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1. Introduction

Systems of fractional differential equations have significant real-world applications across various
domains. In engineering, they model viscoelastic materials and control systems with memory effects,
providing more accurate descriptions than traditional models. In biology, these equations help simulate
processes such as the spread of diseases or population dynamics, accounting for hereditary and memory
aspects of biological systems. In finance, fractional differential equations are used to model markets
with long-range dependencies and memory, offering a more nuanced understanding of asset prices and
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volatility. Their flexibility and ability to capture complex dynamics make them invaluable in these
fields (see [1]).

On the contrary, impulsive differential equations offer an inherent approach to elucidate various
dynamic phenomena in the real world. While most processes in applied sciences are conventionally
characterized by differential equations, there exists a unique scenario in certain physical phenomena
where abrupt changes occur during their evolution. Instances include mechanical systems experiencing
impacts, biological systems like heartbeat and blood flow, population dynamics, natural disasters,
and more. These abrupt changes are often of brief duration, manifesting instantly in the form of
pulses. Modeling such phenomena requires formulations that explicitly and concurrently embrace
the continuous evolution of the phenomenon along with these instantaneous changes (see [2-8]).
Hybrid fractional differential equations blend the characteristics of fractional calculus with discrete and
continuous dynamic elements, offering a versatile framework for modeling complex systems (see [6,9].
These equations are particularly useful in fields like control theory, where they describe systems with
both continuous processes and sudden changes or impulses. In biology, they can model the interaction
between continuous growth and sudden environmental changes. In engineering, hybrid fractional
differential equations help simulate systems with both gradual and abrupt shifts, such as in material
stress analysis and signal processing. Their ability to capture diverse dynamic behaviors makes them
invaluable in various scientific and engineering applications.

Schaefer’s fixed point theorem is a powerful mathematical tool used to prove the existence of fixed
points in certain function spaces. It extends the concept of fixed points by combining aspects of the
Banach fixed point theorem with compactness conditions. Specifically, Schaefer’s theorem states that
if a continuous mapping on a Banach space maps a bounded, closed, and convex subset into itself and
is compact, then there is at least one fixed point within that subset. This theorem is particularly useful
in analyzing differential and integral equations, ensuring solutions exist under specific conditions.

In 2015, Sitho et al. [10] discussed the following boundary value problem:

(D)=3" B i@, A~ ~ ~
DT(’—” Z@%}Jfﬁ‘”(’”) - wp@®).ic s = [0.7], O<T<l,

p(0) =0.

The symbol D" represents the Riemann-Liouville fractional derivative with an order of 7, where
0 < 7 < 1. Additionally, I¢ denotes the Riemann-Liouville fractional integral with an order of ¢ > 0,
SeB1.Bars-. Bl ¥ € C(UXR,R\{0}), w € C(J XR,R), with ¢; € C(J xR, R) with ¢;(0,0) = 0,i =
1,2,...,m.

Shah et al. [11] investigated a coupled system of fractional impulsive boundary problems:

D" (%) = O1(r,9(),n(%) ae. 2eJ=[0,1,x#% 1<vy <2,

A=z, = L(I(%)), NOpg, = LOR)), 2 €(0,1),i=1,2,...,n,

?0) = (), H(1) = g1(9), (L1
D) =Y (G, (), nk)) ae. zel, 1<1,<2,

Anlz=z, = Ji(n(x))), AN xlgep, = J(n(2)), #;€(0,1),j=1,2,...,m,

n(0) = x1(n), n(h) = fi(m),
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where 1 <y, 71 < 2,0, ¥,.1, I, Jj, fj are continuous functions, gi, Ay, k1, fi are fixed continuous
functions, and Ay, = F(]) — FER)),A Xlp=z, = &' (R]) — I (), AYla=s; = n(t]) — (%), A'nla=s,; =
W@ =1 (1.

