 2024 Revised: 11 May 2024 Accepted: 20 May 2024 Published: 04 June 2024
  • MSC : 26A33, 34B15, 34B18

  • In this research, we investigate the existence of solution for a class of coupled fractional impulsive hybrid integro-differential equations with hybrid boundary conditions. Our primary tools for this analysis are the Banach contraction mapping principle (BCMP) and Schaefer's fixed point theorem. This study ended with two applied examples to facilitate understanding of the theoretical results obtained.

    Citation: Mohamed Hannabou, Muath Awadalla, Mohamed Bouaouid, Abd Elmotaleb A. M. A. Elamin, Khalid Hilal. One class class of coupled system fractional impulsive hybrid integro- differential equations[J]. AIMS Mathematics, 2024, 9(7): 18670-18687. doi: 10.3934/math.2024908

    Related Papers:

  • In this research, we investigate the existence of solution for a class of coupled fractional impulsive hybrid integro-differential equations with hybrid boundary conditions. Our primary tools for this analysis are the Banach contraction mapping principle (BCMP) and Schaefer's fixed point theorem. This study ended with two applied examples to facilitate understanding of the theoretical results obtained.



    加载中


    [1] I. Podlubny, Fractional differential equations, New York: Academic Press, 1993.
    [2] M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
    [3] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/9789812798664
    [4] M. Arab, M. Awadalla, A coupled system of Caputo-Hadamard fractional hybrid differential equations with three-point boundary conditions, Math. Probl. Eng., 2022 (2022), 1500577. https://doi.org/10.1155/2022/1500577 doi: 10.1155/2022/1500577
    [5] M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications, 3 (2008), 1–12.
    [6] A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Initial value problem for hybrid $\psi$-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl., 24 (2022), 7. https://doi.org/10.1007/s11784-021-00920-x doi: 10.1007/s11784-021-00920-x
    [7] V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14003-7
    [8] M. Bouaouid, K. Hilal, M. Hannabou, Existence and uniqueness of integral solutions to impulsive conformable-fractional differential equations with nonlocal condition, J. Appl. Anal., 27 (2021), 187–197. https://doi.org/10.1515/jaa-2021-2045 doi: 10.1515/jaa-2021-2045
    [9] M. Hannabou, M. Bouaouid, K. Hilal, On class of fractional impulsive hybrid integro-differential equation, Filomat, 38 (2024), 1055–1067. https://doi.org/10.2298/FIL2403055H doi: 10.2298/FIL2403055H
    [10] S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl., 2015 (2015), 113. https://doi.org/10.1186/s13661-015-0376-7 doi: 10.1186/s13661-015-0376-7
    [11] K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fract., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
    [12] K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ., 2015 (2015), 183. https://doi.org/10.1186/s13662-015-0530-7 doi: 10.1186/s13662-015-0530-7
    [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [14] D. Hong, J. Z. Wang, R. Gardner, Real analysis with an introduction to wavelets and applications, New York: Academic Press, 2005. https://doi.org/10.1016/B978-0-12-354861-0.X5000-3
    [15] M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(549) PDF downloads(35) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog