In this research, we investigate the existence of solution for a class of coupled fractional impulsive hybrid integro-differential equations with hybrid boundary conditions. Our primary tools for this analysis are the Banach contraction mapping principle (BCMP) and Schaefer's fixed point theorem. This study ended with two applied examples to facilitate understanding of the theoretical results obtained.
Citation: Mohamed Hannabou, Muath Awadalla, Mohamed Bouaouid, Abd Elmotaleb A. M. A. Elamin, Khalid Hilal. One class class of coupled system fractional impulsive hybrid integro- differential equations[J]. AIMS Mathematics, 2024, 9(7): 18670-18687. doi: 10.3934/math.2024908
[1] | Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng . Iterative methods to solve the constrained Sylvester equation. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097 |
[2] | Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492 |
[3] | Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428 |
[4] | Jiaxin Lan, Jingpin Huang, Yun Wang . An E-extra iteration method for solving reduced biquaternion matrix equation AX+XB=C. AIMS Mathematics, 2024, 9(7): 17578-17589. doi: 10.3934/math.2024854 |
[5] | Kanjanaporn Tansri, Pattrawut Chansangiam . Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596 |
[6] | Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171 |
[7] | Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698 |
[8] | Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614 |
[9] | Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299 |
[10] | Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078 |
In this research, we investigate the existence of solution for a class of coupled fractional impulsive hybrid integro-differential equations with hybrid boundary conditions. Our primary tools for this analysis are the Banach contraction mapping principle (BCMP) and Schaefer's fixed point theorem. This study ended with two applied examples to facilitate understanding of the theoretical results obtained.
Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.
Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.
Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.
Definition 1. [7] A function f:[0,+∞)→R is said to be strongly (α,m)-convex function with modulus c≥0, where (α,m)∈[0,1]2, if
f(xt+m(1−t)y)≤tαf(x)+m(1−tα)f(y)−cmtα(1−tα)|y−x|2, | (1.1) |
holds ∀x,y∈[0,+∞) and t∈[0,1].
The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:
Theorem 1. The following inequality holds:
f(x+y2)≤1y−x∫yxf(v)dv≤f(x)+f(y)2, | (1.2) |
for convex function f:I→R, where I is an interval and x,y∈I, x<y.
The definition of Riemann-Liouville fractional integrals is given as follows:
Definition 2. Let f∈L1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where ℜ(μ)>0 are defined by
Iμa+f(x)=1Γ(μ)∫xa(x−t)μ−1f(t)dt,x>a, | (1.3) |
and
Iμb−f(x)=1Γ(μ)∫bx(t−x)μ−1f(t)dt,x<b. | (1.4) |
The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.
Theorem 2. [8] Let f:[a,b]→R be a positive function with 0≤a<b and f∈L1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:
f(a+b2)≤Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]≤f(a)+f(b)2, | (1.5) |
with μ>0.
Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:
f(a+b2)≤2μ−1Γ(μ+1)(b−a)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)−f(a)]≤f(a)+f(b)2, | (1.6) |
with μ>0.
Theorem 4. [8] Let f:[a,b]→R be a differentiable mapping on (a,b) with a<b. If |f′| is convex on [a,b], then the following fractional integral inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμa+f(b)+Iμb−f(a)]|≤b−a2(μ+1)(1−12μ)[|f′(a)|+|f′(b)|]. | (1.7) |
The k-analogue of Riemann-Liouville fractional integrals is defined as follows:
Definition 3. [10] Let f∈L1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where ℜ(μ)>0, k>0, are defined by
kIμa+f(x)=1kΓk(μ)∫xa(x−t)μk−1f(t)dt,x>a, | (1.8) |
and
kIμb−f(x)=1kΓk(μ)∫bx(t−x)μk−1f(t)dt,x<b, | (1.9) |
where Γk(.) is defined as [11]
Γk(μ)=∫∞0tμ−1e−tkkdt. |
The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.
Theorem 5. [12] Let f:[a,b]→R be a positive function with 0≤a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:
f(a+b2)≤Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]≤f(a)+f(b)2. | (1.10) |
Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:
f(a+b2)≤2μk−1Γk(μ+k)(b−a)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)−f(a)]≤f(a)+f(b)2. | (1.11) |
Theorem 7. [12] Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. If |f′| is convex on [a,b], then the following inequality for k-fractional integrals holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2(μk+1)(1−12μk)[|f′(a)|+|f′(b)|]. | (1.12) |
In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.