Inspired by [12] and recent studies on impulsive hybrid fractional integro-differential equations, we
examine the following coupled system.

i 9 R)-TRE (2,91 (R),92(R ~ ~ AN A ~
D“( 1("Ll@,ilf(’;),éi?i)f("”) = @ (B (R @R €T =[0.T], 1<i <2,

o D (R)-1R265 (2,91 (R),02(% o N ANy A ~
D‘z( 2(”Lm,ii({;>,5ﬁ2»2("”) = @ (B, ()2 €T =[0.T], 1<h<2

(R = 01 F) + @), #ie0,1),i=1,2,...,n, (1.2)
D7) = (%)) + [;(0(%7)),  2;€(0,1),j=12,....m,
91(0) — 9 91(T) — 9
1(0,91(0),92(0)) 0> @1(T,91(T),92(T)) Ti>
%(0) -9 P(T) -9
©2(0,81(0),02(0)) 1» 2 (T,91(T),02(T)) T

The parameters 7,3, > 0 and &;,k, > 0 are given, with ©; € R, and D% denoting the Caputo
fractional derivative of order i; for i = 1,2. The operator I* represents the Riemann-Liouville fractional
integral of order & > 0. The functions ¢; : J X R> — R\ {0} and & : J x R> — R are continuous,
satisfying &;(0, 9,(0),9,(0)) = 0, and @; € C(J xR, R) is a function with specific properties fori = 1, 2.
Additionally, I; : R — R is defined, and u(t) = EILI(I)1+ u(t; + €) and u(t;) = Elg(l)l_ u(t;, + €) denote the
right and left limits of u(r) at t = #, where k = i, j.

By a solution of the problem (1.2), we mean a function ¥ € C(J, R) such that
(AO) the function ¥; — m is increasing in R for every % € , and
(i) the function ¥, — m is increasing in R for every % € 7, and
(111) ¢ satisfies the equations in (1.2).

The orginality of this work is that we investigate the existence of the solution to a system of
fractional differential equations. We also verified the necessary conditions for the existence and
uniqueness of these solutions using Schaefer’s fixed point theorem where it is rarely used in literature.

The structure of this paper is outlined as follows. Section 2 revisits certain concepts, fractional
calculation laws, and establishes preparatory results. Section 3 delves into the existence solution of
the initial value problem (1.2), employing the Banach contraction mapping principle (BCMP) and
Schaefer’s fixed point theorem. In Section 4, two examples are presented to enhance the clarity of the
study’s findings. Section 5 concludes with a summary and outlines directions for future work.

2. Preliminaries

Before tackling the results, we provide some definitions and essential properties of fractional
calculus.

COI’ISidGI‘jQ = [0,5?61], jl = (5?61,5%2], cee jn—l = (fﬂn_l,ftn], jn = (72”, Tl,neN,n>1.
For #; € (0,T) such that %; < %, < ... < %,, we define the following spaces:

J =T\, %0, ., 2,

X =0 €CJ.R): % € C(J), left limit H(x)
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and right limit 9,(%;)) exist, and ¢, (%;) = 91 (%), 1 <i < n},
and

9 = (9, € C(J,R) : ¥, € C(J"), left limit 192(;?;-')
and right limit 9,(%})) exist, and 9»(7;) = ¥(%)), 1 < j < m}.

Then, the product space (ﬁx‘f), [|(F, 9)|]) endowed with the norm ||(F, P)|| = || ]|+]P2ll, (P41, F,) €
¥ x ) is also a Banach space.

Let C(J X R X R, R) denote the class of functions @ : J X R X R — R such that
(i) the map % — @(%, 1, v) is measurable for each ¢, v € R, and
(if) the map % — @(%k,9,v) is continuous for each % € 7.

The class C(J X R X R, R) is called the Carathéodory class of functions on J X R X R which are
Lebesgue integrable when bounded by a Lebesgue integrable function on .

Definition 2.1. /73] The Riemann-Liouville fractional integral of the function n € L'([a, b],R"), with
an order of T € R*, is established by the following definition:

- 71 (2 _ S)Z—l

I = ———n(s)ds,

1) fa (@) s
where I is the gamma function.

Definition 2.2. [13] The Riemann-Liouville fractional-order derivative of a function n defined on the
interval [a, b] is characterized by the following definition:

. 1 d\" 2 s il
D)= oo () [ En— s

where n = [{] + 1, and [7] denotes the integer part of i.

Definition 2.3. [13] For a function n given on the interval [a,b], the Caputo fractional-order
derivative of n, is defined by

_ s)n—i—l

c i AN 1 2(2 (n)
D) = I‘(n—i),[ T " (s)ds,

where n = [{] + 1 and [Z] denotes the integer part of i.

Lemma 2.1. [I3] Leti > 0and® € C(0,T) N L(0, T). Then, the fractional differential equation

D'9(x) =0

has a unique solution

IR =2 + A+ T A

wheret; € R,i=1,2,...,n,andn—-1<17<n.
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Theorem 2.1. [14] (Lebesgue’s dominated convergence theorem) Suppose f, : R — [—0c0, +00] are
(Lebesgue) measurable functions such that the pointwise limit f(x) = lim f,(x) exists. Assume there
x—+00

is an integrable g : R — [0, o] with |f,(x)| < g(x) for each x € R. Then, f is integrable as is f, for

each n, and
lim frdu = f lim f,du = ffd,u.
x—+e0 Jp R AT R
Lemma 2.2. [13] Lett > 0. Then, for 9 € C(0,T) N L0, T), we have

I'D9R) =9R)+co+ 1R+ ...+ c B,
foresomec; €eR,i=1,2,...,n—1, wheren =[] + 1.

Lemma 2.3. [15] Considert € [0, 1] and a continuous functionn : [0,T] — R. ¢ € @Z([O, TILR)isa
solution to the fractional integral equation,

a (2 _ S)Z—l 7 (5% _ s)i—l

H#) = Fo - ; WU(SM»” ; WU(S)ds,

if and only if ¢ satisfies the following problem:

{Dfﬁ(ff) =n(&),% € [0,T], 2.1)

Ha) =1y, a>0.

For brevity, let us take

1 1 1 r : d,
—Op, — =1 — T — )" y(s)ds — —,
m =79 = 7% TF(Zl)j(; (T = )" x(s)ds T
dy = I (T, 9(T), 9(T))
o1(T,91(T), 9(T)) ’
5 L (R)) — IR E (R, 1 (Ry), 92(R:))
Y= Z ~ ~ ~ s
— o1&, B (%), 92(%)))
. Z J BB £ (5,91(5), Oa(s)ds
— @1 (%, D1 (%), 92(%:)) ,
1 1 1 T ) d,
- - _ T — -1 _ -
m Tﬂrz Tﬂl TG fo (T — ) x(s)ds T

_ Bay(T, 9:(T), 9x(T))
02T, 91(T), 9(T)) ’
" L(2(2)) = 1263, 91(R), 02(2))
=y RN ACD)

2

b

J=1
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PN ol
m %j (%j—s)2

& (s, 01(s), Da(s))ds
5y = 0 I'(k2)
? Z 023, 91(2)), 92(2;))

J=1

Lemma 2.4. For any x| € L'(J,R), the function 9, € (AZ(J' ,R) is a solution to the

Du(1’1<"L§2§2}@;@§2§?“”) @), 2eJ=[0,T], 1<i<2,

G = NE) + LG, RO ,i=1.2....n,

91(0) =9 91(T) =9
¢1(0,91(0),82(0)) 0- o1(T01(T),92(T)) Ty»

(2.2)

if and only if ¢ satisfies the hybrid integral equation
D1(2) = @1 B1(2), ()| 1 + 61+ mars + Dy

711 %ors k=1
f B o]+ [ e o 20T @3

Proof. We assume that ¢, is a solution of the problem (2.2).

BT &1 (2,01 (R),92(2)
@1(2.01(R).02(2))

If # € [#¢,%,], by definition, ( ) is continuous. Applying I of the order i; on

both sides of (2.2), we can obtain:

91(R) — &R 3. 3) _

I"y1(®) — co — 1%,

1%, 91(R),9,(%))
so, we get
91(2) @) o — ey, + 161G D@, 0:(2)
1%, 9(R), ?92(%)) 012, 1 (R), (%))
Substituting % = 0, we have
()
o = 1(0) 8o,

010, 9,(0),8,0)
and substituting # = T, we have

9(T)

=1"y1(T) + 9 — 1T + di,
01(T, 91(T), 9(T)) X1 0—Cl |

then,
1 0
c1 = ?(190 + 1 IXI(T) - ﬂTl + dl)

In consequence, we have

) = e, f (&= )" xa(s)ds + (1 - ;)ﬂo
0

Qs
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S

4

! _i
' _ﬁT] TF(“)f(T $)' " xi(s)ds )
f (%F( syl £1(s, 91(s), Da(s5))ds.