Definition 4. [14] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0 are defined by
Iμ,ψa+f(x)=1Γ(μ)∫xaψ′(t)(ψ(x)−ψ(t))μ−1f(t)dt,x>a, | (1.13) |
and
Iμ,ψb−f(x)=1Γ(μ)∫bxψ′(t)(ψ(t)−ψ(x))μ−1f(t)dt,x<b. | (1.14) |
The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:
Definition 5 [4] Let f∈L1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where ℜ(μ)>0, k>0, are defined by
kIμ,ψa+f(x)=1kΓk(μ)∫xaψ′(t)(ψ(x)−ψ(t))μk−1f(t)dt,x>a, | (1.15) |
and
kIμ,ψb−f(x)=1kΓk(μ)∫bxψ′(t)(ψ(t)−ψ(x))μk−1f(t)dt,x<b. | (1.16) |
For more details of above defined fractional integrals, we refer the readers to see [15,16].
Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.
Theorem 8. Let f:[a,b]→R be a positive function with 0≤a<mb and f∈L1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk), | (2.1) |
with μ>0.
Proof. Since f is strongly (α,m)-convex function, for x,y∈[a,b] we have
f(x+my2)≤f(x)+m(2α−1)f(y)2α−cm(2α−1)|y−x|222α. | (2.2) |
By setting x=at+m(1−t)b, y=am(1−t)+bt and integrating the resulting inequality after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at+m(1−t)b)tμk−1dt+m(2α−1)∫10f(am(1−t)+bt)tμk−1dt]−cm(2α−1)22αμ(μ+k)(μ+2k)[μk(μ+k)(b−a)2+2k3(am−mb)2+2k2μ(b−a)(am−mb)]. | (2.3) |
Now, let u∈[a,b] such that ψ(u)=at+m(1−t)b, that is, t=mb−ψ(u)mb−a and let v∈[a,b] such that ψ(v)=am(1−t)+bt, that is, t=ψ(v)−amb−am in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]−cm(2α−1)22α(μ+k)(μ+2k)[μ(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]. | (2.4) |
Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t∈[0,1], we have the following inequality:
f(at+m(1−t)b)+m(2α−1)f(am(1−t)+bt)≤tα[f(a)+m(2α−1)f(b)]+m(1−tα)[f(b)+m(2α−1)f(am2)]−cmtα(1−tα)[(b−a)2+m(2α−1)(b−am2)2]. | (2.5) |
Multiplying inequality (2.5) with tμk−1 on both sides and then integrating over the interval [0,1], we get
∫10tμk−1f(ta+m(1−t)b)dt+m(2α−1)∫10tμk−1f(am(1−t)+tb)dt≤(f(a)+m(2α−1)f(b))(kμ+kα)+m(f(b)+m(2α−1)f(am2))k2αμ2+μαk−cmαk2[(b−a)2+m(2α−1)(b−am2)2](μ+αk)(μ+2αk). | (2.6) |
Again taking ψ(u)=at+m(1−t)b that is t=mb−ψ(u)mb−a and ψ(v)=am(1−t)+bt that is t=ψ(v)−amb−am in (2.6), then by applying Definition 5, the second inequality can be obtained.
Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:
(i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.
(ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.
(iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.
(iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.
(vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.
(vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.
(viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.
(ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.
(x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.
(xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.
Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:
f(a+mb2)≤Γk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμk+1kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α−1)f(am2))2α(μ2+μαk). |
Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22αμ(μ+1)(μ+2)[μ(μ+1)(b−a)2+2(am−mb)2+2μ(b−a)(am−mb)]≤Γ(μ+1)2α(mb−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(mb))+(2α−1)mμ+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(am))]≤[f(a)+m(2α−1)f(b)]μ2α(μ+α)+m(f(b)+m(2α−1)f(am2))αμ2α(μ2+μα)−cmαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+α)(μ+2α). |
Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:
f(a+mb2)+cm(2α−1)22α(μ+k)(μ+2k)[μ(μ+k)(b−a)2+2k2(am−mb)2+2μk(b−a)(am−mb)]≤Γk(μ+k)2α(mb−a)μk[kIμa+f(mb)+(2α−1)mμk+1kIμb−f(am)]≤[f(a)+m(2α−1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α−1)f(am2))2α(μ2+μαk)−cmkαμ[(b−a)2+m(2α−1)(b−am2)2]2α(μ+αk)(μ+2αk). |
Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(μ+3k)(b−a)×(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2), | (2.7) |
with μ>0.