If# e [72’1,7%2], then

o (ﬁl(}?) = IM& (R, (R), 2(R))

o1 (R). 02(2)) ) =x1(®), telr, %], (2.4)

hGE)) = @) + L(7)). (2.5)
Referring to Lemma 2, and the continuity of ¥ — ¢, (%, (%), ¥,(%)), we have

G1(R) — MR, 01(8), 0:(2) _ h@E]) = IMEGR, 91(R1), 92(R1))

12, 01(R), D (R)) - e1(2,91(21), 32(21))
SN LN D) L
- TGy ———x1(s)ds + ) ———X1(s)ds.
Since
HR) — IME((R, 3 (R), h(R)) _ M) + L F)) — IME (R, $1(Ry), 92(R1))
012,01 (2), 92 (R)) 121, 01 (), 92(21)
i1—1 2SR B |
f (XIF(A) x1(8)ds + | %Xl(s)ds,
accordingly,

h(x) = 901(21,191(721),?92(7?1)) f 1 = )" xi(s)ds + (1 — —)190 + 119T1

I'@)

R1—1
f (T - 5"~ 1)a(s)ds—— f Gl T S) S (5,91 (5), 0a(5))ds).

TF(AI )
Then, we get

71 (}Atl _ S)fq—l

191(7?)=901(?2,191(7?),292(%)) Ta) f (1 = )" xi(9)ds + | W&(&%(S),%(S))ds

N L)) — IFME (R, 1(R), 92(R1)) _ f”' (R —s)~! (5)ds
01Ger, 01(), 02 () o Tay *

-1 K1
f ("F(A) (s + ey + B + f %&(s,mm,ﬂz(s»ds,

so, one has
2 (5 -1
91(2) = @18 01(2), ()| f =4 (5, 0,(5), D))
0 [(ky)
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11(191(721_)) - Ikl.fl(}?],ﬂl(?/%o, 172(21)) (% 5)21_1
i (21, (), () TG x1(8)ds + 111 + By |
f (% I“(S) _ f](S,l?](S), Itlﬁz(s))ds.

If # € [#,, #3], we have

G1(%) — INE R, 01(R), 0:(8) _ 91(R3) — [N E (R, §1(R2), $2(R2))

PGB el G2 0)
- 0%2 %m(s)cm f & F(A)” 1(s)ds.
Since
01(2) = U, 0120, 9:0) _ $h(65) + 1 (55)) — 61 (. (). 260)
201G h (R), 02(2) A 1o 0122), 92(22))
- 0%2 %m(s)ds f v 7 (syds.
then,

1=t E1(s,01(s), Da(s))ds

(%) = 10 G, 2G| P S

L (R))) — IME (R, 01(R), 9a(R1)) %2 (Ry — 5)!
] Cray s
753 (922 _ S)fq—l

0 ['(ky)

Hence, we acquire,

&1(s,91(5), P (8))ds.

LG (2))) — IFME (R, 91(R1), Do (R1))
1%y, 91(R1), 92(21)

L DO = PG, 916, 92() PR g (5, 81(5), 9a(5))ds
1R, 01 (), ["9(%2)) 11, 91(21), 92(21))

%2 (;{2 g)] R )
f €105, 91(s), ta(s))ds % (2, — s)i!
0 r(Kl) 9
@1 (R, 01 (32), D2 (%2)) + B IN0)) x1(8)ds +mix; +
(% s)fl—l R (;’%2 _ S)il—l

T@) x1(8)ds — . WX](S)dS]

f ("F( D ¢ (5, 91(5), Ba(s))ds.

91(R) = @18 B (2), ()|

Consequently, we get

2 L9 (3))) — TR E (B, 91(R), Da(R1)
H(R) = @17, (R), (R I .
) =G h® 2("))[; PCRACOR G
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—————x1(§)ds + % + Iy

+i [ Eo £ (5, 91(5), Da(5))ds f (R — st~
P o1, 9 (R), 92(R))) ()

i-1 N A i |
f & r(fl)) s = [ B

- ki—1
f (5. 01(5). 02
By using the same method, for % € [#;,%#,,1],i = 3,4, ..., n, one has

S B — FE G 1), D (R)

'W)"’01(%"91(”)”92(”))[; 1 01Ge), 92(50)
BB (5,910, a(Dds (%2 (5, — g

D e P R M T R LGRS R

i=1

(% )L] 1 753 (5% _ S)il—l
f gy N@ds = | ZH—Zl)X(S)dS]
(5 - sy

’ 0 Wfl(s’ﬁl(s)aﬁz(s))ds.

Conversely, assume that ¢, satisfies (2.3). If % € [, %], then, we have

1 % . % %
B1(2) = 1R, 91(2), 922)( i f & — " yi(9)ds + (1 - §>ﬁo + %%l
11— d
TF(Ll) f (T — )" yi(s)ds — —)
k-1
f G- T ) HE (s, 90(5), Oa(5))ds. (2.6)

Then, by dividing both sides of (2.6) by ¢;(%,9,(%),9,(%)) and applying D", we obtain the first
L

12, 91(2), ﬂz(%))

equation in (2.2). Again, substituting # = 0 and % = T in (2.6), since /) —

. . th .
increasing in R for % € [%y, %], the map ¥; — - — — is injective in R, and
¢ o PN I RNES) R
91(0 (T
1(0) o, and (T o
©1(0,94(0), 92(0)) o1(T, 91(T), 9(T))

If t € [, %5], then,

2 L9 (R7) — TR E (R, 01 (R), 92(2))
H(R) = 012, 1 (R), (R e .
1) =G 2(”))[; o1, 01, 02(2)

i @—s)h1! . )
f R é:l(sa 79'1(5‘), ﬂZ(S))dS %2 (;’% _ S)Ll_l
0 TG )
" % % % + —————vi(&)ds +mx + 0
Z 1%, 01 (%), D2(%))) 0 TG, Xi( m» + U

i=1
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-1 % (n -1
f C et [T

k-1
f (%F( ) &1(s, 91 (s), 92(s))ds. (2.7)

Then, by dividing both sides of (2.7) by ¢, (%, 91(%), 9,(%)) and applying D", we obtain Eq (2.4).
Again by (A0), substituting % = #; in (2.6) and taking the limit of (2.7), then (2.7) minus (2.6) gives
(2.5).

Similarly, for % € [%;, %;,1],i = 2,3, ..., n, we get

o[ = 6RO (R), H,(R)
? ( PICENEIRC) N 28
(&) = M@ + L(R))). (2.9)
O

This completes the proof.

Theorem 2.2. Let @, @, be jointly continuous, then (9,9,) € Ix ‘{A) is a solution of (1.2) if and only
if (1, ,) is the solution of the integral equations

91(R) = @1 01(2), ()| 1 + 61 + moxr + Dy

— )i~ 2op_ oyfi-l
f (% I“(f) @ (s, 91(s), ﬁz(S))ds] + ‘fo %gl(s, H(s), h(s))ds, 2 € [0,T], and
(%) = @a(%, 01(%), 192(%))[72 + 0, +moxy +h
(7 - syt 2on _ oyl
+ 0 (% F(;))_wz(s, 191(s),1?2(s))ds] + i %gz(s,ﬁl(s),ﬂz(s))ds,ff €[0,T]. (2.10)

3. Main result

Before presenting the main results of this work, we will present the following assumptions:

(A1) For the Caratheodory functions @, : J x R> — R (i = 1,2), there exist constants p; > 0,¢q; > 0
(i = 1,2) such that

|1 (%, vi,v2) — @1 (%, wi, wy)| £ pilvi — wil| + palva — wal,

|2 (3, vi,v2) — o (R, w1, wo)| < qilvi — wil + @a2lva — wal,

for % € J, and (w;, w»), (v, v2) € R
(A2) The functions ¢; : J X R? — xR\ {0}, & : J x R? — R, are continuous and for some constants
h; >0,k; > 0,L; >0 (i = 1,2) such that

lo1 (B, w1, wy)| < hy,

|902(7%5 wi, C()2)| S hz’
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|1 (2, w1, wy)| < Ly,
|2 (%, w1, w))| < Loy,
€12, w1, o)l < ki,
(£2(%, w1, W)l < ky.
(A3) Assume sup @;(%,0,0) = N| < oo, sup @,(#,0,0) = N, < 0.
%€[0,T] #€[0,T]

To simplify computational calculations, we introduce

T Th
TTra+) T TR+
T® T*

“Th+D) T T+l

Consider the operator ® : X X 9 — X x ?) associated with the problem (1.2) as follows:

Q. 0)(3) = ( O (4, %) (%) ),

O, (¥, %)(%)
where
OB, 92)(®) = @1(2.91(2), B2()| 1 + 61 + muzey + Dy
f * F(A)” G (5, 1(5), Do)
f (5, 01(5) (5 7 € 0.T)
and

Ox(t1, 92)(2) = (2, 01(2), D2(2))|y2 + 63 + Moty + 0y

-1
f B s, 150 5|

kr—1
f (% 1ﬁ(s) E(s,91(5), D (s))ds, % € [0, T].