Proof. Let x=at2+m(2−t2)b, y=am(2−t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk−1, we get
kμf(a+mb2)≤12α[∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt]−cm(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2k+k(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)k]. | (2.8) |
Let u∈[a,b], so that ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(u))mb−a and v∈[a,b], so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.8), then by applying Definition 5, we get
f(a+mb2)≤2μkΓk(μ+k)2α(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−cmμ(2α−1)22α4(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(am−mb)(μ+3k)]. | (2.9) |
Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c≥0, for t∈[0,1], we have following inequality
f(at2+m(2−t2)b)+m(2α−1)f(am(2−t2)+bt2)≤(t2)α[f(a)+m(2α−1)f(b)]+m(2α−tα2α)[f(b)+m(2α−1)f(am2)]−cmtα(2α−tα)[(b−a)2+m(b−am2)2]22α. | (2.10) |
Multiplying (2.10) with tμk−1 on both sides and integrating over [0,1], we get
∫10f(at2+m(2−t2)b)tμk−1dt+m(2α−1)∫10f(am(2−t2)+bt2)tμk−1dt≤k[f(a)+m(2α−1)f(b)]2α(αk+μ)+mk(2α(μ+αk)−μ)2αμ(μ+αk)(f(b)+m(2α−1)f(am2))−cmk(2α(μ+2αk)−(μ+αk))22α((b−a)2+m(b−am2)2). | (2.11) |
Again taking ψ(u)=at2+m(2−t2)b, that is, t=2(mb−ψ(v))mb−a and so that ψ(v)=am(2−t2)+bt2, that is, t=2(ψ(v)−am)b−am in (2.11), then by applying Definition 5, the second inequality can be obtained.
Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:
(i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.
(ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.
(iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.
(v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.
(vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.
(vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.
(viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.
Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:
f(a+mb2)≤2μk−αΓk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1(2α−1)kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2)). |
Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+1)(μ+2)[μ(μ+1)(b−a)2+(am−mb)2(μ2+5μ+8)+2μ(μ+3)(b−a)(am−mb)]≤2μ−αΓ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1(2α−1)Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]≤μ[f(a)+m(2α−1)f(b)]22α(α+μ)+m[2α(μ+α)−μ]22α(μ+α)(f(b)+m(2α−1)f(am2))−cmμ(2α(μ+2α)−(μ+α))23α(μ+α)(μ+2α)×[(b−a)2+m(b−am2)2]. |
Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:
f(a+mb2)+cmμ(2α−1)22α+2(μ+2k)[μ(μ+k)(b−a)2+(am−mb)2(μ2+5kμ+8k2)+2μ(b−a)(μ+3k)(am−mb)]≤2μk−αΓk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α−1)kIμ(a+mb2m)−f(am)]≤μ[f(a)+m(2α−1)f(b)]22α(αk+μ)+m(2α(μ+αk)−μ)22α(μ+αk)(f(b)+m(2α−1)f(am2))−cmμ[2α(μ+2αk)−(μ+αk)]23α(μ+αk)(μ+2αk)((b−a)2+m(b−am2)2). |
In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.
Lemma 1. Let a<b and f:[a,b]→R be a differentiable mapping on (a,b). Also, suppose that f′∈L[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:
f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)]=b−a2∫10[(1−t)μk−tμk]f′(ta+(1−t)b)dt. | (3.1) |
Proof. We cosider the right hand side of (3.1) as follows:
∫10((1−t)αk−tμk)f′(ta+(1−t)b)dt=∫10(1−t)μk−1f′(ta+(1−t)b)dt−∫10tμk−1f′(ta+(1−t)b)dt=I1−I2 | (3.2) |
Integrating by parts we get
I1=∫10(1−t)μk−1f′(ta+(1−t)b)dt=f(b)b−a−μk(b−a)∫10(1−t)μk−1f(ta+(1−t)b)dt |
We have v∈[a,b] such that ψ(v)=ta+(1−t)b, with this substitution one can have
I1=f(b)b−a−μk(b−a)∫ψ−1(b)ψ−1(a)(ψ(v)−ab−a)μk−1(f∘ψ(v))b−aψ′(v)dv=f(b)b−a−Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a)). | (3.3) |
Similarly one can get after a little computation
I2=−f(a)b−a+Γk(μ+k)(b−a)μk+1Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b)). | (3.4) |
Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.
Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.
(ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.
Theorem 10. Let f:[a,b]→R be a differentiable mapping on (a,b) with 0≤a<b. Also suppose that |f′| is strongly (α,m)-convex with modulus c≥0, ψ is positive strictly increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))−cm(bm−a)22(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))], | (3.5) |
with μ>0 and 2˜F1(1+2α,−μk,2(1+α);12) is regularized hypergeometric function.
Proof. By Lemma 1, it follows that
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk||f′(ta+(1−t)b|)dt. | (3.6) |
Since |f′| is strongly (α,m)-convex function on [a,b] and t∈[0,1], we have
|f′(ta+(1−t)b)|≤tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2. | (3.7) |
Therefore (3.6) implies the following inequality
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(b)]|≤b−a2∫10|(1−t)μk−tμk|(tα|f′(a)|+m(1−tα)|f′(bm)|−cmtα(1−tα)(bm−a)2]dt≤b−a2[|f′(a)|(∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt)+m|f′(bm)|(∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt)−cm(bm−a)2(∫120tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt)]. | (3.8) |
In the following, we compute integrals appearing on the right side of the above inequality
∫120tα((1−t)μk−tμk)dt+∫112tα(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1). | (3.9) |
∫120(1−tα)((1−t)μk−tμk)dt+∫112(1−tα)(tμk−(1−t)μk)dt.=2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1). | (3.10) |
∫112tα(1−tα)((1−t)μk−tμk)dt+∫112tα(1−tα)(tμk−(1−t)μk)dt=2B(12;α+1,μk+1)−(12)1+μk+αμk+1+α−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1−(12)1+μk+αμk+1+α−B(α+1,μk+1)−1−(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). | (3.11) |
Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).
Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:
(i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.
(ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.
(iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.
(iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.
(v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.
(vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.
Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+kIμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|×(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]. |
Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:
|f(a)+f(b)2−Γ(μ+1)2(b−a)μ[Iμ,ψψ−1(a)+(f∘ψ)(ψ−1(b))+Iμ,ψψ−1(b)−(f∘ψ)(ψ−1(a))]|≤b−a2[|f′(a)|(2B(12;α+1,μ+1)+1−(12)α+μα+μ+1−B(α+1,μ+1))+|f′(b)|×(2(1−(12)μ)μ+1+(12)1+μ+αμ+1+α−2B(12;α+1,μ+1)−1−(12)1+μ+αμ+1+α+B(α+1,μ+1))]. |
Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:
|f(a)+f(b)2−Γk(μ+k)2(b−a)μk[kIμa+f(b)+kIμb−f(a)]|≤b−a2[|f′(a)|(2B(12;α+1,μk+1)+1−(12)α+μkα+μk+1−B(α+1,μk+1))+m|f′(bm)|(2(1−(12)μk)μk+1+(12)1+μk+αμk+1+α−2B(12;α+1,μk+1)−1−(12)1+μk+αμk+1+α+B(α+1,μk+1))]−c(b−a)3(2B(12;α+1,μk+1)−2α4−α2˜F1(1+2α,−μk,2(1+α);12)+1−(12)μk+αμk+1+α−B(α+1,μk+1)−1−(12)μk+2αμk+1+2α+B(2α+1,μk+1))]. |
For next two results, we need the following lemma.
Lemma 2. [26] Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈L[a,b], ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and m∈(0,1], then the following integral identity for fractional integral holds:
2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]=mb−a4[∫10tμkf′(at2+m(2−t2)b)dt−∫10tμkf′(am(2−t2)+bt2)dt]. | (3.12) |
Theorem 11. Let f:[a,b]→R be a differentiable mapping on (a,b) such that f′∈Ł[a,b]. Also suppose that |f′|q is strongly (α,m)-convex function on [a,b] for q≥1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following k-fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)×(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], | (3.13) |
with μ>0.
Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f′|, (for q=1), we have
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)dt|]≤mb−a4[(|f′(a)|+|f′(b)|2α)∫10tμk+αdt+m(|f′(b)|+|f′(am2)|)2α∫10(2α−tα)tμkdt−cm((b−a)2+(b−am2)2)22α∫10tμk+α(2α−tα)dt]≤mb−a4[k[|f′(a)|+|f′(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)−(μ+k)](μ+k)(αk+μ+k)×(|f′(b)|+|f′(am2)|)−cmk[2α(2αk+μ+k)−(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((b−a)2+(b−am2)2)]. |
Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(∫10tμkdt)1−1q[(∫10tμk|f′(at2+m(2−t2)b)|qdt)1q+(∫10tμk|f′(am(2−t2)+bt2)|qdt)1q]≤mb−a4(μk+1)1p[(|f′(a)|q2α∫10tα+μkdt+m|f′(b)|q2α∫10(2α−tα)tμkdt−cm(b−a)222α∫10(2α−tα)tμk+αdt)1q+(m|f′(am2)|2α∫10(2α−tα)tμkdt+|f′(b)|q2α∫10tα+μkdt−cm(b−am2)222α∫10(2α−tα)tμk+αdt)1q]≤mb−a4(μk+1)1p[(k|f′(a)|q2α(αk+μ+k)+mk|f′(b)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)−cmk(b−a)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f′(am2)|q[2α(αk+μ+k)−(μ+k)]2α(μ+k)(αk+μ+k)+k|f′(b)|q2α(kα+μ+k)−cmk(b−am2)2[2α(2αk+μ+k)−(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]≤mb−a22+1q(μk+1)(μk+2)1q[(2k|f′(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f′(b)|q2α(αk+μ+k)−2cm(μk+1)(μk+2)(b−am2)222α2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q]. |
This completes the proof.
Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:
(i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.
(ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.
(v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.
(vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.
(vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.
Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k)1q]. |
Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μ+1)(μ+2)1q[(21−α|f′(a)|q(μ+1)(μ+2)α+μ+1+21−αm|f′(b)|q(μ+1)(μ+2)×(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))−21−2αcm(b−a)2(μ+1)(μ+2)(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21−αm|f′(am2)|q(μ+1)(μ+2)(2α(α+μ+1)−(μ+1)(μ+1)(α+μ+1))+21−α(μ+1)(μ+2)|f′(b)|qα+μ+1−21−2αcm(μ+1)(μ+2)(b−am2)2(2α(2α+μ+1)−(α+μ+1)(α+μ+1)(2α+μ+1)))1q]. |
Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a22+1q(μk+1)(μk+2)1q[(21−αk|f′(a)|q(μk+1)(μk+2)αk+μ+k+21−αmk|f′(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))−21−2αcm(b−a)2(μk+1)(μk+2)(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21−αkm|f′(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)−(μ+k)(μ+k)(αk+μ+k))+21−αk(μk+1)(μk+2)|f′(b)|qαk+μ+k−21−2αcm(μk+1)(μk+2)(b−am2)2(2α(2αk+μ+k)−(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q]. |
Theorem 12. Let f:I→R be a differentiable mapping on (a,b) with a<b. Also suppose that |f′|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ′ on (a,b). If [a,b]⊂Range(ψ), k>0 and (α,m)∈(0,1]2, then the following fractional integral inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], | (3.14) |
with μ>0 and 1p+1q=1.