Theorem 3.1. Suppose that conditions (A0) and (A2) hold. Then ®8, c B,, where B,
X XY : ||, P)| < r}isa closed ball, and if

hti(p1 + p2) + hots(qr + q2) < 1,

then, problem (1.2) has a unique solution on [0, T'].

Proof. For (9,,%,) € B, and % € [0, T], it follows by (Al) that

[@1 (e, §2(3), H1 ()| < |@1(2, §1(), F2(%)) — @1(%,0,0)] < pilldhll + palld-l.

3.1

(3.2)

(3.3)

= {(,h) €

AIMS Mathematics Volume 9, Issue 7, 18670—18687.
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Similarly, one can find that |@,(%, ¢ (%), 3,(%2))| < q1l|91]] + g2||F>]|.
Now,

1©, (D, th)(R)| = |901(}?,191(2),792(7?))|[|71 + 01 + mixy + ol

7 (5% _ S)Zl_l

i W|W1(S,ﬁ1(s),ﬂz(s))|ds]
(2 — sy 5 (o). DN * (7 - )b Sl 5). Dol ST
+ T Ta &1 (s, B1(s), Pa(s))ds| + . TR 1£1Cs, B1(s), Da(s))lds
2 s -l
< hl[b’l + 01 +mn; + ol +f %|01(S,191(S),192(S)) - @(s,0,0)
o L@
NN < |
+ @1(5,0,0)lds| + fo %klds

i

T
<h +0; + + Po|l + ——= (P11l + p2l|92l]) + N,
[l + 61+ maes + ) TPl + Pl 1

&
T& +1)
< ti(pillll + palldall) + T2ky + hylys + 61 + miay + ol + N

1+ N

Thus,

1O, (D1, D)l < hiTi(p1 + p2)r + Taky + hyly; + 61 + sy + ol + N,

Similarly,

1@ (31, Pl < hat3(q1 + q2)r + Taky + halys + 02 + 12221 + 04| + o N,

From the foregoing estimates for ®; and ®,, it follows that ||®@(¢, 3,)|| < r.
Next, for (,%,), (3],1%,) € ©x Sand % € [0, T], we get

7 (9/1:' _ S)Zl—l
L)
— @1 (s, (), B5(s))lds]
O T?l
< h - ’_ - o
< l(ml TPl = Bl el oH)

< hy(Tipill® = 941l + 71 palld = 9all)
< hyri(py + p)(I19; = Sl + 119 — 9all).

019}, 9)(®) — ©1(B1, 92)(2)

< [@1(s, 91(5), 92(5))
0

which implies that

@1, 95) = O, 9)|| < hyri(pr + p)(I9; = Bl + 119 — Dall). 34

Similarly,

028, 9) = ©1(81, )| < hats(gs + g2)(19) = Bill + 118 — Dall)- (3.5)
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From (3.4) and (3.5), we deduce that
|07, 95) — ©W,, 9)|| < (hiTi(p1 + p2) + hats(qr + g))(I19; = Bhll + 195 = Dall)-

Considering the condition h17(p1 + p2) + hat3(q1 + g¢2) < 1, we can deduce that the operator
O has a unique fixed point. Consequently, we can conclude that our prposed coupled system has a
uniquesolution on the interval [0, T]. O

Now, we explore the existence of solutions for problem (1.2) using Schaefer’s fixed-point theorem.

Theorem 3.2. Assuming the hypotheses (AO) and (A3), we can affirm that the boundary value problem
(1.2) possesses at least one solution on the interval [0, T].

Proof. The proof will be presented in multiple steps.

Step I: The operator ¢ : X X9 — X X 9 is continuous. It is noteworthy that the continuity of the

functions @, ¢;, @, and ¢, implies the boundedness of the operator y. Let (¢,,1,,) be a sequence

of points in X X ?) converging to a point (%, 1,) € X X ). Therefore, applying Theorem 2.1, we obtain:
1 (D, 0,)(%) — Y1 (91, F2)(2)]

= 1 (2, 913, 2@y + 61 + My + Dol

-1
f (”F(A) (@1 01, (R), 0, (2)) — @1 (R D1 (R), (R))\ds|

f (%n)l £1(5,01,(5), 0,(5)) — £1(5, B1(5), Da(s))lds

<h [b’l + 01 + mxy + ol

i—1
f k) e D oy (2,81,2), 92, (B) — 12 1 (2, B2 ds]

k-1
f( F() [I€1(s, B1,(5), 92, (5)) — &1(s, F1(s5), Fo(5))llds.

Since ¥, is continuous, we have [y (3, %,,) — Y1 (¢, %)l = 0asn — oo forall & € [0, T].
Similarly, we can prove |[y»(,,32,) — Y2(t, )|l = 0asn — oo forall # € [0, T].
Hence, it follows from the foregoing inequalities satisfied by ¢, and i, that the operator ¥ is
continuous.
Step II : The operator ¢, which maps bounded sets to bounded sets, implies the existence of positive
constants £ and L, such that for each such that ||y (3, 9>)|| < L; and ||y, (¢, D,)|| < L, we have

o1 (1, PG| = |1 (%, 91(R), ﬁz(fﬁ))l[l)’l + 01 + iy + Dy
(% _ )L] 1 _ )kl—l

* ), TTa ——@1(5,9:(5), ﬁz(S))IdS f(l“( ) &1, 91(s), D2(s))lds

h Dol + —- "
< +0; + + T + L[+
1[|)’1 1+ mxi + Dl T+ D) 1] &+ D) ki

T T*

< L
||§//1(ﬁ1’192)” < h1[|)’1 + 01+ + ol + TG+ 1) 1] + TG+ 1)k1
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Thus, we deduce that ||y (9, 9,)|| < £L;. In a similar fashion, it can be found that |, (¢, 3,)|| < Ls.
Hence, it follows from the foregoing inequalities that ; and ¢, are uniformly bounded and the
operator i is uniformly bounded.
Step III : We show that our operator is equicontinuous.
Letr,rm € [0,T] with r| < 1y,

W1 (F1(r2), B2(r2)) — 1 (D1 (r1), 2 (r1))
e : :
hi| = f ((ry = )" = (r) = )" D@1 (5, 91(5), 9a2(s))ld's
Iﬂ( 1)

f (ry = )" @i (s, 91(5), 92(5))Ids]

F(Al)
F( S f ((r2 = 97 = (ry = Y™ (s, B1(5), Ba(s))lds
r(Kl) (12— 915, 91(9), Bas))lds
- hl[#lﬂ)((“ =" == ﬁ(w — )]
R T 9 0= 9 e

-0 as r —n.

Analogously, we obtain that

L . .
W2 (F1(r2), B2(r2)) = Yo (B (ry), D2 (r1))| < hZ[l"(Zz—-zi-l)((rz — )2 —(ry =52

L, o \i-1
+ —F(Az )(1’2 )
-1 k-l
1ﬂ(ﬂ_l)((z—s) —(r1 =) )
_ Ky— 1
- r(kz) Tz

Hence, the operator ¢ is equicontinuous, and consequently, the operator (i}, 1) is completely
continuous.
Step IV : To show that the set P = {(¢},%,) € X XY : (F1,19>) = L1w(I,19,), 0 < A; < 1} is bounded
(Apriori bounds), let (¢,%,) € P and # € [0, T]. Then, it follows from ¥,(%) = A ¢ (¢, F,)(%), and
Da(%) = Lo (9, 92)(2), then,

[ (3)
< I1 (8, 91 (2), B[ ly1 + 61 + muer + Byl

-8 RPN I |
f(%r(sl)) Im(s,ﬂ](s),ﬂz(s))lds]+£ %g](s,ﬁ](s),ﬁz(s))us
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ThL, )+ Tk,
L@ +1)/ Tk+1)

< hl(b’l + 51 +mx + 190| +

Il < R, (3.6)
and . R
T>L, Tk,
h| < h o ) =R,
19211 < a(ly2 + 65 + masey + 9| + s 1)) v
191l < R. (3.7)
Hence, from (3.6) and (3.7), we obtain:
19411 + 1192l < R,
which implies that
(P, Il < R.