Proof. By applying Lemma 2 and using the property of modulus, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4[∫10|tμkf′(at2+m(2−t2)b)|dt+∫10|tμkf′(am(2−t2)+bt2)|dt]. |
Now applying Hölder's inequality for integrals, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(∫10|f′(at2+m(2−t2)b)|qdt)1q+(∫10|f′(am(2−t2)+bt2)|qdt)1q]. |
Using strongly (α,m)-convexity of |f′|q, we get
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a4(μpk+1)1p[(|f′(a)|q2α∫10tαdt+m|f′(b)|q2α∫10(2α−tα)dt−cm(b−a)222α∫10tα(2α−tα)dt)1q+(m|f′(am2)|q2α∫10(2α−tα)dt+|f′(b)|q2α∫10tαdt−cm(b−am2)222α∫10tα(2α−tα)dt)1q]=mb−a4(μpk+1)1p[(|f′(a)|q2α(α+1)+m|f′(b)|q[2α(1+α)−1]2α(1+α)−cm(b−a)222α(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f′(am2)|q[2α(1+α)−1]2α(1+α)+|f′(b)|q2α(α+1)−cm(b−am2)222α(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[(22−α|f′(a)|q(α+1)+22−αm|f′(b)|q[2α(1+α)−1]1+α−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+(22−αm|f′(am2)|q[2α(1+α)−1](1+α)+22−α|f′(b)|qα+1−22−2αcm(b−am2)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q]≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|×(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Here, we have used the fact aq+bq≤(a+b)q, for q>1, a,b≥0. This completes the proof.
Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:
(i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.
(ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.
(iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.
(iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.
(v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.
Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμk+1kIμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q+(|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)]. |
Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:
|2μ−1Γ(μ+1)(mb−a)μ[Iμ,ψψ−1(a+mb2)+(f∘ψ)(ψ−1(mb))+mμ+1Iμ,ψψ−1(a+mb2m)−(f∘ψ)(ψ−1(am))]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μp+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(2−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:
|2μk−1Γk(μ+k)(mb−a)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)−f(am)]−12[f(a+mb2)+mf(a+mb2m)]|≤mb−a42−1p(μpk+1)1p[((|f′(a)|(22−αα+1)1q+|f′(b)|(22−αm[2α(1+α)−1]1+α)1q)q−22−2αcm(b−a)2×(−1−α+2α(1+2α)(1+α)(1+2α)))1q+((|f′(am2)|(22−αm[2α(1+α)−1]1+α)1q+(22−αα+1)1q|f′(b)|)q−22−2αcm(b−am2)2(−1(1+α)+2α(1+2α)(1+α)(1+2α)))1q]. |
Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.
Authors do not have conflict of interest.
[1] | I. Podlubny, Fractional differential equations, New York: Academic Press, 1993. |
[2] |
M. I. Abbas, M. A. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. https://doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
![]() |
[3] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/9789812798664 |
[4] |
M. Arab, M. Awadalla, A coupled system of Caputo-Hadamard fractional hybrid differential equations with three-point boundary conditions, Math. Probl. Eng., 2022 (2022), 1500577. https://doi.org/10.1155/2022/1500577 doi: 10.1155/2022/1500577
![]() |
[5] | M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications, 3 (2008), 1–12. |
[6] |
A. Salim, M. Benchohra, J. R. Graef, J. E. Lazreg, Initial value problem for hybrid ψ-Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl., 24 (2022), 7. https://doi.org/10.1007/s11784-021-00920-x doi: 10.1007/s11784-021-00920-x
![]() |
[7] | V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14003-7 |
[8] |
M. Bouaouid, K. Hilal, M. Hannabou, Existence and uniqueness of integral solutions to impulsive conformable-fractional differential equations with nonlocal condition, J. Appl. Anal., 27 (2021), 187–197. https://doi.org/10.1515/jaa-2021-2045 doi: 10.1515/jaa-2021-2045
![]() |
[9] |
M. Hannabou, M. Bouaouid, K. Hilal, On class of fractional impulsive hybrid integro-differential equation, Filomat, 38 (2024), 1055–1067. https://doi.org/10.2298/FIL2403055H doi: 10.2298/FIL2403055H
![]() |
[10] |
S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl., 2015 (2015), 113. https://doi.org/10.1186/s13661-015-0376-7 doi: 10.1186/s13661-015-0376-7
![]() |
[11] |
K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fract., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
![]() |
[12] |
K. Hilal, A. Kajouni, Boundary value problems for hybrid differential equations with fractional order, Adv. Differ. Equ., 2015 (2015), 183. https://doi.org/10.1186/s13662-015-0530-7 doi: 10.1186/s13662-015-0530-7
![]() |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006. |
[14] | D. Hong, J. Z. Wang, R. Gardner, Real analysis with an introduction to wavelets and applications, New York: Academic Press, 2005. https://doi.org/10.1016/B978-0-12-354861-0.X5000-3 |
[15] |
M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solutions for impulsive fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
![]() |