Therefore, # is bounded, and according to Theorem 3.2, ¢ has a fixed point. Consequently, the
problem (1.2) has at least one solution on the interval [0, T']. The proof is complete. O

4. Examples

Example 4.1. Consider the following system of coupled fractional differential equations:

ﬁl—zé(sinﬂlJrM)] l(ﬂl 1) 5

’02-{-5 _ + z + D
©1(2,91,9) ~ 100 272001+,

1 [

CD]/Z[ﬂ2—12(COSI92+ 1+1192 +e)]: 3 |COSI91| +isim9
02 (%, 91, %) 4001 +cos; 26 2

&) = @) + (F204(R), % # 0, 1,

() = () + (-202(2))), 21 # 0, 1,

ch/z[

11(0) _ 1 th(e) _z
¢1(0,91(0),3,(0)) 7 @ile,Fi(e),Pa(e)) 2’
11(0) _ () _z @.1)
©2(0,91(0),9,00)) 7 gale,Pi(e),Pa(e)) 4 '
O | | 3 5 3
Here i) =k, = 2=k =2 =01=5,7=0=34d =7,d2=§,771 :Uzzg,Tze,ﬁozﬂl =
T T N % . _ ~ e * .
L, 97, = > U, = T and ¢ (%, 9, 9,) = E2(sin(%)+ lil?l +3)+e, (2, 91, 0,) = 1&)1)2(5111(192)+
1 A~ 1 A~ COS! . —
D)+ 5. @1 01.92) = g5( + 5) + 31y + e and @R 01.92) = g ey + 36 Sin() +e .

From the given data, we find that 7, = 7, = 0.1245678, therefore, h7i(p, + p2) + ha13(q1 + q2) =
0.2312456879 < 1.

By Theorem 3.1, problem (4.1) with the given O;(%,¢4,%,) and ©®,(%,1,,) has one unique
solution on [0, T'].
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Example 4.2. Let us consider the following fractional boundary value problem:

1T 2873 ( o 91+1 V2|9,
(0= Bl R (sinoy + 2] 1
[ )
D3 RIS = #” sin + cos(I31,),
©1(%, U1, U2
_7i[a 941319
) % 12[]”}(005192 + )] e ,
Ds 9.0y = 2% cost + cos(I31),),
2%, U1, U7

hE]) = @) + (@&, 24 # 0,1,
Bh(&)) = (2] + (G2(2))), 21 # 0, 1,

HO 1 D) _2x
¢1(0,91(0),9,(0)) 2" @i(n,(n), 9x(m)) 3~
90 1 B 3x 42)
¢2(0,91(0),9,(0)) 27 @o(m, 91 (n), Da(n)) 4 '
a2 2 3 3 1
Here iy =k =0h = kp = 5,)’1 =0 = %,)’2 =0, = %,dl = §,d2 = 5,771 =1n = §,T= E,ﬁo =
2 3r N % . V2 e ~
¢ = 1,97, = ?,1972 =T and ¢((2,91,%,) = (1382(sm191 + 1K|1V§129|1| + 3) + 5 and @x(%, 91, %h) =

i 1
(e 10+01>2(cos 9 + 9) + 5> and @2, 91, 85) = 22sin + cos(I3h), and @r(2, 91, %) = 22 cost +
cos(ﬁﬂz). From the given data, we find that 7, = 7, = 0.02354689, therefore, h,7(p; + p2) + ho13(q1 +
q>) = 0.564879 < 1.

By Theorem 3.1, problem (4.2) with the given ©;(%,¢,%,) and ©®,(%,1,,) has one unique

solution on [0, T'].
5. Conclusions

Many natural phenomena are analyzed using various types of fractional differential equations,
allowing for a comprehensive examination of integrated phenomena across multiple fields. In this
paper, we study the existence and uniqueness of solutions for a class of coupled system fractional
impulsive hybrid integro-differential equations. We extended the findings to include new classes of
fractional boundary conditions involving the Caputo sequential derivative. For future research, it is
suggested to incorporate other fractional derivative operators, such as the generalized Hilfer fractional
derivative. Researchers in this field can further investigate the existence and uniqueness of solutions by
using other fixed point theorems such as Monch’s fixed point theorem or Darbo’s fixed point theorem.
Researchers can also apply diffrent types of fractional derivatives such as Hadamard, Hilfer, Fractional
derivatives in our proposed system.
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